1
|
Wang X, Zhang Y, Chang X, Wen X, Tian F, Yu H, Li Y. The Inhibitory Effect of the Active Ingredients in the Bushen Huoxue Formula on the IL-17A Signaling Pathway and Its Alleviating Effect on Osteoarthritis. J Inflamm Res 2025; 18:6505-6527. [PMID: 40421263 PMCID: PMC12104672 DOI: 10.2147/jir.s506716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Objective Osteoarthritis (OA) stands as a prevalent degenerative disease worldwide. Despite the demonstrated therapeutic efficacy of the Bushen Huoxue formula (BSHXF) in treating OA, its underlying mechanism remains elusive. Network pharmacology is commonly employed for investigating drug-disease associations and processes. In this study, we employed network pharmacology alongside in vitro and in vivo experiments to elucidate the molecular mechanism by which BSHXF treats OA. Methods Based on the TCMSP database, active components of BSHXF were screened, and OA-related targets were retrieved from GeneCard and DisGeNET to construct a "component-target-pathway" network using Cytoscape. Core target functions and pathways (KEGG/GO) were analyzed through STRING and Metascape, while component-target binding affinity was validated via Autodock. For in vitro experiments, an IL-1β-induced chondrocyte inflammation model was established, and key protein expression was detected by Western blot and immunofluorescence. For in vivo experiments, an OA model was created by medial meniscectomy of the knee joint in rats, and therapeutic efficacy was assessed using histological staining and micro-CT. Results This study screened 89 active ingredients of BSHXF and identified 189 common targets. Network pharmacological analysis revealed luteolin and tanshinone IIA as the most crucial active ingredients in treating OA with BSHXF. The potential mechanisms of action for BSHXF in OA treatment involve inflammation inhibition, immune function regulation, and resistance to oxidative stress, with a significant regulatory role played by the IL-17 signaling pathway. Molecular docking results demonstrated luteolin's strong binding affinity to key targets such as B-cell lymphoma 2 (Bcl-2), Matrix metalloproteinase-9 (Mmp-9), and IL-6.In vitro experiments demonstrated that BSHXF significantly suppressed IL-1β-induced inflammatory responses in chondrocytes, downregulating IL-17A expression (p < 0.05), reducing the expression of MMP-9 (p < 0.05) and IL-6 (p < 0.05), and inhibiting apoptosis. Additionally, in vivo experiments revealed that the high-dose BSHXF group (150 mg/kg) markedly alleviated cartilage damage in OA rats, with OARSI scores significantly decreased compared to the model group (p < 0.05). Micro-CT analysis showed that BSHXF inhibited osteophyte formation and ameliorated OA pathological conditions. Conclusion BSHXF has the potential to alleviate OA by suppressing inflammation, inhibiting cartilage apoptosis and hindering extracellular matrix degradation via the IL-17 signaling pathway. Our study elucidated the molecular mechanisms underlying the therapeutic effects of BSHXF on OA, thus highlighting its further research implications as a novel drug candidate.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yunheng Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xin Chang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaodong Wen
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Feng Tian
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, People’s Republic of China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
2
|
Al-Kuraishy HM, Sulaiman GM, Mohsin MH, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Albukhaty S, Abomughaid MM. Targeting of AMPK/MTOR signaling in the management of atherosclerosis: Outmost leveraging. Int J Biol Macromol 2025; 309:142933. [PMID: 40203916 DOI: 10.1016/j.ijbiomac.2025.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Atherosclerosis (AS) is a chronic vascular disorder that is characterized by the thickening and narrowing of arteries due to the development of atherosclerotic plaques. The traditional risk factors involved in AS are obesity, type 2 diabetes (T2D), dyslipidemia, hypertension, and smoking. Furthermore, non-traditional risk factors for AS, such as inflammation, sleep disturbances, physical inactivity, air pollution, and alterations of gut microbiota, gained attention in relation to the pathogenesis of AS. Interestingly, the pathogenesis of AS, is complex and related to different abnormalities of cellular and sub-cellular signaling pathways. It has been illustrated that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (MTOR) pathways are involved in AS pathogenesis. Mounting evidence indicated that AMPK plays a critical role in attenuating the development of AS by activating autophagy, which is impaired during atherogenesis. AMPK has a vasculoprotective effect by reducing lipid accumulation, inflammatory cell proliferation, and the release of pro-inflammatory cytokines, as well as decreasing inflammatory cell adhesion to the vascular endothelium. AMPK activation by metformin inhibits the migration of vascular smooth muscle cells (VSMCs) and AS development. However, the MTOR pathway contributes to AS by inhibiting autophagy, highlighting autophagy as a crucial link between the AMPK and MTOR pathways in AS pathogenesis. The MTOR is a key inducer of endothelial dysfunction and is involved in the development of AS. Therefore, both the AMPK and MTOR pathways play a crucial role in the pathogenesis of AS. However, the exact role of AMPK and MTOR pathways in the pathogenesis of AS is not fully clarified. Therefore, this review aims to discuss the potential role of the AMPK/MTOR signaling pathway in AS, and how AMPK activators and MTOR inhibitors influence the development and progression of AS. In conclusion, AMPK activators and MTOR inhibitors have vasculoprotective effects against the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Mayyadah H Mohsin
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | | | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia
| |
Collapse
|
3
|
Aljarba NH, Al-Kuraishy HM, Al-Gareeb AI, Shokr MM, Papadakis M, Alexiou A, Alruwaili M, Alrouji M, Alshammari MS, Batiha GES. The possible therapeutic role of advanced glycation end-product inhibitors in ischemic stroke. Brain Res Bull 2025; 222:111236. [PMID: 39892578 DOI: 10.1016/j.brainresbull.2025.111236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The advanced glycation end-products (AGEs) are toxic molecules result from non-enzymatic interactions of sugar with lipids or proteins. AGEs promote the generation of reactive oxygen species that induce the release of pro-inflammatory cytokines, and alter the intracellular signaling leading to progressive biochemical and metabolic derangements. AGEs-induced cellular aging is implicated in the development and progression of different neurological disorders such as dementia, neuropsychiatric disorders, and cerebrovascular diseases. Particularly, AGEs-induced microangiopathy and macroangiopathy trigger the induction of prothrombotic/thrombotic cascades with subsequent increase risk of acute ischemic stroke (AIS). Many studies highlighted that AGEs serum levels are correlated with the incidence, pathogenicity, and severity of AIS. However, the relationship between AGEs and AIS is not elucidated completely. Therefore, this review aims to discuss how AGEs promote the development and progression of AIS, and how AGEs inhibitors could be effective in the management of AIS.
Collapse
Affiliation(s)
- Nada H Aljarba
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine Jabir ibn Hayyan Medical University, Al-Ameer Qu., Najaf, Iraq
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammed S Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
4
|
Pérez-Villalobos MC, Barba-González A, García-Carrillo N, Muñoz-Ortega MH, Sánchez-Alemán E, Ávila-Blanco ME, Morones-Gamboa JC, Ventura-Juárez J, Martínez-Hernández SL. Nephroprotective effect of pioglitazone in a Wistar rat model of adenine‑induced chronic kidney disease. Exp Ther Med 2024; 28:392. [PMID: 39161617 PMCID: PMC11332140 DOI: 10.3892/etm.2024.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease with a high mortality rate and a worldwide prevalence of 13.4%, triggered by various diseases with high incidence. The aim of the present study was to investigate the anti-inflammatory and antifibrotic effect of pioglitazone on kidney in an adenine-induced Wistar rats and the mechanisms possibly involved. CKD was induced in 40 rats. Rats were divided into two groups, which were split into the following sub-groups: i) Therapeutic (pioglitazone administered after renal damage) divided into intact (healthy), adenine (CKD) and adenine/pioglitazone (treatment) and ii) prophylactic (adenine and pioglitazone administered at the same time) split into intact (healthy), adenine (CKD), endogenous reversion (recovery without treatment), adenine/pioglitazone (treatment) and pioglitazone sub-groups. Reverse transcription-quantitative PCR (collagen I, α-SMA and TGF-β), and hematoxylin-eosin, Masson's trichrome and Sirius red staining were performed to measure histological markers of kidney damage, also the serum markers (urea, creatinine and uric acid) were performed, for analyze the effects of pioglitazone. In the adenine/pioglitazone rats of the therapeutic group, renal function parameters such as eGFR increased and serum creatinine decreased from those of untreated rats (CKD), however the renal index, serum urea, abnormalities in renal morphology, inflammatory cells and relative gene expression of collagen I, α-SMA and TGF-β did not change relative to the CKD rats. In adenine/pioglitazone rats, extracellular matrix collagen accumulation was significantly lower than the CKD rats. On the other hand, in adenine/pioglitazone rats of the prophylactic group, the renal index, creatinine, urea, uric acid serum and relative gene expression of collagen I, α-SMA, and TGF-β were significantly lower, as well as the presence of 2,8-dihydroxyadenine crystals, and extracellular matrix collagen compared with CKD rats. In addition, the eGFR in the treatment group was similar to healthy rats, renal morphology was restored, and inflammatory cells were significantly lower. In conclusion, pioglitazone has a nephroprotective effect when administered in the early stages of kidney damage, reducing inflammatory and fibrotic processes and improving glomerular filtration rate. Furthermore, in the late phase of treatment, a tendency to decrease creatinine and increase eGFR was observed.
Collapse
Affiliation(s)
| | - Andrea Barba-González
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Nicté García-Carrillo
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Martín Humberto Muñoz-Ortega
- Department of Chemistry, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Esperanza Sánchez-Alemán
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
- Family Medicine Unit 8, Mexican Social Security Institute, 20180 Aguascalientes, Mexico
| | - Manuel Enrique Ávila-Blanco
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | | | - Javier Ventura-Juárez
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Sandra Luz Martínez-Hernández
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| |
Collapse
|
5
|
Liu HZ, Song XQ, Zhang H. Sugar-coated bullets: Unveiling the enigmatic mystery 'sweet arsenal' in osteoarthritis. Heliyon 2024; 10:e27624. [PMID: 38496870 PMCID: PMC10944269 DOI: 10.1016/j.heliyon.2024.e27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Glycosylation is a crucial post-translational modification process where sugar molecules (glycans) are covalently linked to proteins, lipids, or other biomolecules. In this highly regulated and complex process, a series of enzymes are involved in adding, modifying, or removing sugar residues. This process plays a pivotal role in various biological functions, influencing the structure, stability, and functionality of the modified molecules. Glycosylation is essential in numerous biological processes, including cell adhesion, signal transduction, immune response, and biomolecular recognition. Dysregulation of glycosylation is associated with various diseases. Glycation, a post-translational modification characterized by the non-enzymatic attachment of sugar molecules to proteins, has also emerged as a crucial factor in various diseases. This review comprehensively explores the multifaceted role of glycation in disease pathogenesis, with a specific focus on its implications in osteoarthritis (OA). Glycosylation and glycation alterations wield a profound influence on OA pathogenesis, intertwining with disease onset and progression. Diverse studies underscore the multifaceted role of aberrant glycosylation in OA, particularly emphasizing its intricate relationship with joint tissue degradation and inflammatory cascades. Distinct glycosylation patterns, including N-glycans and O-glycans, showcase correlations with inflammatory cytokines, matrix metalloproteinases, and cellular senescence pathways, amplifying the degenerative processes within cartilage. Furthermore, the impact of advanced glycation end-products (AGEs) formation in OA pathophysiology unveils critical insights into glycosylation-driven chondrocyte behavior and extracellular matrix remodeling. These findings illuminate potential therapeutic targets and diagnostic markers, signaling a promising avenue for targeted interventions in OA management. In this comprehensive review, we aim to thoroughly examine the significant impact of glycosylation or AGEs in OA and explore its varied effects on other related conditions, such as liver-related diseases, immune system disorders, and cancers, among others. By emphasizing glycosylation's role beyond OA and its implications in other diseases, we uncover insights that extend beyond the immediate focus on OA, potentially revealing novel perspectives for diagnosing and treating OA.
Collapse
Affiliation(s)
- Hong-zhi Liu
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-qiu Song
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hongmei Zhang
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Sheng W, Wang Q, Qin H, Cao S, Wei Y, Weng J, Yu F, Zeng H. Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2023; 24:13137. [PMID: 37685944 PMCID: PMC10487662 DOI: 10.3390/ijms241713137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARβ/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.
Collapse
Affiliation(s)
- Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
7
|
Xue X, Dai T, Chen J, Xu Y, Yang Z, Huang J, Xu W, Li S, Meng Q. PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J Orthop Surg Res 2023; 18:620. [PMID: 37620972 PMCID: PMC10463860 DOI: 10.1186/s13018-023-04092-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent disease plaguing the elderly. Recently, chondrocyte ferroptosis has been demonstrated to promote the progression of OA. Peroxisome proliferator-activated receptor-γ (PPARγ) is an important factor in maintaining cartilage health. However, the relationship between PPARγ and chondrocyte ferroptosis in OA and its mechanism is completely unclear. METHODS We established a surgically induced knee OA rat model to investigate PPARγ and chondrocyte ferroptosis in OA. Rat knee specimens were collected for Safranin O/Fast Green staining and immunohistochemical staining after administered orally placebo or pioglitazone (PPARγ agonist) for 4 weeks. We used RSL3 to establish a chondrocyte ferroptosis model cultured in vitro to study the role of PPARγ activation toward ferroptosis, mitochondrial function, and PTEN-induced putative kinase 1 (Pink1)/Parkin-dependent mitophagy. GW9662 (PPARγ antagonist), Mdivi-1 (mitophagy inhibitor), and chloroquine (mitophagy inhibitor) were employed to investigate the mechanism of PPARγ-Pink1/Parkin-dependent mitophagy in the inhibition of ferroptosis. RESULTS We found that PPARγ activation by pioglitazone attenuated not only OA but also inhibited the expression of the ferroptosis marker acyl-CoA synthetase long-chain family member 4 (ACSL4) at the same time in rats. Furthermore, in vivo and in vitro data indicated that PPARγ activation restored Pink1/Parkin-dependent mitophagy, improved mitochondrial function, inhibited chondrocyte ferroptosis, and delayed the progression of OA. CONCLUSIONS The present study demonstrated that PPARγ activation attenuates OA by inhibiting chondrocyte ferroptosis, and this chondroprotective effect was achieved by promoting the Pink1/Parkin-dependent mitophagy pathway.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | | | | | - Zhenyu Yang
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jian Huang
- Department of Traumatic Orthopedics, The Central Hospital of Xiaogan, Xiaogan, China
| | - Wuyan Xu
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Ali AA, Saad EB, El-Rhman RHA, El-Raouf OMA, Gad AM. Impact of peroxisome proliferator activated receptor agonist drugs in a model of nephrotoxicity in rats. J Biochem Mol Toxicol 2023; 37:e23350. [PMID: 36988379 DOI: 10.1002/jbt.23350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Doxorubicin (DOX) is one of the basic anticancer drugs, nonetheless its use is restricted due to noxious side effects. Kidney failure is one of the main side effects that restrict its medical use. The current study assessed the nephroprotective effects of fenofibrate and pioglitazone against the renal injury induced by doxorubicin in rats and illustrated the probable mechanisms underlying these protective effects. For this purpose, Male Sprague-Dawley rats weighing (200-230 g) were allocated into seven groups treated for 15 days as following: control (50% corn oil + 50% DMSO p.o), fenofibrate (100 mg/kg p.o) and pioglitazone (10 mg/kg p.o) as well as four groups of DOX (15 mg/kg i.p on 11th day). DOX groups included DOX alone and DOX with protective drugs fenofibrate, pioglitazone or both of them. As a result of doxorubicin nephrotoxicity; serum creatinine and blood urea nitrogen were remarkably elevated. Moreover, renal glutathione was significantly reduced while tissue lipid peroxidation malondialdehyde, tumor necrosis factor-α, nuclear factor-kappa B p65 (NF-κB p65), interleukin-1β, p38 mitogen activated protein kinase (p38-MAPK) and caspase-3 (Casp-3) were significantly augmented. Treatment with fenofibrate and pioglitazone either alone or in combination markedly attenuated DOX-induced injury by suppression of oxidative stress, inflammation and apoptosis. The above-mentioned biochemical markers were affirmed by histological assessment. In conclusion, fenofibrate, pioglitazone, and their combination possess potential prophylactic effects against doxorubicin-induced renal injury through modulation of p38-MAPK/NF-κB p65 pathway with superiority to the combination.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman B Saad
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Rana H Abd El-Rhman
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Ola M Abd El-Raouf
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Amany M Gad
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| |
Collapse
|
9
|
Cui X, Wang M, Li H, Yuwen X, He X, Hao Y, Lu C. Tenacissoside G alleviated osteoarthritis through the NF-κB pathway both in vitro and in vivo. Immunol Lett 2023; 258:24-34. [PMID: 37084895 DOI: 10.1016/j.imlet.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of articular cartilage. Tenacissoside G is a flavonoid isolated from the dry roots of Marsdenia tenacissima (Roxb) and has been shown to have anti-inflammatory effects. However, there is no report on the protective effects of Tenacissoside G on OA. OBJECTIVES To identify the effects and mechanism of Tenacissoside G on OA. METHODS In vitro, primary mouse chondrocytes were induced with IL-1β to establish OA model. mRNA expression of MMP-13, MMP-3, TNF-α, IL-6 and iNOS, was detected by PCR. Protein expression of Collagen-II, MMP-13, p65, p-p65, and IκBα was detected by Western blot. Collagen-II in chondrocytes was also detected by immunofluorescence. In vivo, we established DMM OA mice model. The preventive effect of Tenacissoside G on OA was observed by micro-CT and histological analysis. RESULTS In vitro, Tenacissoside G significantly inhibited the expression of iNOS, TNF-α, IL-6, MMP-3, MMP-13 and the degradation of collagen-II, Tenacissoside G also significantly suppressed NF-κB activation in chondrocytes by IL-1β-stimulated. In vivo, we demonstrated Tenacissoside G can decrease articular cartilage damage and reduce OARSI score. CONCLUSION These results suggest that Tenacissoside G may serve as a potential drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Xu Cui
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Mengfei Wang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Hui Li
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Xing Yuwen
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Xiaochan He
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Yangquan Hao
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| |
Collapse
|
10
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
11
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Turosz N, Chęcińska K, Chęciński M, Kamińska M, Nowak Z, Sikora M, Chlubek D. A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16518. [PMID: 36554400 PMCID: PMC9779153 DOI: 10.3390/ijerph192416518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 05/27/2023]
Abstract
Thiazolidinediones (TZDs) are a group of diabetes medications currently being investigated for anti-arthritis effectiveness, one of which is pioglitazone. The purpose of this scoping review is to evaluate the potential use of pioglitazone in the treatment of temporomandibular joint (TMJ) arthritis. The criteria of eligibility were studies with the diagnosis of arthritis and pioglitazone treatment with a change in any inflammation index as an outcome. Of the 1169 records initially identified following the selection process, two animal studies and four clinical studies were included in the review. Improvements from the baseline were observed in each treatment group for each inflammation indicator. The results of the animal studies on the temporomandibular joints and on patients with rheumatoid and psoriatic arthritis indicate that the drug in question may have potential to treat arthritis, including within the temporomandibular joint.
Collapse
Affiliation(s)
- Natalia Turosz
- Ortomania, Bartosza Głowackiego 6/1, 30-085 Kraków, Poland
| | - Kamila Chęcińska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Chęciński
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland
| | - Monika Kamińska
- Collegium Medicum, Jan Kochanowski University, aleja IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Zuzanna Nowak
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta sq.2, 41-800 Zabrze, Poland
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Xi M, Zhang L, Wei Y, Li T, Qu M, Hua Q, He R, Liu Y. Effect of ribose-glycated BSA on histone demethylation. Front Genet 2022; 13:957937. [PMID: 36276938 PMCID: PMC9581222 DOI: 10.3389/fgene.2022.957937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
A reducing sugar reacts with the protein, resulting in advanced glycation end-products (AGEs), which have been implicated in diabetes-related complications. Recently, it has been found that both type 1 and type 2 diabetic patients suffer from not only glucose but also ribose dysmetabolism. Here, we compared the effects of ribose and glucose glycation on epigenetics, such as histone methylation and demethylation. To prepare ribose-glycated (riboglycated) proteins, we incubated 150 μM bovine serum albumin (BSA) with 1 M ribose at different time periods, and we evaluated the samples by ELISAs, Western blot analysis, and cellular experiments. Riboglycated BSA, which was incubated with ribose for approximately 7 days, showed the strongest cytotoxicity, leading to a significant decrease in the viability of SH-SY5Y cells cultured for 24 h (IC50 = 1.5 μM). A global demethylation of histone 3 (H3K4) was observed in SH-SY5Y cells accompanied with significant increases in lysine-specific demethylase-1 (LSD1) and plant homeodomain finger protein 8 (PHF8) after treatment with riboglycated BSA (1.5 μM), but demethylation did not occur after treatment with glucose-glycated (glucoglycated) proteins or the ribose, glucose, BSA, and Tris–HCl controls. Moreover, a significant demethylation of H3K4, H3K4me3, and H3K4me2, but not H3K4me1, occurred in the presence of riboglycated proteins. A significant increase of formaldehyde was also detected in the medium of SH-SY5Y cells cultured with riboglycated BSA, further indicating the occurrence of histone demethylation. The present study provides a new insight into understanding an epigenetic mechanism of diabetes mellitus (DM) related to ribose metabolic disorders.
Collapse
Affiliation(s)
- Mengqi Xi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- Bayannur Hospital, Bayannur, China
| | - Meihua Qu
- Second People’s Hospital of Weifang, Weifang, Shandong, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rongqiao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| |
Collapse
|
14
|
He CP, Chen C, Jiang XC, Li H, Zhu LX, Wang PX, Xiao T. The role of AGEs in pathogenesis of cartilage destruction in osteoarthritis. Bone Joint Res 2022; 11:292-300. [PMID: 35549515 PMCID: PMC9130677 DOI: 10.1302/2046-3758.115.bjr-2021-0334.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300.
Collapse
Affiliation(s)
- Chao-Peng He
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Chen
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin-Chen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Xin Zhu
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Ameliorative effect of pioglitazone on glucose induced glycation of α-crystallin: Management of complications associated with diabetic retinopathy. Int J Biol Macromol 2022; 209:107-116. [PMID: 35378163 DOI: 10.1016/j.ijbiomac.2022.03.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The glycation and aggregation of lens proteins significantly contribute to the onset of diabetic cataracts as well as the retinopathy. The glycation exerts numerous alterations in the tertiary structural of proteins. Moreover, the covalent crosslinking of lens crystallins also contribute to the cataract formation. In this article, the effect of pioglitazone on glucose induced glycation and aggregation α-crystallin was examined. A remarkable inhibition of early glycation products (~80%) and advanced glycation products (~75%) was recorded by the treatment of pioglitazone. There was >75% recovery in biochemical marker (carbonyl content). The presence of 150 μM of pioglitazone reduced the free lysine modifications to 35%. Treatment of pioglitazone also protected the secondary structural alterations induced by glycation and inhibited the formation of protein aggregates. The interaction studies showed that pioglitazone interacted with α-crystallin via moderate binding affinity. The interaction between pioglitazone interacted and α-crystallin was energetically and entropically favourable. The complex of pioglitazone with studied protein stable in which RMSF, Rg, SASA, RMSD, and the secondary structural components was not affected. The findings show antiglycation activity of pioglitazone along with its mechanism of action highlighting the ability of drug to be possibly developed novel as glycation inhibitor.
Collapse
|
16
|
Zhou Q, Xu H, Zhao Y, Liu B, Cheng KW, Chen F, Wang M. 6-C-(E-Phenylethenyl)-naringenin, a Styryl Flavonoid, Inhibits Advanced Glycation End Product-Induced Inflammation by Upregulation of Nrf2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3842-3851. [PMID: 35297642 DOI: 10.1021/acs.jafc.2c00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Styryl flavonoids can be formed during the thermal processing of meats and flavonoid-enriched foods, showing high potentials in the prevention of different diseases. In this study, the protective effects of several styryl flavonoids against advanced glycation end product (AGE)-induced inflammation were evaluated, with 6-C-(E-phenylethenyl)-naringenin (6-PN) showing the strongest activity among them. The results indicated that 6-PN significantly ameliorated AGE-induced damages in human umbilical vein endothelial cells, including inhibition of pro-inflammatory cytokines and reactive oxygen species (ROS) production through downregulating the protein levels of the receptor for AGEs (RAGE) and NADPH oxidase. Notably, 6-PN possessed a much higher bioavailability than its parental compound, naringenin. Furthermore, 6-PN also promoted the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway that was suppressed by AGEs, and the anti-inflammatory effects of 6-PN disappeared when the cells were treated with ML385, a Nrf2 inhibitor. Hence, 6-PN might inhibit AGE-induced inflammation by the RAGE/ROS/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hui Xu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
17
|
Chen X, Yu M, Xu W, Zou L, Ye J, Liu Y, Xiao Y, Luo J. Rutin inhibited the advanced glycation end products-stimulated inflammatory response and extra-cellular matrix degeneration via targeting TRAF-6 and BCL-2 proteins in mouse model of osteoarthritis. Aging (Albany NY) 2021; 13:22134-22147. [PMID: 34550907 PMCID: PMC8507296 DOI: 10.18632/aging.203470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is degenerative joint disorder mainly characterized by long-term pain with limited activity of joints, the disease has no effective preventative therapy. Rutin (RUT) is a flavonoid compound, present naturally. The flavonoid shows range of biological activities such as anti-inflammatory and anti-cancer effect. We screened RUT for its activity against osteoarthritis with in vivo and in vitro models of osteoarthritis. METHODS Animal model of OA was developed using C57BL/6 mice by surgical destabilization of medial meniscus. For in vitro studies the human articular cartilage tissues were used which were collected from osteoarthritis patients and were processed to isolate chondrocytes. The chondrocytes were submitted to advanced glycation end products (AGEs) for inducing osteoarthritis in vitro. Cell viability was done by CCK-8 assay, ELISA analysis for MMP13, collage II, PGE2, IL-6, TNF-α, ADAMTS-5 and MMP-13. Western blot analysis was done for expression of proteins and in silico analysis was done by docking studies. RESULTS Pretreatment of RT showed no cytotoxic effect and also ameliorated the AGE mediated inflammatory reaction on human chondrocytes in vitro. Treatment of RT inhibited the levels of COX-2 and iNOS in AGE exposed chondrocytes. RT decreased the AGE mediated up-regulation of IL-6, NO, TNF-α and PGE-2 in a dose dependent manner. Pretreatment of RT decreased the extracellular matrix degradation, inhibited expression of TRAF-6 and BCL-2 the NF-κB/MAPK pathway proteins. The treatment of RT in mice prevented the calcification of cartilage tissues, loss of proteoglycans and also halted the narrowing of joint space is mice subjected to osteoarthritis. The in-silico analysis suggested potential binding affinity of RT with TRAF-6 and BCL-2. CONCLUSION In brief RT inhibited AGE-induced inflammatory reaction and also degradation of ECM via targeting the NF-κB/MAPK pathway proteins BCL-2 and TRAF-6. RT can be a potential molecule in treating OA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Wei Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Linfeng Zou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jing Ye
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| |
Collapse
|
18
|
Bu J, Zhang M, Wu Y, Jiang N, Guo Y, He X, He H, Jeyalatha MV, Reinach PS, Liu Z, Li W. High-Fat Diet Induces Inflammation of Meibomian Gland. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34398199 PMCID: PMC8374999 DOI: 10.1167/iovs.62.10.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To determine if a high-fat diet (HFD) induces meibomian gland (MG) inflammation in mice. Methods Male C57BL/6J mice were fed a standard diet (SD), HFD, or HFD supplemented with the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone for various durations. Body weight, blood lipid levels, and eyelid changes were monitored at regular intervals. MG sections were subjected to hematoxylin and eosin staining, LipidTox staining, TUNEL assay, and immunostaining. Quantitative RT-PCR and western blot analyses were performed to detect relative gene expression and signaling pathway activation in MGs. Results MG acinus accumulated more lipids in the mice fed the HFD. Periglandular CD45-positive and F4/80-positive cell infiltration were more evident in the HFD mice, and they were accompanied by upregulation of inflammation-related cytokines. PPAR-γ downregulation accompanied activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways in the HFD mice. There was increased acini cell apoptosis and mitochondria damage in mice fed the HFD. MG inflammation was ameliorated following a shift to the standard diet and rosiglitazone treatment in the mice fed the HFD. Conclusions HFD-induced declines in PPAR-γ expression and MAPK and NF-κB signaling pathway activation resulted in MG inflammation and dysfunction in mice.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Minjie Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| | - Nan Jiang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hui He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - M Vimalin Jeyalatha
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Lu H, Wang W, Kang X, Lin Z, Pan J, Cheng S, Zhang J. Hydrogen (H 2) Alleviates Osteoarthritis by Inhibiting Apoptosis and Inflammation via the JNK Signaling Pathway. J Inflamm Res 2021; 14:1387-1402. [PMID: 33880054 PMCID: PMC8053515 DOI: 10.2147/jir.s297622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a very common condition and leads to joint pain, disability, and price tag all over the world. Pathogenesis of OA is closely related to numerous inflammatory and apoptosis cytokines. Hydrogen (H2) reportedly exhibits a diversity of effects such as anti-apoptotic, anti-inflammatory, and anti-oxidative properties via the JNK pathway. However, it is unknown whether H2 has a protective effect against OA via the JNK signaling pathway. Therefore, the aim of this study was to figure out whether hydrogen has protective effect on chondrocyte and further explore the possible underlying mechanism. METHODS The chondrocytes were obtained from the human cartilage tissues. Cells were stimulated by TBHP and treated with hydrogen. In vitro treatment effects were evaluated by Western blot assay, real-time PCR, immunofluorescence and TUNEL method. We conducted mice model of destabilization of the medial meniscus (DMM) and treated with hydrogen. In vivo treatment effects were evaluated by X-ray imaging assay, safranin O (SO) staining, TUNEL staining and immunohistochemical assay. RESULTS Our results showed that hydrogen can inhibit inflammatory factors (ADAMTS5 and MMP13) and apoptosis factors (cleaved caspase-3, cytochrome c, and Bax) in TBHP-induced chondrocytes. Furthermore, hydrogen can suppress the activation of JNK signaling pathway, whereas the effect of hydrogen can be abolished by anisomycin (a JNK activator). In vivo results showed that hydrogen can down-regulate the expression of p-JNK and cleaved caspase-3 expression. CONCLUSION We uncovered that hydrogen (H2) could alleviate apoptosis response and ECM degradation in human chondrocytes via inhibiting the activation of the JNK signaling pathway. Meanwhile, in the surgically-induced DMM mice model, treatment with hydrogen (H2) performed a significant role in OA progression.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Wei Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Xiaodiao Kang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Shaowen Cheng
- Trauma Center, First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| |
Collapse
|
20
|
Chuntakaruk H, Kongtawelert P, Pothacharoen P. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Sci Rep 2021; 11:1895. [PMID: 33479339 PMCID: PMC7820347 DOI: 10.1038/s41598-021-81384-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
Formation of advanced glycation end products (AGEs), which are associated with diabetes mellitus, contributes to prominent features of osteoarthritis, i.e., inflammation-mediated destruction of articular cartilage. Among the phytochemicals which play a role in anti-inflammatory effects, anthocyanins have also been demonstrated to have anti-diabetic properties. Purple corn is a source of three major anthocyanins: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and peonidin-3-O-glucoside. Purple corn anthocyanins have been demonstrated to be involved in the reduction of diabetes-associated inflammation, suggesting that they may have a beneficial effect on diabetes-mediated inflammation of cartilage. This investigation of the chondroprotective effects of purple corn extract on cartilage degradation found a reduction in glycosaminoglycans released from AGEs induced cartilage explants, corresponding with diminishing of uronic acid loss of the cartilage matrix. Investigation of the molecular mechanisms in human articular chondrocytes showed the anti-inflammatory effect of purple corn anthocyanins and the metabolite, protocatechuic acid (PCA) on AGEs induced human articular chondrocytes via inactivation of the NFκb and MAPK signaling pathways. This finding suggests that purple corn anthocyanins and PCA may help ameliorate AGEs mediated inflammation and diabetes-mediated cartilage degradation.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
21
|
Hu L, Chen H, Zhang X, Feng Z, Zhang H, Meng Q. Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-α production. JOURNAL OF RADIATION RESEARCH 2020; 61:842-850. [PMID: 32876675 PMCID: PMC7674707 DOI: 10.1093/jrr/rraa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Indexed: 02/05/2023]
Abstract
Radiation-induced acute intestinal injury is a common and serious occurrence following abdominal and pelvic irradiation. The Nod-like receptor protein 3 (NLRP3)-dependant inflammasome and inflammation activation is crucial in this process. In a pre-experimental design of radiation-induced intestinal injury, we found that rosiglitazone inhibited caspase-1 which is a key marker of inflammasome activation. The purpose of the present study was to clarify the inhibitory effect of rosiglitazone on the NLRP3 inflammasome both in vivo and in vitro. Radiation-induced intestinal injury after rosiglitazone treatment, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), caspase-1 and NLRP3 in a radiation-induced intestinal injury model in a rat and macrophages were observed. We found that rosiglitazone ameliorated radiation-induced intestinal injury in rats by suppressing the expression of caspase-1, NLRP3, IL-1β and TNF-α. Treatment with rosiglitazone in vitro reduced the expression of NLRP3, and the NLRP3 activator monosodium urate (MSU) reversed the inhibition of IL-1β and TNF-α by rosiglitazone in macrophages. MSU reversed the protective effect of rosiglitazone on radiation-induced intestinal injury in rats by reversing the rosiglitazone-induced inhibition of IL-1β and TNF-α. Taken together, these findings indicate that the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates radiation-induced intestine inflammation in rats via inhibiting the induction of the NLRP3-dependent inflammasome in macrophages.
Collapse
Affiliation(s)
- Liqiong Hu
- Department of Intensive Care Unit of Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 51000, China
| | - Hao Chen
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, China
| | | | - Zhencheng Feng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 51000, China
| | - Qingqi Meng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| |
Collapse
|
22
|
Kharazmkia A, Ziaie S, Ahmadpoor P, Moradi O, Khoshdel A, Pour-Reza-Gholi F, Samavat S, Samadian F, Nafar M. A Triple-Blind Randomized Controlled Trial on Impacts of Pioglitazone on Oxidative Stress Markers in Diabetic Kidney Transplant Recipients. SHIRAZ E-MEDICAL JOURNAL 2020; 21. [DOI: 10.5812/semj.98656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Oxidative stress as a major mediator of adverse outcomes in kidney transplant recipients who are prone to oxidative stress-mediated injury by pre-transplant and post-transplant conditions. Objectives: The purpose of this study was to assess the effects of Pioglitazone on oxidative stress biomarkers and blood glucose control in diabetic patients receiving insulin after kidney transplantation. Methods: In a triple-blind randomized placebo-controlled trial, sixty-two kidney transplanted diabetic patients (40 men and 24 women) were followed for 4 months after randomly assigned to the placebo group and Pioglitazone group (30 mg/d). All of the patients continued their insulin therapy irrespective of the group that they were assigned to evaluate the effects of the addition of pioglitazone on blood glucose and oxidative stress biomarkers, Malondialdehyde (MDA) and total protein carbonyls (TPC) serum levels. Results: At baseline, there were no statistically significant differences in glycemic control levels and oxidative markers between the two groups. After 4 months of intervention, a significant improvement occurred in Hemoglobin A1c (HBA1c) in the Pioglitazone group. The changes of HBA1c during 4 months of follow up in the Pioglitazone group show improvement in glucose control were as HBA1c in the placebo group increased by 0.3% (P = 0.0001). Moreover, at the end of the study, the MDA level was significantly lower in the Pioglitazone group (P < 0.0001, 1.22 - 3.90). Regarding the serum level of TPC, the changes were not statistically different at baseline and also at the end of the study between two groups. Conclusions: Administration of Pioglitazone in addition to insulin in diabetic kidney transplant patients not only improved glycemic control (evidenced by HBA1c) but also significantly decreased oxidative stress markers such as MDA.
Collapse
|
23
|
Kazemi R, Hosseinimehr SJ. Radioprotective Effect of Pioglitazone Against Genotoxicity Induced by Ionizing Radiation in Healthy Human Lymphocytes. Cardiovasc Hematol Agents Med Chem 2020; 19:72-75. [PMID: 32448107 DOI: 10.2174/1871525718666200525005231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Pioglitazone (PG) is used to control high blood sugar in patients with type 2 diabetes mellitus. PG acts as a peroxisome proliferator-activated receptor γ agonist. In addition to the insulin-sensitizing effect, PG possesses anti-inflammatory effect. In this study, the protective effect of PG was evaluated against DNA damage induced by ionizing radiation in healthy human lymphocytes. METHODS The microtubes containing human whole blood were treated with PG at various concentrations (1-50 μM) for three hours. Then, the blood samples were irradiated with X-ray. Lymphocytes were cultured for determining the frequency of micronuclei as a genotoxicity biomarker in binucleated lymphocytes. RESULTS The mean percentage of micronuclei was significantly increased in human lymphocytes when exposed to IR, while it was decreased in lymphocytes pre-treated with PG. The maximum reduction in the frequency of micronuclei in irradiated lymphocytes was observed at 5 μM of PG treatment (48% decrease). CONCLUSION The anti-inflammatory property suggested the mechanism action of PG for protecting human lymphocytes against genotoxicity induced by ionizing radiation.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Pharmacy, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Seyed J Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
24
|
Liu H, Liu Y, Chen B. Antagonism of GPR4 with NE 52-QQ57 and the Suppression of AGE-Induced Degradation of Type II Collagen in Human Chondrocytes. Chem Res Toxicol 2020; 33:1915-1921. [PMID: 32370492 DOI: 10.1021/acs.chemrestox.0c00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease for which an effective therapeutic strategy has not yet been established. AGEs are widely recognized as a contributor to OA pathogenesis. GPR4, a recently discovered proton-sensing transmembrane receptor, has been shown to possess a wide range of physiological functions. However, the potential role of this receptor in chondrocytes and the pathogenesis of OA is unclear. In the present study, we investigated the potential of GPR4 to modulate the effects of advanced glycation end products (AGEs) in SW1353 human chondrocytes. First, we demonstrate that GPR4 is fairly expressed in SW1353 chondrocytes and that exposure to AGEs increases the expression of this transmembrane receptor. Second, we found that antagonism of GPR4 with NE 52-QQ57 significantly inhibited the AGE-induced increased expression of several key inflammatory cytokines and signaling molecules, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2). We also found that antagonisn of GPR4 had a remarkable ability to rescue type II collagen from AGE-induced degradation by inhibiting the expression of matrix metalloproteinase (MMP)-3 and MMP-13. As a key pro-inflammatory signaling pathway, we further tested the effect of GPR4 antagonism on the activation of nuclear factor-κB (NF-κB) and found that NF-κB activation was indeed suppressed, thereby indicating that the NF-κB signaling pathway may mediate the effects of GPR4 antagonism described above. These findings provide a basis for further research into the role of GPR4 -mediated signaling in OA.
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, China
| | - Yulong Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, China
| |
Collapse
|
25
|
Zeng Y, Liu Z, Tan X, Lei L. The GPR55 antagonist CID16020046 mitigates advanced glycation end products (AGEs)- induced chondrocyte activation. Chem Biol Interact 2020; 325:109088. [PMID: 32360554 DOI: 10.1016/j.cbi.2020.109088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 01/30/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases in aging people. The activation of chondrocytes and their dysregulation are closely related to the pathogenesis of OA. GPR55 is an unique orphan G-receptor which binds to cannabinoids. In this study, we explored the role of GPR55 in advanced glycation end productions (AGEs)- induced chondrocytes activation in cultured cells. We showed that AGEs dose dependently induced GPR55 expression in ATDC5 chondrocytes. The blockage of GPR55 by its newly discovered antagonist-CID16020046 mitigated AGEs- induced increase in cellular ROS and decrease in antioxidant NRF2. Moreover, CID16020046 showed a dose-response suppressive effect on AGEs- induced expression of the major inflammatory mediators, including COX-2 and iNOS, and the production of NO and PGE2. CID16020046 also dose responsively inhibited AGEs- induced key effectors of cartilage degradation such as MMP-3 and MMP-13. In consequence, CID16020046 showed robust inhibition on AGEs- induced type II collagen degradation. Mechanistically, our data demonstrated that CID16020046 mediated GPR55 blockage ameliorated AGEs- induced NF-κB activation as revealed by its inhibition on IκBα, nuclear p65 translocation and NF-κB promoter activity. Collectively, our study demonstrates that GPR55 signaling mediates AGEs- induced chondrocyte activation, and the targeted blockage of GPR55 pathway could be therapeutic choice in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yong Zeng
- Department of Emergency, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400010, China
| | - Zhichuan Liu
- Department of Emergency, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400010, China.
| | - Xingqin Tan
- Department of Anesthesiology, Children's Hospital of Chongqing medical university, Chongqing, 400010, China
| | - Lei Lei
- Department of Neurology, The First People's Hospital of Chongqing Liang Jiang New District, Chongqing, 400010, China
| |
Collapse
|
26
|
Xu C, Sheng S, Dou H, Chen J, Zhou K, Lin Y, Yang H. α-Bisabolol suppresses the inflammatory response and ECM catabolism in advanced glycation end products-treated chondrocytes and attenuates murine osteoarthritis. Int Immunopharmacol 2020; 84:106530. [PMID: 32334386 DOI: 10.1016/j.intimp.2020.106530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
As a chronic musculoskeletal degeneration disease, osteoarthritis (OA) clinically manifests as joint pain, stiffness and a limited range of movement. OA has affected the life quality of at least one-tenth of the population but lacks satisfactory treatments. α-Bisabolol (BISA) is a small oily sesquiterpene alcohol widely found in essential oils of chamomile (Matricaria recutita), salvia and wood of Candeia and has multiple biological properties, particularly an anti-inflammatory effect. The purpose of this study is to assess the anti-inflammatory and chondroprotective effect of BISA in OA progression and explore its underlying mechanism. We isolated human chondrocytes and treated them with advanced glycation end products (AGEs) to imitate OA progression in vitro. BISA pretreatment suppressed the AGE-induced inflammatory reaction and extracellular matrix (ECM) degeneration by blocking nuclear factor kappa B (NF-κB), p38 and c-Jun N-terminal kinase (JNK) signaling. Moreover, a mouse destabilization of the medial meniscus (DMM) model was established by surgery to investigate BISA protection in vivo. BISA administration attenuated DMM-induced radiological and histopathological changes relative to the DMM group and resulted in lower OARSI scores. Taken together, the results of our study indicate the potential of BISA in OA therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kailiang Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
27
|
Chen Y, Chen J, Jiang M, Fu Y, Zhu Y, Jiao N, Liu L, Du Q, Wu H, Xu H, Sun J. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Life Sci 2020; 252:117653. [PMID: 32277978 DOI: 10.1016/j.lfs.2020.117653] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIMS Rehmanniae Radix (RR) and Cornus officinalis (CO) are a typical herbal pair used to treat diabetic nephropathy (DN) in clinical practice. DN can be effectively treated by catalpol (Cat) and loganin (Log), the main active components of RR and CO respectively, through combating apoptosis, oxidative stress and inflammation. Herein, a spontaneous DN and podocyte injury model induced by advanced glycation end products (AGEs), i.e. KK-Ay mice, was used to explore the cooperative effects of Log and Cat on DN and the mechanism targeting the AGEs-RAGE (receptor for AGE) pathway. METHODS AND KEY FINDINGS Log and Cat alone or in combination mitigated diabetic symptoms, decreased the level of fasting blood glucose, and increased that of serum insulin. The two drugs alone or in combination protected renal function from damage, prevented extracellular matrix hyperplasia and glycogen deposition, as well as alleviated the loss of podocytes detected by histological assay and immunohistochemistry. Flow cytometry revealed that Log and Cat alone or in combination relieved the apoptosis of AGEs-induced podocytes in vitro. Silencing RAGE by RNA interference played a protective role in podocyte apoptosis, whereas overexpression of it worked oppositely. Western blot exhibited that Log and Cat alone or in combination inhibited the activation of RAGE/p38 MAPK/p65 NF-κB and RAGE/Nox4/p65 NF-κB pathways in podocytes. The inhibitory effects of drug combination were more evident than those of individual treatments. SIGNIFICANCE Log and Cat cooperatively resisted the apoptosis of podocytes upon DN by targeting AGEs-RAGE and its downstream pathways p38 MAPK and Nox4.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China; Chemistry and Life Science College, Nanjing University Jinling College, Nanjing, Jiangsu Province, China
| | - Jing Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China; Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu Province, China
| | - Ming Jiang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China
| | - Yingxue Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yihui Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ni Jiao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Liping Liu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China
| | - Qiu Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Hongyan Wu
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu Province, China
| | - Huiqin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| | - Jihu Sun
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China.
| |
Collapse
|
28
|
Ji X, Liu T, Zhao S, Li J, Li L, Wang E. WISP-2, an upregulated gene in hip cartilage from the DDH model rats, induces chondrocyte apoptosis through PPARγ in vitro. FASEB J 2020; 34:4904-4917. [PMID: 32058630 DOI: 10.1096/fj.201901915r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/29/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Chondrocyte apoptosis plays an important role in the developmental dysplasia of the hip (DDH) development. It has been found that WNT1 inducible signaling pathway protein 2 (WISP-2) and peroxisome proliferator-activated receptor γ (PPARγ) are involved in cell apoptosis. In this study, we performed the straight-leg swaddling DDH rat model and we found that cartilage degradation and chondrocyte apoptosis were remarkably increased in DDH rats in vivo. Moreover, we found that WISP-2 was upregulated in hip acetabular cartilage of DDH rats compared to control rats. Next, the effects of WISP-2 on chondrocyte apoptosis and its possible underlying mechanism were examined in vitro. The lentivirus-mediated gain- and loss-of-function experiments of WISP-2 and peroxisome proliferator-activated receptor γ (PPARγ) for cell viability and apoptosis were performed in primary rat chondrocytes. The results showed that the overexpression of WISP-2 induced chondrocyte apoptosis, and knockdown of WISP-2 could suppress the chondrocyte apoptosis induced by advanced glycation end products (AGE). Additionally, WISP-2 could negatively regulate the expression of PPARγ in chondrocytes. Moreover, the knockdown of PPARγ promoted chondrocyte apoptosis and overexpression of PPARγ abated the increased apoptosis and decreased cell viability of chondrocytes induced by WISP-2. This study demonstrated that WISP-2 might contribute to chondrocyte apoptosis of hip acetabular cartilage through regulating PPARγ expression and activation, which may play an important role in the development of DDH.
Collapse
Affiliation(s)
- Xianglu Ji
- Department of Hand and Foot Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuyi Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jianjun Li
- Department of Traumatic Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Enbo Wang
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
29
|
Xiao X, Zhang Y, Pan W, Chen F. miR-139-mediated NOTCH1 regulation is crucial for the inhibition of osteosarcoma progression caused by resveratrol. Life Sci 2020; 242:117215. [DOI: 10.1016/j.lfs.2019.117215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023]
|
30
|
Huang H, Wang ZJ, Zhang HB, Liang JX, Cao WD, Wu Q, He CP, Chen C. The Function of PPARγ/AMPK/SIRT-1 Pathway in Inflammatory Response of Human Articular Chondrocytes Stimulated by Advanced Glycation End Products. Biol Pharm Bull 2020; 42:1303-1309. [PMID: 31366866 DOI: 10.1248/bpb.b19-00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) in the articular cartilage is a major risk factor for osteoarthritis (OA). To determine the mechanistic basis of AGE action in OA, we treated human articular chondrocytes with AGEs, and found that they not only up-regulated the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, but also inhibited AMP-activated protein kinase (AMPK) phosphorylation and decreased sirtuin 1 (SIRT-1) levels in a concentration- and time-dependent manner. Pioglitazone, a peroxisome proliferator-activated receptor-γ (PPARγ) agonist restored the inhibited AMPK and SIRT-1 by AGEs. Pre-treatment of the cells with the agonists or antagonists of AMPK and SIRT-1 respectively abolished and augmented the inflammatory state induced by AGEs. Furthermore, AMPK agonist also restored the levels of SIRT-1 in the AGE-stimulated chondrocytes. Our findings indicate AGEs induce an inflammatory response in human articular chondrocytes via the PPARγ/AMPK/SIRT-1 pathway, which is therefore a potential target in OA therapy.
Collapse
Affiliation(s)
- Hao Huang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Zhao-Jun Wang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Hai-Bin Zhang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Jian-Xia Liang
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Wen-Dong Cao
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Qi Wu
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Chao-Peng He
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| | - Cheng Chen
- Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University
| |
Collapse
|
31
|
Pioglitazone Protects Compression-Mediated Apoptosis in Nucleus Pulposus Mesenchymal Stem Cells by Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4764071. [PMID: 31885796 PMCID: PMC6893265 DOI: 10.1155/2019/4764071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 08/10/2019] [Indexed: 01/28/2023]
Abstract
Excessive compression, the main cause of intervertebral disc (IVD) degeneration, affected endogenous repair of the intervertebral disc. Pioglitazone (PGZ) is the agonist of peroxisome proliferator-activated receptor γ, which has been widely used in the treatment of diabetes mellitus. The present study aim at investigating whether pioglitazone has protective effects on compression-mediated cell apoptosis in nucleus pulposus mesenchymal stem cells (NP-MSCs) and further exploring the possible underlying mechanism. Our results indicated that the isolated cells satisfied the criteria of MSC stated by the International Society for Cellular Therapy. Besides, our research revealed that pioglitazone could protect cell viability, cell proliferation of NP-MSCs and alleviated the toxic effects caused by compression. The actin stress fibers was suppressed obviously under compression, and pioglitazone alleviated the adverse outcomes. Pioglitazone exerted protective effects on compression-induced NP-MSCs apoptosis according to annexin V/PI double-staining and TUNEL assays. Pioglitazone suppressed compression-induced NP-MSCs oxidative stress, including decreasing compression-induced overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and alleviated compression-induced mitochondrial membrane potential (MMP) decrease. Ultrastructure collapse of the mitochondria exhibited a notable improvement by pioglitazone in compression-induced NP-MSCs according to transmission electron microscopy (TEM). Furthermore, the molecular results showed that pioglitazone significantly decreased the expression of apoptosis-associated proteins, including cyto.cytochrome c, Bax, cleaved caspase-9, and cleaved caspase-3, and promoted Bcl-2 expression. These results indicated that pioglitazone alleviated compression-induced NP-MSCs apoptosis by suppressing oxidative stress and the mitochondrial apoptosis pathway, which may be a valuable candidate for the treatment of IVD degeneration.
Collapse
|
32
|
Zeng YF, Wang R, Bian Y, Chen WS, Peng L. Catalpol Attenuates IL-1β Induced Matrix Catabolism, Apoptosis and Inflammation in Rat Chondrocytes and Inhibits Cartilage Degeneration. Med Sci Monit 2019; 25:6649-6659. [PMID: 31484919 PMCID: PMC6752111 DOI: 10.12659/msm.916209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated. MATERIAL AND METHODS To assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1ß and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system. RESULTS The results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1ß, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1ß. Catalpol also inhibited the nuclear factor kappa B (NF-kappaB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-alpha) in IL-1ß-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis. CONCLUSIONS Our work suggested that catalpol treatment attenuates IL-1ß-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-kappaB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yun-Fu Zeng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Rong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Yang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Wen-Sheng Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| |
Collapse
|
33
|
Zhang H, Chen C, Cui Y, Li Y, Wang Z, Mao X, Dou P, Li Y, Ma C. lnc-SAMD14-4 can regulate expression of the COL1A1 and COL1A2 in human chondrocytes. PeerJ 2019; 7:e7491. [PMID: 31534838 PMCID: PMC6727836 DOI: 10.7717/peerj.7491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2019] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis (OA) is the most common motor system disease in aging people, characterized by matrix degradation, chondrocyte death, and osteophyte formation. OA etiology is unclear, but long noncoding RNAs (lncRNAs) that participate in numerous pathological and physiological processes may be key regulators in the onset and development of OA. Because profiling of lncRNAs and their biological function in OA is not understood, we measured lncRNA and mRNA expression profiles using high-throughput microarray to study human knee OA. We identified 2,042 lncRNAs and 2,011 mRNAs that were significantly differentially expressed in OA compared to non-OA tissue (>2.0- or < - 2.0-fold change; p < 0.5), including 1,137 lncRNAs that were upregulated and 905 lncRNAs that were downregulated. Also, 1,386 mRNA were upregulated and 625 mRNAs were downregulated. QPCR was used to validate chip results. Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes was used to study the biological function enrichment of differentially expressed mRNA. Additionally, coding-non-coding gene co-expression (CNC) network construction was performed to explore the relevance of dysregulated lncRNAs and mRNAs. Finally, the gain/loss of function experiments of lnc-SAMD14-4 was implemented in IL-1β-treated human chondrocytes. In general, this study provides a preliminary database for further exploring lncRNA-related mechnisms in OA.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Orthopedics, The NO.921 Hospital of the People’s Liberation Army Joint Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Orthopedics, The NO.921 Hospital of the People’s Liberation Army Joint Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yinghong Cui
- Department of Pharmaceutical Sciences, Hunan Normal University, changsha, Hunan, China
| | - Yuqing Li
- Department of Orthopedics, Changsha central hospital, Changsha, Hunan, China
| | - Zhaojun Wang
- Department of Traumatology, Shanxi Fenyang Hospital, The Fenyang Hospital of Shanxi Medical University, Fenyang, Shanxi, China
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yihan Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chi Ma
- Department of Orthopedics, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou, Hunan, China
| |
Collapse
|
34
|
Wang J, Hu J, Chen X, Huang C, Lin J, Shao Z, Gu M, Wu Y, Tian N, Gao W, Zhou Y, Wang X, Zhang X. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration. FASEB J 2019; 33:11555-11566. [PMID: 31331201 DOI: 10.1096/fj.201900703r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus may lead to intervertebral disc degeneration (IVDD). Matrix metalloproteinase-13 (MMP-13) is one of the major catabolic factors in extracellular matrix (ECM) metabolism of nucleus pulposus cells (NPCs) and contributes to diabetic IVDD. Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extraterminal protein family and is implicated in chronic inflammation. Here, we report that the expression of BRD4 and MMP-13 was elevated in diabetic nucleus pulposus tissues as well as in advanced glycation end products (AGEs)-treated NPCs; also, the regulatory effect of BRD4 on MMP-13 was studied. We found that MMP-13 was regulated by MAPK and NF-κB signaling as well as autophagy in AGEs-treated NPCs. Next, we explored the role of BRD4 in regulation of MAPK, NF-κB signaling, and autophagy. The results showed that BRD4 is the upstream regulator of all of these 3 factors, and inhibition of BRD4 may suppress MAPK and NF-κB signaling while activating autophagy in AGEs-treated NPCs. Finally, we demonstrated that BRD4 inhibition may suppress MMP-13 expression in diabetic NPCs in vitro as well as in vivo; meanwhile, it may preserve ECM in diabetic rats. Our study demonstrates that inhibition of BRD4 may suppress MAPK and NF-κB signaling and activate autophagy to suppress MMP-13 expression in diabetic IVDD, and diabetic IVDD may be compromised by BRD4 inhibitors.-Wang, J., Hu, J., Chen, X., Huang, C., Lin, J., Shao, Z., Gu, M., Wu, Y., Tian, N., Gao, W., Zhou, Y., Wang, X., Zhang, X. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianing Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
35
|
Mitochondrial Pathway Is Involved in Advanced Glycation End Products-Induced Apoptosis of Rabbit Annulus Fibrosus Cells. Spine (Phila Pa 1976) 2019; 44:E585-E595. [PMID: 30407277 PMCID: PMC6504123 DOI: 10.1097/brs.0000000000002930] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study. OBJECTIVE The purposes of this study were to evaluate whether advanced glycation end-products (AGEs) induce annulus fibrosus (AF) cell apoptosis and further to explore the mechanism by which this process occurs. SUMMARY OF BACKGROUND DATA Recent studies revealed that AGEs accumulation is considered an important factor in diabetic intervertebral disc (IVD) degeneration. However, the effect of AGEs on intervertebral disc remains unclear. METHODS AF cells were treated with various concentrations of AGEs for 3 days. Cell viability and cell proliferation were measured by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, respectively. Cell apoptosis was examined by Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3, and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by real-time PCR (RT-PCR). Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by 5,5',6,6' -Tetrachloro-1,1',3,3'- tetraethyl-imidacarbocyanine iodide (JC-1) staining and 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probes, respectively. RESULTS Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular ROS in AF cells. The antioxidant N-acetyl-L-cysteine (NAC) significantly reversed AGE-induced MMP decrease and AF cell apoptosis. CONCLUSION These results suggested that AGEs induce rabbit AF cell apoptosis and mitochondrial pathway may be involved in AGEs-mediated cell apoptosis, which may provide a theoretical basis for diabetic IVD degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
36
|
Zhou Q, Gong J, Wang M. Phloretin and its methylglyoxal adduct: Implications against advanced glycation end products-induced inflammation in endothelial cells. Food Chem Toxicol 2019; 129:291-300. [PMID: 31059746 DOI: 10.1016/j.fct.2019.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
Abstract
Methylglyoxal (MGO), a cytotoxic factor, reacts irreversibly with the side chains of lysine, cysteine, and arginine residues in proteins to form advanced glycation end products (AGEs) which might be a major pathological factor associated with diabetic complications. Thus, it is necessary to prevent or alleviate such diseases through inhibiting the formation of AGEs or lowering these AGEs-induced cellular damages. Based on our previous work, it was known that phloretin, an apple polyphenol, can inhibit the formation of AGEs under simulated physiological conditions. In this study, we found that phloretin prevented the formation of AGEs through trapping MGO in human umbilical endothelial cells (HUVECs). The phloretin-MGO adducts were analyzed in PBS and HUVECs. Surprisingly, only 1 MGO-phloretin adduct was detected in HUVECs, which was formed within 0.5 h and metabolized eventually within 24 h. The specific phloretin-MGO adduct was synthesized and identified by MS and NMR analysis. Its anti-inflammatory effect against AGEs was further investigated together with the parent compound, phloretin, which was proved to be through RAGE/p38 MAPK/NF-κB signaling pathway. Taken together, our data indicated the positive role of phloretin-MGO adduct on phloretin's protective effects, which might offer a new insight into the action mechanism of polyphenols against AGEs-induced damages.
Collapse
Affiliation(s)
- Qian Zhou
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jun Gong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Xue X, Chen Y, Wang Y, Zhan J, Chen B, Wang X, Pan X. Troxerutin suppresses the inflammatory response in advanced glycation end-product-administered chondrocytes and attenuates mouse osteoarthritis development. Food Funct 2019; 10:5059-5069. [PMID: 31359010 DOI: 10.1039/c9fo01089k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a chronic degenerative joint disease, osteoarthritis (OA) is clinically characterized by a high incidence, long-term pain, and limited joint activity but without effective preventative therapy.
Collapse
Affiliation(s)
- Xinghe Xue
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Yunlin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Ye Wang
- The Second School of Medicine
- Wenzhou Medical University
- Wenzhou
- China
| | - Jingdi Zhan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Bin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital of Jiaxing University
- Jiaxing
- China
| | - Xiangyang Wang
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Xiaoyun Pan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| |
Collapse
|
38
|
Pioglitazone Protects Mesenchymal Stem Cells against P-Cresol-Induced Mitochondrial Dysfunction via Up-Regulation of PINK-1. Int J Mol Sci 2018; 19:ijms19102898. [PMID: 30250007 PMCID: PMC6213327 DOI: 10.3390/ijms19102898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSC) could be a candidate for cell-based therapy in chronic kidney disease (CKD); however, the uremic toxin in patients with CKD restricts the therapeutic efficacy of MSCs. To address this problem, we explored the effect of pioglitazone as a measure against exposure to the uremic toxin P-cresol (PC) in MSCs. Under PC exposure conditions, apoptosis of MSCs was induced, as well as PC-induced dysfunction of mitochondria by augmentation of mitofusion, reduction of mitophagy, and inactivation of mitochondrial complexes I and IV. Treatment of MSCs with pioglitazone significantly inhibited PC-induced apoptosis. Pioglitazone also prevented PC-induced mitofusion and increased mitophagy against PC exposure through up-regulation of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Furthermore, pioglitazone protected against PC-induced mitochondrial dysfunction by increasing the cytochrome c oxidase subunit 4 (COX4) level and activating complexes I and IV, resulting in enhancement of proliferation. In particular, activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) regulated the pioglitazone-mediated up-regulation of PINK-1. These results indicate that pioglitazone protects MSCs against PC-induced accumulated mitochondrial dysfunction via the NF-κB–PINK-1 axis under P-cresol exposure conditions. Our study suggests that pioglitazone-treated MSCs could be a candidate for MSC-based therapy in patients with CKD.
Collapse
|
39
|
Chang SF, Huang KC, Chang HI, Lee KC, Su YP, Chen CN. 2 dyn/cm 2 shear force upregulates kruppel-like factor 4 expression in human chondrocytes to inhibit the interleukin-1β-activated nuclear factor-κB. J Cell Physiol 2018; 234:958-968. [PMID: 30132856 DOI: 10.1002/jcp.26924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
The shear force effect on human chondrocytes is time and magnitude dependent. Recently, kruppel-like factor (KLF) 4 has been identified as a pleiotropic protein and its activity in cells is dependent on different stimuli and/or cell types. The role of KLF4 in chondrocytes is still unclear and there has been no report determining whether shear force regulates KLF4 levels in chondrocytes. Hence, this study was carried out to investigate the role of KLF4 in human chondrocytes under shear force stimulation and the underlying mechanism. Human primary and SW1353 chondrocytes were used in this study. The shear forces at 2, 5, or 15 dyn/cm2 intensity were applied to both types of human chondrocytes. The specific small interfering RNAs, activators, and inhibitors were used to study the detailed mechanism of shear force. The presented results showed that 2, but not 5 and 15, dyn/cm2 shear force increases KLF4 expression in human primary and SW1353 chondrocytes. Extracellular signal-regulated kinase 5 induced peroxisome proliferator-activated receptor γ transcription activity to increase KLF4 transcription. Moreover, the KLF4 induction in human chondrocytes in response to 2 dyn/cm2 shear force could attenuate interleukin (IL)-1β-stimulated nuclear factor-κB activation. These results elucidate the role of KLF4 in antagonizing the effect of IL-1β in human chondrocytes under 2 dyn/cm2 shear force stimulation and provide a possible mechanism to demonstrate the protection of moderate forces or exercises in cartilage.
Collapse
Affiliation(s)
- Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Kuo-Chin Huang
- Department of Orthopaedics, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Yu-Ping Su
- Department of Orthopaedics and Traumatology, Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
40
|
A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Mar Drugs 2018; 16:md16070238. [PMID: 30018246 PMCID: PMC6071057 DOI: 10.3390/md16070238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 μM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy.
Collapse
|
41
|
Mi B, Wang J, Liu Y, Liu J, Hu L, Panayi AC, Liu G, Zhou W. Icariin Activates Autophagy via Down-Regulation of the NF-κB Signaling-Mediated Apoptosis in Chondrocytes. Front Pharmacol 2018; 9:605. [PMID: 29950992 PMCID: PMC6008570 DOI: 10.3389/fphar.2018.00605] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic and degenerative joint condition that is mainly characterized by cartilage degradation, osteophyte formation, and joint stiffness. The NF-κB signaling pathway in inflammation, autophagy, and apoptosis plays a prominent role in the progression of OA. Icariin, a prenylated flavonol glycoside extracted from Epimedium, have been proven to exert anti-osteoporotic and anti-inflammatory effects in OA. However, the action mechanisms of its effect on chondrocytes have yet to be elucidated. In the present study, we demonstrated that the in vitro therapeutic effects of icariin on rat chondrocytes in a dose-dependent manner. We found that TNF-α induced the production of IL-1, IL-6, IL-12, reactive oxygen species (ROS), nitric oxide (NO), Caspase-3, and Caspase-9 in chondrocytes. We also provided evidence that TNF-α inhibited autophagy markers (Atg 5, Atg 7) and prevented LC3 I translate to LC3 II. Furthermore, TNF-α induced matrix metalloproteinase (MMP)3 and MMP9 expression. The negative effects of TNF-α on chondrocytes can be partially blocked by treating with icariin or ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor). The present study data also suggested that icariin suppressed both TNF-α-stimulated p65 nuclear translocation and IκBα protein degradation. These results indicated that icariin protected against OA by suppressing inflammatory cytokines and apoptosis, through activation of autophagy via NF-κB inhibition. In conclusion, icariin appears to favorably modulate autophagy and apoptosis in chondrocytes making it a promising compound for cartilage tissue engineering in the treatment of OA.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Wang ZJ, Zhang HB, Chen C, Huang H, Liang JX. Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy. Cell Biol Int 2018; 42:841-848. [PMID: 29453775 DOI: 10.1002/cbin.10951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) in articular cartilage is thought to represent a major risk factor for osteoarthritis development. In this study we aimed to probe the role of AGEs in human chondrocytes and to determine the impact of the peroxisome proliferator-activated receptor-γ (PPARG) on AGEs-induced cell autophagy. Cell viability was measured after human chondrocytes were treated with different concentrations of AGEs with or without the PPARG inhibitor, T0070907, or agonist, pioglitazone. Autophagy activation markers (MAP2LC3, BECN1 and SQSTM1/P62), expression of PPARG and the phosphorylation levels of Akt/MTOR were determined by Western blotting; autophagosome formation was analyzed by transmission electron microscopy (TEM); autophagic flux was detected with mRFP-GFP-LC3 tandem construct. Low doses of AGEs over a short amount of time stimulated chondrocyte proliferation and autophagy by limiting phosphorylation of Akt/MTOR signaling. The addition of PPARG inhibitor T0070907 lead to defective autophagy. High dose and long exposure to AGEs inhibited cell viability and autophagy by increasing phosphorylation levels of Akt/MTOR signaling. The agonist, pioglitazone, was shown to protect cell autophagy in a dose-dependent manner. Our findings suggest AGEs can downregulate PPARG and that PPARG maintains cell viability by activating the Akt/MTOR signaling pathway as well as inducing chondrocyte autophagy.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the People's Liberation Army, Changsha, Hunan, 410003, People's Republic of China
| | - Hai-Bin Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the People's Liberation Army, Changsha, Hunan, 410003, People's Republic of China
| | - Cheng Chen
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the People's Liberation Army, Changsha, Hunan, 410003, People's Republic of China
| | - Hao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the People's Liberation Army, Changsha, Hunan, 410003, People's Republic of China
| | - Jian-Xia Liang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 163rd Central Hospital of the People's Liberation Army, Changsha, Hunan, 410003, People's Republic of China
| |
Collapse
|
43
|
Waldron AL, Schroder PA, Bourgon KL, Bolduc JK, Miller JL, Pellegrini AD, Dubois AL, Blaszkiewicz M, Townsend KL, Rieger S. Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J Diabetes Complications 2018; 32:249-257. [PMID: 29306589 PMCID: PMC5820202 DOI: 10.1016/j.jdiacomp.2017.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND A complication of diabetes is neuropathy, a condition of sensory axon degeneration that originates in the epidermis. The mechanisms remain unknown but reactive oxygen species (ROS) have been implicated in this condition. In this study, we assessed the role of ROS and a candidate downstream target, MMP-13 in glucose-induced sensory axon degeneration in zebrafish and mice. METHODS The effects of glucose on metabolism and sensory axon degeneration were assessed using qPCR and live imaging. ROS were analyzed using pentafluorobenzene-sulfonyl fluorescein and activation of the NF-κB stress response was determined using Tg(NF-κB:GFP) zebrafish. The role of MMP-13 and ROS in glucose-dependent axon degeneration was determined in zebrafish following treatment with the antioxidant, N-acetylcysteine and the MMP-13 inhibitor, DB04760. Neuropathic mice fed on a high-fat/high-sugar diet were treated with the MMP-13 inhibitor, CL-82198 to assess sensory recovery. RESULTS Glucose treatment of zebrafish induced metabolic changes that resemble diabetes. Sensory axon degeneration was mediated by ROS-induced MMP-13 and prevented upon antioxidant treatment or MMP-13 inhibition. MMP-13 inhibition also reversed neuropathy in diabetic mice. CONCLUSION We demonstrate that zebrafish are suitable to study glucose-induced neurotoxicity. Given the effects in zebrafish and mice, MMP-13 inhibition may be beneficial in the treatment of human diabetic neuropathy.
Collapse
Affiliation(s)
- Ashley L Waldron
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Patricia A Schroder
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Kelly L Bourgon
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Jessie K Bolduc
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - James L Miller
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Adriana D Pellegrini
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Amanda L Dubois
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Kristy L Townsend
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
44
|
Folch J, Ettcheto M, Busquets O, Sánchez-López E, Castro-Torres RD, Verdaguer E, Manzine PR, Poor SR, García ML, Olloquequi J, Beas-Zarate C, Auladell C, Camins A. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer's Disease Dementia. Pharmaceuticals (Basel) 2018; 11:E11. [PMID: 29382127 PMCID: PMC5874707 DOI: 10.3390/ph11010011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ), which form senile plaques, neurofibrillary tangles (NFT) and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM) and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD) pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the "peripheral" symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors.
Collapse
Affiliation(s)
- Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| | - Miren Ettcheto
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Oriol Busquets
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona E-08028, Spain.
| | - Rubén D Castro-Torres
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico.
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Patricia R Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil.
| | - Saghar Rabiei Poor
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
| | - María Luisa García
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona E-08028, Spain.
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile.
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico.
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
45
|
Li F, Zhu Y, Wan Y, Xie X, Ke R, Zhai C, Pan Y, Yan X, Wang J, Shi W, Li M. Activation of PPARγ inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. Eur J Pharmacol 2017; 814:324-334. [DOI: 10.1016/j.ejphar.2017.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
46
|
Autophagy Protects Advanced Glycation End Product-Induced Apoptosis and Expression of MMP-3 and MMP-13 in Rat Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6341919. [PMID: 28265573 PMCID: PMC5318618 DOI: 10.1155/2017/6341919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
Aging is one of the most prominent risk factors for the pathological progression of osteoarthritis (OA). One feature of age-related changes in OA is advanced glycation end products (AGEs) accumulation in articular cartilage. Autophagy plays a cellular housekeeping role by removing dysfunctional cellular organelles and proteins. However, the relationship between autophagy and AGE-associated OA is unknown. The aim of this study is to determine whether autophagy participates in the pathology of AGE-treated chondrocytes and to investigate the exact role of autophagy in AGE-induced cell apoptosis and expression of matrix metalloproteinase- (MMP-) 3 and MMP-13. AGEs induced notable apoptosis that was detected by Annexin V/PI double-staining, and the upregulation of MMP-3 and MMP-13 was confirmed by Western blotting. Autophagy-related proteins were also determined by Western blotting, and chondrocytes were transfected with mCherry-GFP-LC3B-adenovirus to monitor autophagic flux. As a result, autophagy significantly increased in chondrocytes and peaked at 6 h. Furthermore, rapamycin (RA) attenuated AGE-induced apoptosis and expression of MMP-3 and MMP-13 by autophagy activation. In contrast, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) enhanced the abovementioned effects of AGEs. We therefore demonstrated that autophagy is linked with AGE-related pathology in rat chondrocytes and plays a protective role in AGE-induced apoptosis and expression of MMP-3 and MMP-13.
Collapse
|
47
|
PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 2016; 41:24-34. [PMID: 27792919 DOI: 10.1016/j.intimp.2016.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) is a dendritic cell-specific lectin which participates in dendritic cell (DC) trafficking, antigen uptake and DC-T cell interactions at the initiation of immune responses. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB). Here, we show that the PPAR-γ agonist pioglitazone decreased DC adhesion and transmigration, and DC stimulation of T cell proliferation mediated by DC-SIGN dependent on activation of PPAR-γ, although it increased DC endocytosis independent of PPAR-γ activation. Furthermore, PPAR-γ activation by pioglitazone in DCs down-regulated the expression of DC-SIGN, which was mediated by modulating the balance of the signaling pathways of extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB, but not p38 MAPK. Therefore, we conclude that PPAR-γ activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN via the pathways of MAPK and NF-κB. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
Collapse
|