1
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Liu Z, Yuan J, Wen P, Guo X, Li K, Wang Y, Liu R, Guo Y, Li D. Effect of Lard or Plus Soybean Oil on Markers of Liver Function in Healthy Subjects: A Randomized Controlled-Feeding Trial. Foods 2023; 12:foods12091894. [PMID: 37174432 PMCID: PMC10178189 DOI: 10.3390/foods12091894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Humans have consumed lard for thousands of years, but in recent decades, it has become much less popular because it is regarded as saturated fat. Animal studies showed that lard plus soybean oil (blend oil) was more advantageous for liver health than using either oil alone. This study aims to assess the effects of blend oil on liver function markers in healthy subjects. The 345 healthy subjects were randomized into 3 isoenergetic diet groups with different edible oils (30 g/day) (soybean oil, lard, and blend oil (50% lard and 50% soybean oil)) for 12 weeks. The reductions in both aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were greater in the blend oil group than in the two other groups (p = 0.001 and <0.001 for the interaction between diet group and time, respectively). The reductions in AST and ALT in the blend oil group were more significant compared with those in the soybean oil group (p < 0.001) or lard group (p < 0.001). There were no significant differences in the other liver function markers between the groups. Thus, blend oil was beneficial for liver function markers such as AST and ALT compared with soybean oil and lard alone, which might help prevent non-alcoholic fatty liver disease in the healthy population.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Jihong Yuan
- No. 2 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ping Wen
- Supply Department, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiaofei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Kelei Li
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yinpeng Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Ruirui Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yanjun Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne 3800, Australia
| |
Collapse
|
3
|
Protegrin-1 inhibits porcine ovarian granulosa cell apoptosis from H 2O 2-induced oxidative stress via the PERK/eIF2α/CHOP signaling pathway in vitro. Theriogenology 2021; 179:117-127. [PMID: 34864562 DOI: 10.1016/j.theriogenology.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
In mammals, oxidative stress-induced apoptosis of granulosa cells is one of the major causes of follicular atresia, affecting ovarian physiological function. Protegrin-1 (PG-1) is an antimicrobial peptide with effective antimicrobial activity, immunomodulatory function, and porcine growth-promoting effects. PG-1 has been detected in porcine ovaries follicles. This study aimed to investigate the effect of PG-1 on oxidative stress-induced apoptosis of porcine ovarian granulosa cells and the underlying molecular mechanism. Granulosa cells were obtained from porcine follicles and treated with H2O2 to establish the oxidative stress model, and then treated with or without PG-1 (10 μg/mL). PG-1 significantly suppressed H2O2-induced apoptosis in granulosa cells after 24 h of treatment. Furthermore, these results revealed that PG-1 increased the mRNA and protein expression of anti-apoptotic B cell lymphoma/leukemia 2 (BCL2) and the BCL2/Bcl-2-associated X protein (BAX) ratio while decreasing the expression of pro-apoptotic BAX and active caspase-3. Using Western blot analysis, it was found that PG-1 decreased the phosphorylation of RNA-like endoplasmic reticulum kinase (PERK) and the α-subunit of eukaryotic initiation factor 2 (eIF2α) as well as the protein expression level of CCAAT enhancer-binding protein homologous protein (CHOP), all of which were increased by H2O2. Moreover, inhibitors against PERK and phospho-eIF2ɑ both suppressed the H2O2-induced granulosa cells apoptosis and enhanced the anti-apoptosis effect of PG-1. Taken together, our findings demonstrated that PG-1 inhibited porcine ovarian granulosa cell apoptosis from oxidative stress via the PERK/eIF2α/CHOP signaling pathway in vitro, which suggests the novel regulatory function of the antimicrobial peptide in the ovary.
Collapse
|
4
|
Xiong K, la Cour Karottki KJ, Hefzi H, Li S, Grav LM, Li S, Spahn P, Lee JS, Ventina I, Lee GM, Lewis NE, Kildegaard HF, Pedersen LE. An optimized genome-wide, virus-free CRISPR screen for mammalian cells. CELL REPORTS METHODS 2021; 1:100062. [PMID: 34935002 PMCID: PMC8687118 DOI: 10.1016/j.crmeth.2021.100062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Pooled CRISPR screens have been widely applied to mammalian and other organisms to elucidate the interplay between genes and phenotypes of interest. The most popular method for delivering the CRISPR components into mammalian cells is lentivirus based. However, because lentivirus is not always an option, virus-free protocols are starting to emerge. Here, we demonstrate an improved virus-free, genome-wide CRISPR screening platform for Chinese hamster ovary cells with 75,488 gRNAs targeting 15,028 genes. Each gRNA expression cassette in the library is precisely integrated into a genomic landing pad, resulting in a very high percentage of single gRNA insertions and minimal clonal variation. Using this platform, we perform a negative selection screen on cell proliferation that identifies 1,980 genes that affect proliferation and a positive selection screen on the toxic endoplasmic reticulum stress inducer, tunicamycin, that identifies 77 gene knockouts that improve survivability.
Collapse
Affiliation(s)
- Kai Xiong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Hooman Hefzi
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Songyuan Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Shangzhong Li
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Spahn
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ildze Ventina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Nathan E. Lewis
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Pal LC, Prateeksha, Singh BN, Pande V, Rao CV. Phenolics-Enriched Fraction of Pterospermum Lanceifolium Roxb. efficiently Reverses the Hepatocellular Carcinoma in NDEA-Induced HCC Rats. Nutr Cancer 2021; 74:1106-1121. [PMID: 34018459 DOI: 10.1080/01635581.2021.1922716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatocellular Carcinoma is one of the most frequently diagnosed cancer and highly refractory for chemotherapeutics agents. Therefore, the study aims to explore the new therapeutic agents for HCC. Phenolics rich fraction of leaves of P. lanceifolium was studied against hepatic cancer cell lines (HepG2) and NDEA-induced HCC rat model system. The obtained results showed that PLE induces reactive oxygen species (ROS) generation and chromatin condensation in nucleus and, alters the mitochondrial membrane potential (MMP) in HepG2 cell lines. The acridine orange/propidium iodide analysis and annexin-V FITC/PI analysis confirms that PLE induces apoptosis-mediated cell death in HepG2-cell lines. In In Vivo analysis, the administration of PLE in NDEA-induced rats declined the elevated biochemicals markers (ALT, AST, ALP, and GGT), interleukins, TNF-α, α-fetoprotein, carcinoembryonic antigen, and total bilirubin. PLE reinstated the level of antioxidant enzyme (GSH, GST, catalase, SOD, and GPX) and the expression of pro-apoptotic (p53, caspase-3, caspase-9, and Bax) and anti-apoptotic (Bcl-2) genes in a dose-dependent manner. The GC-MS analysis of Pterospermum lanceifolium fraction (PLE) represents the presence of palmitic acid, myristic acid, β-sitosterol, and catechin as major bioactive phytocompounds. The study discloses the new lead for HCC that can be further useful for development of new chemopreventive agent.
Collapse
Affiliation(s)
- Lal Chand Pal
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Prateeksha
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Brahma Nand Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | | |
Collapse
|
6
|
Abstract
Background Previously, dihydroceramide (d18:0/24:0) (dhCer (d18:0/24:0)) was reported to be a potential biomarker for acute-on-chronic liver failure (ACLF) prognosis. In this study, we further explored the role of dhCer (d18:0/24:0) in the progression of ACLF to validate the biomarker using ACLF rat model. Methods ACLF rats were sacrificed at 4 and 8 h post-D-galactosamine (D-gal)/lipopolysaccharide (LPS) administration to investigate the liver biochemical markers, prothrombin time and liver histopathology. Change in dhCer and other sphingolipids levels were investigated by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Rats were treated with N-(4-hydroxyphenyl) retinamide (4-HPR) to examine the mortality rate and its role in improving ACLF. Results LPS/D-gal administration resulted in significant elevation in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Prothrombin time was prolonged and histopathological examination showed abnormality. HPLC-MS/MS results showed total dhCer levels in ACLF group (64.10 ± 8.90 pmol/100 μL, 64.22 ± 6.78 pmol/100 μL for 4 and 8 h, respectively) were decreased significantly compared with control group (121.61 ± 23.09 pmol/100 μL) (P < 0.05). In particular, dhCer (d18:0/24:0), dhCer (d18:0/20:0), and dhCer (d18:0/22:0) levels were decreased. Treatment with 4-HPR significantly increased the levels of dhCers, including dhCer (d18:0/24:0) compared with ACLF group, for the level of dhCer (d18:0/24:0) in 4-HPR group was 20.10 ± 8.60 pmol/100 μL and the level of dhCer (d18:0/24:0) in ACLF group was 9.74 ± 2.99 pmol/100 μL (P < 0.05). This was associated with reduced mortality rate and prolonged survival time. The ALT and AST in 4-HPR group were significantly decreased compared with ACLF group. The prothrombin time of 4-HPR group (41.49 s) was significantly lower than the prothrombin time of ACLF group (57.96 s) (P < 0.05). 4-HPR also decreased plasma ammonia levels slightly, as the plasma ammonia levels in 4-HPR group and ACLF group were 207.37 ± 60.43, 209.15 ± 60.43 μmol/L, respectively. Further, 4-HPR treatment improved histopathological parameters. Conclusions DhCer, especially dhCer (d18:0/24:0), is involved in the progression of ACLF. Increasing the levels of dhCer can reduce the mortality rate of ACLF rats and alleviate liver injury.
Collapse
|
7
|
Inoue C, Sobue S, Mizutani N, Kawamoto Y, Nishizawa Y, Ichihara M, Takeuchi T, Hayakawa F, Suzuki M, Ito T, Nozawa Y, Murate T. Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes. NAGOYA JOURNAL OF MEDICAL SCIENCE 2020; 82:261-280. [PMID: 32581406 PMCID: PMC7276413 DOI: 10.18999/nagjms.82.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Resveratrol (RSV) has recently attracted keen interest because of its pleiotropic effects. It exerts a wide range of health-promoting effects. In addition to health-promoting effects, RSV possesses anti-carcinogenic activity. However, a non-physiological concentration is needed to achieve an anti-cancer effect, and its in vivo bioavailability is low. Therefore, the clinical application of phytochemicals requires alternative candidates that induce the desired effects at a lower concentration and with increased bioavailability. We previously reported a low IC50 of vaticanol C (VTC), an RSV tetramer, among 12 RSV derivatives (Ito T. et al, 2003). However, the precise mechanism involved remains to be determined. Here, we screened an in-house chemical library bearing RSV building blocks ranging from dimers to octamers for cytotoxic effects in several leukemia and cancer cell lines and their anti-cancer drug-resistant sublines. Among the compounds, VTC exhibited the highest cytotoxicity, which was partially inhibited by a caspase 3 inhibitor, Z-VAD-FMK. VTC decreased the expression of sphingosine kinase 1, sphingosine kinase 2 and glucosylceramide synthase by transcriptional or post-transcriptional mechanisms, and increased cellular ceramides/dihydroceramides and decreased sphingosine 1-phosphate (S1P). VTC-induced sphingolipid rheostat modulation (the ratio of ceramide/S1P) is thought to be involved in cellular apoptosis. Indeed, exogenous S1P addition modulated VTC cytotoxicity significantly. A combination of SPHK1, SPHK2, and GCS chemical inhibitors induced sphingolipid rheostat modulation, cell growth suppression, and cytotoxicity similar to that of VTC. These results suggest the involvement of sphingolipid metabolism in VTC-induced cytotoxicity, and indicate VTC is a promising prototype for translational research.
Collapse
Affiliation(s)
- Chisato Inoue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Naoki Mizutani
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Yuji Nishizawa
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Fumihiko Hayakawa
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Tetsuro Ito
- Gifu Pharmaceutical University, Gifu, Japan.,Gifu Prefectural Research Institute for Health and Environmental Sciences, Kakamigahara, Japan
| | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
8
|
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res 2019; 12:43. [PMID: 31077207 PMCID: PMC6511168 DOI: 10.1186/s13048-019-0519-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis. METHODS Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits. RESULTS In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases. CONCLUSIONS This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Basic Medical Science, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
9
|
Gomez-Flores R, Quintanilla-Licea R, Hernández-Martínez HC, Samaniego-Escamilla M, Tamez-Guerra P, Monreal-Cuevas E, Tamez-Guerra R, Rodriguez-Padilla C. Survival of Lymphoma-Bearing Mice by Pachycereus marginatus Cactus Extracts and Elucidation of Bioactive Compounds. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19845814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and commonly becomes resistant to chemotherapy, therefore, it is important to search for and evaluate novel sources of nontoxic antitumor agents. The cactus Pachycereus marginatus is native to Mexico and is traditionally recommended to treat gastrointestinal infections. Tumor-bearing mice survival, liver function, and histopathology by P. marginatus extracts and the in vitro effects of isolated compounds lophenol, β-sitosterol, and palmitic acid were investigated, using the L5178Y-R lymphoma murine model. In vivo oral administration of the aqueous partition at 0.5 mg/kg caused 60% survival at 60 days, without altering liver parenchyma and enzymes, as compared with 40% survival induced by vincristine (0.05 mg/kg), and no survival of tumor-bearing mice without treatment. Furthermore, P. marginatus n-hexane extract, lophenol, β-sitosterol, and palmitic acid compounds caused up to 89%, 73%, and 83% in vitro cytotoxicity to L5178Y-R cells, respectively. These results may support the evaluation of P. marginatus extracts and bioactive compounds in clinical studies.
Collapse
Affiliation(s)
- Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Humberto Carlos Hernández-Martínez
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Enriqueta Monreal-Cuevas
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Reyes Tamez-Guerra
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodriguez-Padilla
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
10
|
Zheng K, Chen Z, Feng H, Chen Y, Zhang C, Yu J, Luo Y, Zhao L, Jiang X, Shi F. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis 2019; 10:157. [PMID: 30770781 PMCID: PMC6377618 DOI: 10.1038/s41419-019-1303-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common type of carcinoma in women worldwide, but the mechanisms underlying tumour development and progression remain unclear. Sphingomyelin synthase 2 (SGMS2) is a crucial regulator involved in ceramide (Cer) and sphingomyelin (SM) homoeostasis that is mostly studied for its role in lipid metabolism. Our primary study indicated that high SGMS2 expression is associated with breast cancer metastasis. Gain- and loss-of-function assays in vitro and in vivo revealed that SGMS2 promotes cancer cell proliferation by suppressing apoptosis through a Cer-associated pathway and promotes cancer cell invasiveness by enhancing epithelial-to-mesenchymal transition (EMT) initiation through the TGF-β/Smad signalling pathway. Further study determined that SGMS2 activated the TGF-β/Smad signalling pathway primarily by increasing TGF-β1 secretion, which was likely associated with aberrant expression of SM. Thus, our findings indicate that SGMS2-mediated activation of the TGF-β/Smad signalling pathway is important in breast cancer progression, which provides new insight into the mechanisms underlying breast cancer metastasis and suggests a possible anticancer therapy for breast cancer.
Collapse
Affiliation(s)
- Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haizhan Feng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfeng Luo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiancheng Jiang
- Department of Cell biology, Downstate Medical Centre, State University of New York, New York, NY USA
| | - Fujun Shi
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Yang L, Guan G, Lei L, Lv Q, Liu S, Zhan X, Jiang Z, Gu X. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones 2018; 23:1283-1294. [PMID: 30194633 PMCID: PMC6237680 DOI: 10.1007/s12192-018-0936-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 12/30/2022] Open
Abstract
Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process. Our study showed that endoplasmic reticulum (ER) stress and autophagy are involved in PA-induced Saos-2 cell apoptosis. We found that PA inhibited the viability of Saos-2 cells in a dose- and time-dependent manner. At the same time, PA induced the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)), altered autophagy-related gene expression (microtubule-associated protein 1 light chain 3 (LC3), ATG5, p62, and Beclin), promoted apoptosis-related gene expression (Caspase 3 and BAX), and affected autophagic flux. Inhibiting ER stress with 4-PBA diminished the PA-induced cell apoptosis, activated autophagy, and increased the expression of Caspase 3 and BAX. Inhibiting autophagy with 3-MA attenuated the PA and ER stress-induced cell apoptosis and the apoptosis-related gene expression (Caspase 3 and BAX), but seemed to have no obvious effects on ER stress, although the CHOP expression was downregulated. Taken together, our results suggest that PA-induced Saos-2 cell apoptosis is activated via ER stress and autophagy, and the activation of autophagy depends on the ER stress during this process.
Collapse
Affiliation(s)
- Lei Yang
- College of Basic Medical, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| | - Gaopeng Guan
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Shengyuan Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Xiuwen Zhan
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Zhenzhen Jiang
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Xiang Gu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
12
|
Sanches JM, Giraldo PC, Amaral R, Eberlin MN, Marques LA, Migliorini I, Nakahira M, Bieleveld MJM, Discacciati MG. Vaginal lipidomics of women with vulvovaginal candidiasis and cytolytic vaginosis: A non-targeted LC-MS pilot study. PLoS One 2018; 13:e0202401. [PMID: 30133508 PMCID: PMC6105002 DOI: 10.1371/journal.pone.0202401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Objective To characterize the lipid profile in vaginal discharge of women with vulvovaginal candidiasis, cytolytic vaginosis, or no vaginal infection or dysbiosis. Design Cross-sectional study. Setting Genital Infections Ambulatory, Department of Tocogynecology, University of Campinas, Campinas, São Paulo–Brazil. Sample Twenty-four women were included in this study: eight with vulvovaginal candidiasis, eight with cytolytic vaginosis and eight with no vaginal infections or dysbiosis (control group). Methods The lipid profile in vaginal discharge of the different study groups was determined by liquid chromatography-mass spectrometry and further analyzed with MetaboAnalyst 3.0 platform. Main outcome measures Vaginal lipids concentration and its correlation with vulvovaginal candidiasis and cytolytic vaginosis. Results PCA, PLS-DA and hierarchical clustering analyses indicated 38 potential lipid biomarkers for the different groups, correlating with oxidative stress, inflammation, apoptosis and integrity of the vaginal epithelial tissue. Among these, greater concentrations were found for Glycochenodeoxycholic acid-7-sulfate, O-adipoylcarnitine, 1-eicosyl-2-heptadecanoyl-glycero-3-phosphoserine, undecanoic acid, formyl dodecanoate and lipoic acid in the vulvovaginal candidiasis group; N–(tetradecanoyl)-sphinganine, DL-PPMP, 1-oleoyl-cyclic phosphatidic, palmitic acid and 5-aminopentanoic acid in the cytolytic vaginosis group; and 1-nonadecanoyl-glycero-3-phosphate, eicosadienoic acid, 1-stearoyl-cyclic-phosphatidic acid, 1-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate, formyl 9Z-tetradecenoate and 7Z,10Z-hexadecadienoic acid in the control group. Conclusions Lipids related to oxidative stress and apoptosis were found in higher concentrations in women with vulvovaginal candidiasis and cytolytic vaginosis, while lipids related to epithelial tissue integrity were more pronounced in the control group. Furthermore, in women with cytolytic vaginosis, we observed higher concentrations of lipids related to bacterial overgrowth.
Collapse
Affiliation(s)
- José Marcos Sanches
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
- * E-mail:
| | - Paulo César Giraldo
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | - Rose Amaral
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | | | | | - Isabel Migliorini
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | - Marcel Nakahira
- Campinas State University, Institute of Chemistry, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Arias-González I, García-Carrancá AM, Cornejo-Garrido J, Ordaz-Pichardo C. Cytotoxic effect of Kalanchoe flammea and induction of intrinsic mitochondrial apoptotic signaling in prostate cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:133-147. [PMID: 29730133 DOI: 10.1016/j.jep.2018.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Kalanchoe flammea Stapf (Crassulaceae) is a medicinal plant grown in the South of Mexico (State of Tabasco), which is commonly used in traditional medicine for the treatment of fever, wounds, inflammation, and cancer. AIM OF THE STUDY To establish the potential of K. flammea for the treatment of prostate cancer, evaluating its cytotoxic activity, its probable mechanism of action, and carrying out some toxicological safety studies. MATERIALS AND METHODS The cytotoxic activity of the ethyl acetate extract of K. flammea (Kf-EtOAc) was evaluated in several cell lines of prostate cancer by MTT viability assay. The cellular death mechanism was studied by evaluating the translocation of phosphatidylserine (Annexin V); overproduction of reactive oxygen species [2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) assay]; release of Cytochrome C; activation of caspase-3 and -9, and regulation of Bcl-2, XIAP, and PKCε proteins by Western Blot analysis. For the evaluation of the safety of Kf-EtOAc, the Ames test, Micronucleus assay, and acute toxicity study were determined. RESULTS Kf-EtOAc exhibited selective cytotoxic activity against prostate cell lines as follows: PC-3, LNCaP, and PrEC (IC50 = 1.36 ± 0.05; 2.06 ± 0.02, and 127.05 ± 0.07 μg/mL, respectively). The F82-P2 fraction (rich in coumaric acid and palmitic acid) obtained by bioassay-guided fractionation of Kf-EtOAc also demonstrated selective cytotoxic activity against PC-3 cells (IC50 = 1.05 ± 0.06 μg/mL). Kf-EtOAc induces apoptosis by the intrinsic pathway; this mechanism of cell death was confirmed after observing that the extract produces phosphatidylserine translocation, overproduction of reactive oxygen species, release of Cytochrome C at mitochondrial level, and activation of caspase-3 and -9. It was also observed that Kf-EtOAc produces significant downregulation of apoptosis-related proteins Bcl-2, XIAP, and PKCε and induces DNA fragmentation and cell cycle arrest. In addition, Kf-EtOAc is non-genotoxic in vitro by Ames test and non-genotoxic in vivo by Micronucleus assay, and no signs of toxicity or death were reported after the administration of a single acute exposure of 2000 mg/kg. CONCLUSION K. flammea is a potential candidate for the development of new drugs for the treatment of prostate cancer. However, to propose their use in clinical trials, additional studies are required to understand their pharmacokinetic behavior, as well as the development of a suitable pharmaceutical form.
Collapse
Affiliation(s)
- Iván Arias-González
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Del. Gustavo A. Madero, 07320 CDMX, Mexico.
| | - Alejandro M García-Carrancá
- Laboratorio de Virus y Cáncer, Instituto Nacional de Cancerología, Secretaría de Salud, Av. San Fernando 22, Col. Sección XVI, Del. Tlalpan, 14080 CDMX, Mexico.
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Del. Gustavo A. Madero, 07320 CDMX, Mexico.
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Del. Gustavo A. Madero, 07320 CDMX, Mexico.
| |
Collapse
|
14
|
Montefusco DJ, Allegood JC, Spiegel S, Cowart LA. Non-alcoholic fatty liver disease: Insights from sphingolipidomics. Biochem Biophys Res Commun 2018; 504:608-616. [PMID: 29778532 DOI: 10.1016/j.bbrc.2018.05.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major clinical concern and its treatment consumes abundant resources. While accumulation of lipids in hepatocytes initiates the disease, this in itself is not necessarily harmful; rather, initiation of inflammation and subsequent fibrosis and cirrhosis are critical steps in NAFLD pathology. Mechanisms linking lipid overload to downstream disease progression are not fully understood; however, bioactive lipid metabolism may underlie instigation of proinflammatory signaling. With the advent of high-throughput, sensitive, and quantitative mass spectrometry-based methods for assessing lipid profiles in NAFLD, several trends have emerged, including that increases in specific sphingolipids correlate with the transition from the relatively benign condition of simple fatty liver to the much more concerning inflamed state. Continued studies that implement sphingolipid profiling will enable the extrapolations of candidate enzymes and pathways involved in NAFLD, either in biopsies or plasma from human samples, and also in animal models, from which data are much more abundant. While most data thus far are derived from targeted lipidomics approaches, unbiased, semi-quantitative approaches hold additional promise for furthering our understanding of sphingolipids as markers of and players in NAFLD.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
15
|
Zhang Y, Wang Z, Jin G, Yang X, Zhou H. Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats. Int J Biol Macromol 2017; 101:107-116. [DOI: 10.1016/j.ijbiomac.2017.03.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
|
16
|
Zhao L, Wu P, Zhang PG, Xie DZ, Gao G, Zhou NJ. Effect of triptolide on expression of Bax/Bcl-2 and cleaved Caspase 3 in HCT116 cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3580-3586. [DOI: 10.11569/wcjd.v24.i24.3580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of triptolide (TP) on the expression of Bax/B cell lymphoma/leukmia-2 (Bcl-2) and cleaved Caspase 3 in HCT116 cells and the mechanism of TP induced apoptosis.
METHODS HCT116 cells were divided into six groups and treated with 5, 10, 20, 30, 40, and 80 nmol/L TP, respectively. HCT116 cells treated with PBS were used control cells. After HCT116 cells were exposed to TP for 24 h, 48 h or 72 h, MTT assay was used for estimating the survival rates of HCT116 cells, flow cytometry (FCM) was applied to test the effects of TP on cell apoptosis, and Western blot was used for testing the expression of Bcl-2, Bax, Caspase 3, and activated Caspase 3.
RESULTS TP could inhibit the proliferation of HCT116 cells. The survival rates of HCT116 cells decreased with the increase in the concentration and treatment time of TP. The survival rates were 4.25%, 13.6%, 34.4%, 43.8% and 44.5%, respectively, for cells exposed to 5, 10, 20, 30, and 40 nmol/L TP for 48h. The expression of Bcl-2 was decreased with the increase in the concentration of TP. Additionally, the level of Bax was decreased in the cytoplasm but increased in mitochondria, indicating that TP can promote Bax translocation from the cytoplasm to mitochondria. TP reduced the level of Caspase 3 in a concentration dependent manner; however, cleaved Caspase 3 level was increased.
CONCLUSION TP can induce apoptosis of HCT116 cells by inhibiting the expression of Bcl-2, increasing the expression of Bax, and promoting the activation of Caspase 3.
Collapse
|