1
|
Wang QQ, Li CZ, Que HD, Wang HD, Mao BY, Li P, Zhang X, Zhan HQ, Zhu ML. Competitive inhibition of Ephrin-A1 and EphA2 binding by Perillaldehyde leads to decreased TRPM2 expression and reduced mitochondrial damage in vascular endothelial cells. Int Immunopharmacol 2025; 156:114688. [PMID: 40288150 DOI: 10.1016/j.intimp.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Previous studies have demonstrated that perillaldehyde (PAE) exerts cardioprotective effects in animal models. Current evidence indicates that the intervening effect of PAE in cardiovascular diseases mainly involves the regulation of endothelial Ca2+ channels, the precise molecular mechanisms remain elusive. OBJECTIVE This study aimed to elucidate the molecular mechanisms underlying PAE-mediated endothelial protection through the establishment of endothelium-specific TRPM2 transgenic and knockout murine models. STUDY DESIGN AND METHODS We adopted a comprehensive experimental approach and utilized the established vascular injury model to evaluate the improvement of endothelial cells. The protocol included: (1) comprehensive assessment of endothelial function through vascular reactivity tests, (2) quantification of intracellular Ca2+ dynamics using fluorescent imaging, (3) molecular biology techniques to analyze TRPM2 pathway activity and EphA2 phosphorylation status. RESULTS Our research results show that PAE can significantly improve endothelial dysfunction in rats with vascular injury Mechanistically, we explored two novel pathways: (1) PAE effectively suppressed TRPM2-mediated Ca2+ overload through channel inhibition (2) modulated EphA2 phosphorylation, thereby attenuating mitochondrial oxidative damage. These dual mechanisms synergistically improved endothelial cell viability. CONCLUSION This study establishes PAE as a promising endothelial protectant with a unique dual-pathway mechanism involving coordinated inhibition of TRPM2-mediated calcium dysregulation and EphA2-dependent mitochondrial dysfunction. Our findings provide novel insights into phytochemical-based cardiovascular therapeutics and suggest potential clinical applications for PAE in endothelial pathology management.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003.
| | - Cheng-Zhi Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - Hua-Dong Que
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - Hui-Dan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - Bing-Yan Mao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - Xue Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003
| | - He-Qin Zhan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China, 453003.
| |
Collapse
|
2
|
Zhang H, Geater AF, Chongsuvivatwong V, Zhu G, Meng Y, Duan W, Pu L. Relationship between serum mature brain-derived neurotrophic factor level and coronary slow flow phenomenon: a cross-sectional study. Sci Rep 2025; 15:14990. [PMID: 40301477 PMCID: PMC12041262 DOI: 10.1038/s41598-025-98213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in cardiovascular disease. However, the role of BDNF in coronary slow flow phenomenon (CSFP) remains unclear. This study explored the relationship between serum mature BDNF (mBDNF) levels and thrombolysis-in-myocardial-infarction frame count (TFC) as a measure of CSFP. Serum mBDNF was measured in 125 patients (mean age 60.2 years, 57% women) with suspected coronary artery disease before undergoing coronary angiography. Based on the corrected TFC, 77 patients were categorized as having CSFP and 48 normal coronary flow (NCF). The relationship of mTFC (mTFC) and CSFP with serum mBDNF was analysed using multivariable linear and logistic regression. mTFC ranged from 15.9 to 68.5 and mBDNF from 13.2 to 60.6 ng/mL. Serum mBDNF was inversely correlated with mTFC (Spearman rho - 0.327, P < 0.001) and reduced in CSFP (median 25.9 ng/mL IQR 20.6, 32.2 vs. 34.5 ng/mL IQR 27.4, 41.6, P < 0.001). Multivariable linear and logistic regression analyses indicated that log2(mBDNF in ng/mL) has an inverse association with log2(mTFC) (coefficient - 0.332,95% CI -0.513, -0.151; P < 0.001) and reduced odds of CSFP (odds ratio 0.188, 95% CI 0.062, 0.573; P = 0.003). This suggests that BDNF may serve as a biomarker of CSFP, and provides new insights into its pathophysiology.
Collapse
Affiliation(s)
- Hongshan Zhang
- Department of Cardiac Function, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Alan Frederick Geater
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| | - Virasakdi Chongsuvivatwong
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Guofu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Yong Meng
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Wenxiang Duan
- Department of Cardiac Function, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Lijin Pu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Luo PY, Zou JR, Chen T, Zou J, Li W, Chen Q, Cheng L, Zheng LY, Qian B. Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis. Asian J Androl 2025; 27:166-176. [PMID: 39028624 PMCID: PMC11949458 DOI: 10.4103/aja202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Collapse
Affiliation(s)
- Pei-Yue Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Li-Ying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| |
Collapse
|
4
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Buliga-Finis ON, Ouatu A, Cucu AI, Botoc T, Costea CF. Enhancing Retinal Resilience: The Neuroprotective Promise of BDNF in Diabetic Retinopathy. Life (Basel) 2025; 15:263. [PMID: 40003672 PMCID: PMC11856995 DOI: 10.3390/life15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision impairment worldwide, is characterized by progressive damage to the retina due to prolonged hyperglycemia. Despite advances in treatment, current interventions largely target late-stage vascular complications, leaving underlying neurodegenerative processes insufficiently addressed. This article explores the crucial role in neuronal survival, axonal growth, and synaptic plasticity and the neuroprotective potential of Brain-Derived Neurotrophic Factor (BDNF) as a therapeutic strategy for enhancing retinal resilience in DR. Furthermore, it discusses innovative delivery methods for BDNF, such as gene therapy and nanocarriers, which may overcome the challenges of achieving sustained and targeted therapeutic levels in the retina, focusing on early intervention to preserve retinal function and prevent vision loss.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Andrei Ionut Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University, 720229 Suceava, Romania;
- Department of Neurosurgery, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Tina Botoc
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
5
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1756-1769. [PMID: 39030441 PMCID: PMC11909598 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
6
|
Liu X, Zhang H, Xiang J, Luo W, Zhang H, Wang P, Xu S. Jiawei Xionggui Decoction promotes meningeal lymphatic vessels clearance of β-amyloid by inhibiting arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156041. [PMID: 39299091 DOI: 10.1016/j.phymed.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an aging-associated form of dementia characterized by the pathological deposition of toxic misfolded proteins in the central nervous system (CNS), which is closely related to the clearance impairment of meningeal lymphatic vessels (mLVs). Thus, enhancement dural meningeal lymphatic drainage to remove amyloid-β (Aβ) is usually considered as a potential therapeutic target for AD. PURPOSE This study aimed to investigate the mechanisms of Jiawei Xionggui Decoction (JWXG) to attenuate cognitive dificits in APP/PS1 mice with impaired meningeal lymphatic drainage. METHODS Ligation of deep cervical lymph nodes (dcLNs) was performed to establish the mice model of the impaired meningeal lymphatic drainage in APP/PS1 mice. Cognitve behaviors and pathological morphology of mice were assessed. Cerebral blood flow (CBF) of mice was determined using Laser speckle contrast imaging analysis. Serum non-targeted metabolomics analysis was applied to decipher the mechanisms of JWXG in rescuing the impairment of mLVs, and C8-D1A cells were employed to validate in vitro. RESULTS Disruption of mLVs in APP/PS1 mice deteriorated cognitive dysfunction, accelerated Aβ burden and glia activation, accompanied by more severe neuropathological damage, CBF reduction and neuroinflammation exacerbation. Serum non-targeted metabolomics analysis indicates the increase of arachidonic acid (AA) metabolic pathway was the key contributor to the neuropathological exacerbation of dcLNs ligation APP/PS1 mice. Interestingly, clinically equivalent dose of JWXG was sufficient to restore mLVs drainage and rescue cognitive performance by inhibiting neuroinflammation depended by AA metabolic pathway in dcLNs ligation APP/PS1 mice. CONCLUSION Our findings establish a novel mechanism that rescue mLVs by inhibiting AA metabolic pathway to clear brain Aβ, and support JWXG as a feasible treatment strategy for AD by suppressing AA metabolic pathway to improve mLVs drainage efficiency.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Li Y, Hu K, Li J, Yang X, Wu X, Liu Q, Chen Y, Ding Y, Liu L, Yang Q, Wang G. Tetrahydroxy Stilbene Glucoside Promotes Mitophagy and Ameliorates Neuronal Injury after Cerebral Ischemia Reperfusion via Promoting USP10-Mediated YBX1 Stability. eNeuro 2024; 11:ENEURO.0269-24.2024. [PMID: 39406480 PMCID: PMC11520850 DOI: 10.1523/eneuro.0269-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024] Open
Abstract
Tetrahydroxy stilbene glucoside (TSG) from Polygonum multiflorum exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione S-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. USP10 overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by YBX1 knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.
Collapse
Affiliation(s)
- Yuxian Li
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Ke Hu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xirong Yang
- Department of Neurology, first affiliated hospital, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xiuyu Wu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qian Liu
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yuefu Chen
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yan Ding
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Lingli Liu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qiansheng Yang
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| |
Collapse
|
9
|
Tao J, Rao Y, Wang J, Tan S, Zhao J, Cao Z, He L, Meng J, Wu P, Wang Z. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J Obstet Gynaecol Res 2024; 50:1813-1829. [PMID: 39288911 DOI: 10.1111/jog.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Hyperglycemia is closely related to trophoblast dysfunction during pregnancy and results in suppressed invasion, migration, and pro-inflammatory cell death of trophoblasts. Hyperglycemia is a dependent risk factor for gestational hypertension accompanied by decreased placental growth factor (PLGF), which is important for maternal and fetal development. However, there is currently a lack of evidence to support whether PLGF can alleviate trophoblast cell dysfunction caused by high blood sugar. Here, we aim to clarify the effect of hyperglycemia on trophoblast dysfunction and determine how PLGF affects this process. METHODS The changes in placental tissue histomorphology from gestational diabetes mellitus (GDM) patients were compared with those of normal placentas. HTR8/SVneo cells were cultured in different amounts of glucose to examine cellular pyroptosis, migration, and invasion as well as PLGF levels. Furthermore, the levels of pyroptosis-related proteins (NLRP3, pro-caspase1, caspase1, IL-1β, and Gasdermin D [GSDMD]) as well as autophagy-related proteins (LC3-II, Beclin1, and p62) were examined by Western blotting. The GFP-mRFP-LC3-II system and transmission electron microscopy were used to detect mitophagy levels, and small interfering RNAs targeting BCL2 Interacting Protein 3 (siBNIP3) and PTEN-induced kinase 1 (siPINK1) were used to determine the role of mitophagy in pyroptotic death of HTR-8/SVneo cells. RESULTS Our results show that hyperglycemia upregulates NLRP3, pro-caspase1, caspase1, IL-1β at the protein level in GDM patients. High glucose (HG, 25 mM) inhibits viability, invasion, and migration of trophoblast cells while suppressing superoxide dismutase levels and promoting malondialdehyde production, thus leading to a senescence associated beta-gal-positive cell burst. PLGF levels in nucleus and the cytosol are also inhibited by HG, whereas PLGF treatment inhibited pyroptosis-related protein levels of NLRP3, pro-caspase1, caspase1, IL-1β, and GSDMD, Gasdermin D N-terminal domain (GSDMD-N). HG-induced mitochondrial dysfunction and BNIP3 and PINK1/Parkin expression. Knocking down BINP3 and PINK1 abolished the protective role of PLGF by preventing mitophagy. CONCLUSION PLGF inhibited hyperglycemia, while PLGF reversed hyperglycemic injury by promoting mitophagy via the BNIP3/PINK1/Parkin pathway. Altogether, these results suggest that PLGF may protect against trophoblast dysfunction in diabetes.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuzhu Rao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Shiming Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zitong Cao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Peng Wu
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
10
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Tang S, Hao D, Ma W, Liu L, Gao J, Yao P, Yu H, Gan L, Cao Y. Dysfunctional Mitochondria Clearance in Situ: Mitophagy in Obesity and Diabetes-Associated Cardiometabolic Diseases. Diabetes Metab J 2024; 48:503-517. [PMID: 38356350 PMCID: PMC11307117 DOI: 10.4093/dmj.2023.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 02/16/2024] Open
Abstract
Several mitochondrial dysfunctions in obesity and diabetes include impaired mitochondrial membrane potential, excessive mitochondrial reactive oxygen species generation, reduced mitochondrial DNA, increased mitochondrial Ca2+ flux, and mitochondrial dynamics disorders. Mitophagy, specialized autophagy, is responsible for clearing dysfunctional mitochondria in physiological and pathological conditions. As a paradox, inhibition and activation of mitophagy have been observed in obesity and diabetes-related heart disorders, with both exerting bidirectional effects. Suppressed mitophagy is beneficial to mitochondrial homeostasis, also known as benign mitophagy. On the contrary, in most cases, excessive mitophagy is harmful to dysfunctional mitochondria elimination and thus is defined as detrimental mitophagy. In obesity and diabetes, two classical pathways appear to regulate mitophagy, including PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent mitophagy and receptors/adapters-dependent mitophagy. After the pharmacologic interventions of mitophagy, mitochondrial morphology and function have been restored, and cell viability has been further improved. Herein, we summarize the mitochondrial dysfunction and mitophagy alterations in obesity and diabetes, as well as the underlying upstream mechanisms, in order to provide novel therapeutic strategies for the obesity and diabetes-related heart disorders.
Collapse
Affiliation(s)
- Songling Tang
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Di Hao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Wen Ma
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China
| | - Lian Liu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiuyu Gao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Haifang Yu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
13
|
Liu Z, Hua W, Jin S, Wang Y, Pang Y, Wang B, Zhao N, Song Y, Qi J. Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor. Eur J Pharmacol 2024; 968:176381. [PMID: 38341077 DOI: 10.1016/j.ejphar.2024.176381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Wei Hua
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Sinan Jin
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yueying Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuxin Pang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Benshuai Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Nan Zhao
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| |
Collapse
|
14
|
Ghandour F, Kassem S, Simanovich E, Rahat MA. Glucose Promotes EMMPRIN/CD147 and the Secretion of Pro-Angiogenic Factors in a Co-Culture System of Endothelial Cells and Monocytes. Biomedicines 2024; 12:706. [PMID: 38672062 PMCID: PMC11047830 DOI: 10.3390/biomedicines12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular complications in Type 2 diabetes mellitus (T2DM) patients increase morbidity and mortality. In T2DM, angiogenesis is impaired and can be enhanced or reduced in different tissues ("angiogenic paradox"). The present study aimed to delineate differences between macrovascular and microvascular endothelial cells that might explain this paradox. In a monoculture system of human macrovascular (EaHy926) or microvascular (HMEC-1) endothelial cell lines and a monocytic cell line (U937), high glucose concentrations (25 mmole/L) increased the secretion of the pro-angiogenic factors CD147/EMMPRIN, VEGF, and MMP-9 from both endothelial cells, but not from monocytes. Co-cultures of EaHy926/HMEC-1 with U937 enhanced EMMPRIN and MMP-9 secretion, even in low glucose concentrations (5.5 mmole/L), while in high glucose HMEC-1 co-cultures enhanced all three factors. EMMPRIN mediated these effects, as the addition of anti-EMMPRIN antibody decreased VEGF and MMP-9 secretion, and inhibited the angiogenic potential assessed through the wound assay. Thus, the minor differences between the macrovascular and microvascular endothelial cells cannot explain the angiogenic paradox. Metformin, a widely used drug for the treatment of T2DM, inhibited EMMPRIN, VEGF, and MMP-9 secretion in high glucose concentration, and the AMPK inhibitor dorsomorphin enhanced it. Thus, AMPK regulates EMMPRIN, a key factor in diabetic angiogenesis, suggesting that targeting EMMPRIN may help in the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Fransis Ghandour
- Department of Internal Medicine A, Carmel Medical Center, Haifa 3436212, Israel
| | - Sameer Kassem
- Department of Internal Medicine A, Carmel Medical Center, Haifa 3436212, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Michal A. Rahat
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
15
|
Chen L, Yang X, Wang K, Guo L, Zou C. Humanin inhibits lymphatic endothelial cells dysfunction to alleviate myocardial infarction-reperfusion injury via BNIP3-mediated mitophagy. Free Radic Res 2024; 58:180-193. [PMID: 38535980 DOI: 10.1080/10715762.2024.2333074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) ranks among the top contributors to sudden death and disability worldwide. It should be noted that current therapies always cause increased reperfusion damage. Evidence suggests that humanin (HN) reduces mitochondrial dysfunction to have cardio-protective effects against MI-reperfusion injury. In this context, we hypothesized that HN may attenuate MI-reperfusion injury by alleviating lymphatic endothelial cells dysfunction through the regulation of mitophagy. MATERIALS AND METHODS In this study, primary lymphatic endothelial cells were selected as the experimental model. Cells were maintained under 1% O2 to induce a hypoxic phenotype. For in vivo experiments, the left coronary arteries of C57/BL6 mice were clamped for 45 min followed by 24 h reperfusion to develop MI-reperfusion injury. The volume of infarcted myocardium in MI-reperfusion injury mouse models were TTC staining. PCR and western blot were used to quantify the expression of autophagy-, mitophagy- and mitochondria-related markers. The fibrosis and apoptosis in the ischemic area were evaluated for Masson staining and TUNEL respectively. We also used western blot to analyze the expression of VE-Cadherin in lymphatic endothelial cells. RESULTS We firstly exhibited a specific mechanism by which HN mitigates MI-reperfusion injury. We demonstrated that HN effectively reduces such injury in vivo and also inhibits dysfunction in lymphatic endothelial cells in vitro. Importantly, this inhibitory effect is mediated through BNIP3-associated mitophagy. CONCLUSIONS In conclusion, HN alleviates myocardial infarction-reperfusion injury by inhibiting lymphatic endothelial cells dysfunction, primarily through BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Center for Cardiovascular Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Yang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Guo
- Center for Cardiovascular Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cao Zou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Huang Q, Yu X, Fu P, Wu M, Yin X, Chen Z, Zhang M. Mechanisms and therapeutic targets of mitophagy after intracerebral hemorrhage. Heliyon 2024; 10:e23941. [PMID: 38192843 PMCID: PMC10772251 DOI: 10.1016/j.heliyon.2023.e23941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. In addition to regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, clearance of damaged organelles, signaling, and cell survival in the context of injury and pathology. In stroke, the mechanisms underlying brain injury secondary to intracerebral hemorrhage are complex and involve cellular hypoxia, oxidative stress, inflammatory responses, and apoptosis. Recent studies have shown that mitochondrial damage and autophagy are essential for neuronal metabolism and functional recovery after intracerebral hemorrhage, and are closely related to inflammatory responses, oxidative stress, apoptosis, and other pathological processes. Because hypoxia and inflammatory responses can cause secondary damage after intracerebral hemorrhage, the restoration of mitochondrial function and timely clearance of damaged mitochondria have neuroprotective effects. Based on studies on mitochondrial autophagy (mitophagy), cellular inflammation, apoptosis, ferroptosis, the BNIP3 autophagy gene, pharmacological and other regulatory approaches, and normobaric oxygen (NBO) therapy, this article further explores the neuroprotective role of mitophagy after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Xiaoqin Yu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Peijie Fu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| |
Collapse
|
17
|
Cai Y, Yang H, Wan Z, Chen PY, Wang ZB, Guo JJ, Wang D, Wang F, Zhang Y. A novel lncRNA LOC105613571 binding with BDNF in pituitary promotes gonadotropin secretion by AKT/ERK-mTOR pathway in sheep associated with prolificacy. Biofactors 2024; 50:58-73. [PMID: 37431985 DOI: 10.1002/biof.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
The pituitary is a vital endocrine organ for synthesis and secretion of gonadotropic hormones (FSH and LH), and the gonadotropin showed fluctuations in animals with different fecundity. Long non-coding RNAs (lncRNAs) have been identified as regulatory factors for the reproductive process. However, the profiles of lncRNAs and their roles involved in sheep fecundity remains unclear. In this study, we performed RNA-sequencing for the sheep pituitary gland associated with different fecundity, and identified a novel candidate lncRNA LOC105613571 targeting BDNF related to gonadotropin secretion. Our results showed that expression of lncRNA LOC105613571 and BDNF could be significantly upregulated by GnRH stimulation in sheep pituitary cells in vitro. Notably, either lncRNA LOC105613571 or BDNF silencing inhibited cell proliferation while promoted cell apoptosis. Moreover, lncRNA LOC105613571 knockdown could also downregulate gonadotropin secretion via inactivation AKT, ERK and mTOR pathway. In addition, co-treatment with GnRH stimulation and lncRNA LOC105613571 or BDNF knockdown showed the opposite effect on sheep pituitary cells in vitro. In summary, BDNF-binding lncRNA LOC105613571 in sheep regulates pituitary cell proliferation and gonadotropin secretion via the AKT/ERK-mTOR pathway, providing new ideas for the molecular mechanisms of pituitary functions.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pei-Yong Chen
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Bo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jin-Jing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daxiang Wang
- Jiangsu Qianbao Animal Husbandry Co., Ltd, Yancheng, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Liu H, Yao Q, Wang X, Xie H, Yang C, Gao H, Xie C. The research progress of crosstalk mechanism of autophagy and apoptosis in diabetic vascular endothelial injury. Biomed Pharmacother 2024; 170:116072. [PMID: 38147739 DOI: 10.1016/j.biopha.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Qiyuan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| |
Collapse
|
19
|
Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, Chen K, Wu X, Chi B, Ren J. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun 2023; 14:7856. [PMID: 38030636 PMCID: PMC10687272 DOI: 10.1038/s41467-023-43364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy.
Collapse
Affiliation(s)
- Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiao Jiao
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
20
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
21
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
22
|
Thapak P, Smith G, Ying Z, Paydar A, Harris N, Gomez-Pinilla F. The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166781. [PMID: 37286142 PMCID: PMC10619508 DOI: 10.1016/j.bbadis.2023.166781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.
Collapse
Affiliation(s)
- Pavan Thapak
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Zhe Ying
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Neil Harris
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America; Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America; Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America.
| |
Collapse
|
23
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
24
|
Liu H, Wang X, Gao H, Yang C, Xie C. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front Endocrinol (Lausanne) 2023; 14:1191426. [PMID: 37441493 PMCID: PMC10333703 DOI: 10.3389/fendo.2023.1191426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular endothelial injury in diabetes mellitus (DM) is the major cause of vascular disease, which is closely related to the occurrence and development of a series of vascular complications and has a serious negative impact on a patient's health and quality of life. The primary function of normal vascular endothelium is to function as a barrier function. However, in the presence of DM, glucose and lipid metabolism disorders, insulin resistance, inflammatory reactions, oxidative stress, and other factors cause vascular endothelial injury, leading to vascular endothelial lesions from morphology to function. Recently, numerous studies have found that autophagy plays a vital role in regulating the progression of vascular endothelial injury. Therefore, this article compares the morphology and function of normal and diabetic vascular endothelium and focuses on the current regulatory mechanisms and the important role of autophagy in diabetic vascular endothelial injury caused by different signal pathways. We aim to provide some references for future research on the mechanism of vascular endothelial injury in DM, investigate autophagy's protective or injurious effect, and study potential drugs using autophagy as a target.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
25
|
Wu C, Shi L, Ma Y, Pan Y, Wang L, Chen S, Zhang Y, Wang J, Liu M, Guo Y. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett 2023:137345. [PMID: 37308055 DOI: 10.1016/j.neulet.2023.137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
26
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
27
|
Salemkour Y, Lenoir O. Endothelial Autophagy Dysregulation in Diabetes. Cells 2023; 12:947. [PMID: 36980288 PMCID: PMC10047205 DOI: 10.3390/cells12060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a major public health issue that affected 537 million people worldwide in 2021, a number that is only expected to increase in the upcoming decade. Diabetes is a systemic metabolic disease with devastating macro- and microvascular complications. Endothelial dysfunction is a key determinant in the pathogenesis of diabetes. Dysfunctional endothelium leads to vasoconstriction by decreased nitric oxide bioavailability and increased expression of vasoconstrictor factors, vascular inflammation through the production of pro-inflammatory cytokines, a loss of microvascular density leading to low organ perfusion, procoagulopathy, and/or arterial stiffening. Autophagy, a lysosomal recycling process, appears to play an important role in endothelial cells, ensuring endothelial homeostasis and functions. Previous reports have provided evidence of autophagic flux impairment in patients with type I or type II diabetes. In this review, we report evidence of endothelial autophagy dysfunction during diabetes. We discuss the mechanisms driving endothelial autophagic flux impairment and summarize therapeutic strategies targeting autophagy in diabetes.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- PARCC, Inserm, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
28
|
Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X, Li W. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion 2023; 69:71-82. [PMID: 36709855 DOI: 10.1016/j.mito.2023.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Blood-brain barrier disruption plays an important role in central nervous system diseases. This review provides information on the role of mitochondrial oxidative stress in brain microvascular endothelial cells in cellular dysfunction, the disruption of intercellular junctions, transporter dysfunction, abnormal angiogenesis, neurovascular decoupling, and the involvement and aggravation of vascular inflammation and illustrates related molecular mechanisms. In addition, recent drug and nondrug therapies targeting cerebral vascular endothelial cell mitochondria to repair the blood-brain barrier are discussed. This review shows that mitochondrial oxidative stress disorder in brain microvascular endothelial cells plays a key role in the occurrence and development of blood-brain barrier damage and may be critical in various pathological mechanisms of blood-brain barrier damage. These new findings suggest a potential new strategy for the treatment of central nervous system diseases through mitochondrial modulation of cerebral vascular endothelial cells.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Xin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
29
|
Gabryelska A, Turkiewicz S, Ditmer M, Sochal M. Neurotrophins in the Neuropathophysiology, Course, and Complications of Obstructive Sleep Apnea-A Narrative Review. Int J Mol Sci 2023; 24:1808. [PMID: 36768132 PMCID: PMC9916304 DOI: 10.3390/ijms24031808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a disorder characterized by chronic intermittent hypoxia and sleep fragmentation due to recurring airway collapse during sleep. It is highly prevalent in modern societies, and due to its pleiotropic influence on the organism and numerous sequelae, it burdens patients and physicians. Neurotrophins (NTs), proteins that modulate the functioning and development of the central nervous system, such as brain-derived neurotrophic factor (BDNF), have been associated with OSA, primarily due to their probable involvement in offsetting the decline in cognitive functions which accompanies OSA. However, NTs influence multiple aspects of biological functioning, such as immunity. Thus, extensive evaluation of their role in OSA might enlighten the mechanism behind some of its elusive features, such as the increased risk of developing an immune-mediated disease or the association of OSA with cardiovascular diseases. In this review, we examine the interactions between NTs and OSA and discuss their contribution to OSA pathophysiology, complications, as well as comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
30
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
31
|
Cen J, Zhang R, Zhao T, Zhang X, Zhang C, Cui J, Zhao K, Duan S, Guo Y. A Water-Soluble Quercetin Conjugate with Triple Targeting Exerts Neuron-Protective Effect on Cerebral Ischemia by Mitophagy Activation. Adv Healthc Mater 2022; 11:e2200817. [PMID: 36071574 DOI: 10.1002/adhm.202200817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
The existing treatments for ischemic stroke cannot meet the clinical needs so far. Quercetin (QT) is an effective apoptosis inhibitor and antioxidant flavonoid, but its water solubility is poor and has no targeting. In this study, QT is modified with hyaluronic acid (HA) to form a water-soluble conjugate HA-QT, which can specifically bind to CD44 receptors and response to hyaluronidase. Next, a novel delivery system SS31-HA-QT is prepared by further modification with SS31, a polypeptide capable of penetrating the blood-brain barrier (BBB) and indiscriminately targeting mitochondria. Meanwhile, IR780, a near-infrared dye, is conjugated onto HA-QT and SS31-HA-QT to form diagnosis tools to trace HA-QT and SS31-HA-QT. In vitro and in vivo results shows that SS31 can four-fold increase the drug penetration into BBB without any toxicity. The highly expressed CD44 and hyaluronidase in ischemic area ensured the targeted delivery of QT to the ischemic region. Importantly, the mitochondrial targeting of damaged neurons is also achieved by SS31. Further studies confirmed that SS31-HA-QT exerted neuron-protection by activating mitophagy, and its mechanism involved Akt/mTOR related TFEB and HIF-1α activation. Hence, SS31-HA-QT shall be a promising neuroprotective drug due to its high water-solubility, superior triple-targeted neuroprotective ability, low toxicity, and high efficiency.
Collapse
Affiliation(s)
- Juan Cen
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Runfang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tingkui Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Keqing Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shaofeng Duan
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Henan International Joint Laboratory of Chinese Medicine Efficacy, Henan University, Kaifeng, 475004, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Engineering Research Center for Gynecological Oncology Nanomedicine of Henan Province, Zhengzhou, 450003, China
| |
Collapse
|
32
|
Zheng D, Chen L, Li G, Jin L, Wei Q, Liu Z, Yang G, Li Y, Xie X. Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy. Food Funct 2022; 13:9559-9575. [PMID: 35997158 DOI: 10.1039/d2fo01761j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the leading causes of death in diabetic patients, and is accompanied by increased oxidative stress and mitochondrial dysfunction. Fucoxanthin (FX), as a marine carotenoid, possesses strong antioxidant activity. The main purpose of our study was to explore whether FX could attenuate experimental cardiac hypertrophy by affecting mitophagy and oxidative stress. We found that FX improved lipid metabolism, myocardial damage, myocardial fibrosis and hypertrophy in the myocardial tissue of STZ-induced diabetic rats. Additionally, FX upregulated Nrf2 signaling to reduce the level of reactive oxygen species (ROS). FX also promoted Bnip3/Nix signaling to improve mitochondrial function and reduced the levels of mitochondrial and intracellular ROS, thereby reversing HG-induced H9c2 cell hypertrophy. However, treatment with the autophagy inhibitor CQ abolished the anti-hypertrophic effect of FX, accompanied by impaired mitochondrial function and increased ROS levels. In conclusion, we found that FX reduced the accumulation of TGF-β1, FN and α-SMA to relieve myocardial fibrosis in STZ-induced diabetic rats, and FX up-regulated Bnip3/Nix to promote mitophagy and enhanced Nrf2 signaling to alleviate oxidative stress, thereby inhibiting hypertrophy in HG-induced H9c2 cells. These results imply that FX may be developed as a functional food for DCM.
Collapse
Affiliation(s)
- Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Linlin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guoping Li
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qihui Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zilue Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yuanyuan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
33
|
Empirical Analysis of Early Childhood Enlightenment Education Using Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3601941. [PMID: 36072750 PMCID: PMC9444361 DOI: 10.1155/2022/3601941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
This exploration aims to study the value orientation and essence of early childhood enlightenment education based on the deep neural network (DNN). Based on the acquisition and feature learning of cross-media education big data, the DNN correlation learning of cross-media education big data, and the intelligent search of cross-media education big data based on the DNN, the intelligent search system of cross-media children's enlightenment education big data based on DNN is designed and implemented. The system includes three functional modules: the feature learning module of cross-media infant enlightenment education big data, the deep semantic correlation learning module of cross-media childhood enlightenment education big data, and the intelligent search module of cross-media childhood enlightenment education big data based on DNN. This exploration realizes the acquisition and feature learning of big data of cross-media early childhood enlightenment education, DNN learning of cross-media education big data of early childhood enlightenment, and intelligent computing of cross-media education big data based on DNN. The experimental results show that the proposed system's mean average precision (MAP) performance is improved by 15.6% on the public dataset of early childhood enlightenment education published by the Ministry of Education. Moreover, the system has also significantly improved the MAP performance of the constructed dataset in the field of early childhood enlightenment education; that is, the MAP performance has been improved by 20.6% on the dataset of Taylor's University in Malaysia (NUS-WIDE). This exploration has certain theoretical significance and empirical value for early childhood enlightenment education research.
Collapse
|
34
|
Brain-derived neurotrophic factor (BDNF): a multifaceted marker in chronic kidney disease. Clin Exp Nephrol 2022; 26:1149-1159. [DOI: 10.1007/s10157-022-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
|
35
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
36
|
Is Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues? BIOLOGY 2022; 11:biology11071063. [PMID: 36101441 PMCID: PMC9312804 DOI: 10.3390/biology11071063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/06/2022]
Abstract
Simple Summary The activity of brain-derived neurotrophic factor (BDF) in the central nervous system has been well-studied, but its physiological role in other organs has not been clearly defined. This review summarizes the current findings on the functionality of BDNF in various peripheral tissues and discusses several unresolved questions in the field. Abstract Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central nervous system. In addition to its well-known activities in promoting neuronal survival, neuron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues, including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly through the regulation of mitochondrial dynamics in the various tissues. This article reviews the autocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved questions about BDNF’s function.
Collapse
|
37
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 2022; 52:102288. [PMID: 35325804 PMCID: PMC8938627 DOI: 10.1016/j.redox.2022.102288] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury. Empagliflozin reduces I/R-induced microvascular damage. Empagliflozin suppresses I/R-induced endothelial cell damage. Empagliflozin activates FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Ablation of FUNDC1 or AMPKα1 abolishes the protective effects of empagliflozin against I/R-induced microvascular damage.
Collapse
|
38
|
Zhuo X, Jiang H. Protective effects of melatonin in cisplatin-induced cardiac toxicity: possible role of BDNF-TNF-α signaling pathway. Acta Cir Bras 2022; 37:e370208. [PMID: 35507972 PMCID: PMC9064185 DOI: 10.1590/acb370208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: The present study explored the role of melatonin in cisplatin-induced cardiac injury along with the possible role of brain-derived neurotrophic factor (BDNF) in melatonin-mediated effects. Methods: Wistar rats were administered cisplatin (10 mg/kg), and cardiac injury was assessed by measuring the levels of cardiac troponin (cTnT) and lactate dehydrogenase (LDH-1).The extent of apoptosis was measured by measuring caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic) in hearts. The levels of BDNF, tumour necrosis factor α (TNF-α) and reduced glutathione were measured in heart. Melatonin (5 and 10 mg/kg) was administered for 15 days, and the role of BDNF was identified by co-administering BDNF inhibitor, ANA-12 (0.25 and 0.5 mg/kg). Results: Melatonin attenuated cTnT and LDH-1 levels along with reduction in caspase-3 and increase in Bcl-2. It also increased cisplatin-induced decrease in BDNF, increase in TNF-α and decrease in reduced glutathione levels. Moreover, ANA-12 abolished the cardioprotective effects, anti-inflammatory and antioxidant effects of melatonin suggesting the role of BDNF in melatonin-mediated effects in cisplatin-induced cardiac injury. Conclusions: Melatonin is useful in cisplatin-induced cardiac injury, which may be due to an increase in BDNF, decrease in inflammation and increase in antioxidant activities.
Collapse
|
39
|
Xue B, Wang Y. Naringenin upregulates GTPCH1/eNOS to ameliorate high glucose‑induced retinal endothelial cell injury. Exp Ther Med 2022; 23:428. [PMID: 35607381 PMCID: PMC9121200 DOI: 10.3892/etm.2022.11355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bing Xue
- Health Management Center of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| | - Yu Wang
- Medical Department of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
40
|
Zhu C, Zhao Y, Pei D, Liu Z, Liu J, Li Y, Yu S, Ma L, Sun J, Li A. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose. BMC Oral Health 2022; 22:144. [PMID: 35473620 PMCID: PMC9044577 DOI: 10.1186/s12903-022-02167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/11/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oxidative stress mediated by hyperglycemia damages cell-reparative processes such as mitophagy. Down-regulation of mitophagy is considered to be a susceptible factor for diabetes mellitus (DM) and its complications. However, the role of mitophagy in DM-associated periodontitis has not been fully elucidated. Apoptosis of human gingival epithelial cells (hGECs) is one of the representative events of DM-associated periodontitis. Thus, this study aimed to investigate PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy activated in the process of high glucose (HG)-induced hGECs apoptosis. METHODS For dose-response studies, hGECs were incubated in different concentrations of glucose (5.5, 15, 25, and 50 mmol/L) for 48 h. Then, hGECs were challenged with 25 mmol/L glucose for 12 h and 48 h, respectively. Apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL), caspase 9 and mitochondrial membrane potential (MMP). Subsequently, autophagy was evaluated by estimating P62, LC3 II mRNA levels, LC3 fluorescent puncta and LC3-II/I ratio. Meanwhile, the involvement of PINK1-mediated mitophagy was assessed by qRT-PCR, western blotting and immunofluorescence. Finally, hGECs were transfected with shPINK1 and analyzed by MMP, caspase 9 and annexin V-FITC apoptosis. RESULTS The number of TUNEL-positive cells and caspase 9 protein were significantly increased in cells challenged with HG (25 mmol/L) for 48 h (HG 48 h). MMP was impaired both at HG 12 h and HG 48 h, but the degree of depolarization was more serious at HG 48 h. The autophagy improved as the amount of LC3 II increased and p62 decreased in HG 12 h. During this process, HG 12 h treatment induced PINK1-mediated mitophagy. PINK1 silencing with HG 12 h resulted in MMP depolarization and cell apoptosis. CONCLUSIONS These results suggested that loss of the PINK1 gene may cause mitochondrial dysfunction and increase sensitivity to HG-induced apoptosis of hGECs at the early stage. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose.
Collapse
Affiliation(s)
- Chunhui Zhu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhao
- grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Dandan Pei
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Zhongbo Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Jin Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ye Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Shuchen Yu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Lingyan Ma
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Junyi Sun
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Special Clinic, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
41
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Wang FF, Zhang JL, Ji Y, Yan XJ, Sun L, Zhu Y, Jin H. KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1 induced endothelial-to-mesenchymal transition. Cell Signal 2022; 94:110324. [PMID: 35364229 DOI: 10.1016/j.cellsig.2022.110324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Diabetic vascular calcification in the arterial intima is closely associated with endothelial-to-mesenchymal transition (EndMT). Glucose metabolism reprogramming is involved in EndMT. Although brain-derived neurotrophic factor (BDNF) and Krüppel-like family of transcription factor 2 (KLF2) play protective roles in the physiological activity of the vascular endothelium, the underlying mechanisms are unclear. Human umbilical vein endothelial cells (HUVECs) were incubated with diabetic osteogenic medium (DOM) to induce EndMT and accelerate osteogenic differentiation. Glycolysis in HUVECs was assessed by monitoring glucose uptake, lactate production, extracellular acidification rate and expression of key glycolytic enzymes. DOM induced EndMT and accelerated osteo-induction in HUVECs, which was alleviated by BDNF/tropomyosin receptor kinase B (TrkB) pathway. Mechanistically, DOM caused hyperactivation of glycolysis in HUVECs and inhibition of the BDNF/TrkB pathway. BDNF preserved KLF2 and downregulated hexokinase 1 (HK1) in HUVECs after DOM treatment. Furthermore, KLF2 interacted with HK1. Increased KLF2 alleviated HK1-mediated glucose metabolism abnormality. HK1 knockdown or a targeted glycolysis inhibitor suppressed EndMT, apoptosis, inflammation and vascular calcification of HUVECs after DOM exposure. This study suggests that KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1-induced glucose metabolism reprogramming and the EndMT process.
Collapse
Affiliation(s)
- Fang-Fang Wang
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Jia-Li Zhang
- Department of Gastroenterology Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Yuan Ji
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Xue-Jiao Yan
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Ling Sun
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Yi Zhu
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China.
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
43
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
44
|
Wu D, Ji H, Du W, Ren L, Qian G. Mitophagy alleviates ischemia/reperfusion-induced microvascular damage through improving mitochondrial quality control. Bioengineered 2022; 13:3596-3607. [PMID: 35112987 PMCID: PMC8973896 DOI: 10.1080/21655979.2022.2027065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The coronary arteries mainly function to perfuse the myocardium. When coronary artery resistance increases, myocardial perfusion decreases and myocardial remodeling occurs. Mitochondrial damage has been regarded as the primary cause of microvascular dysfunction. In the present study, we explored the effects of mitophagy activation on microvascular damage. Hypoxia/reoxygenation injury induced mitochondrial oxidative stress, thereby promoting mitochondrial dysfunction in endothelial cells. Mitochondrial impairment induced apoptosis, reducing the viability and proliferation of endothelial cells. However, supplementation with the mitophagy inducer urolithin A (UA) preserved mitochondrial function by reducing mitochondrial oxidative stress and stabilizing the mitochondrial membrane potential in endothelial cells. UA also sustained the viability and improved the proliferative capacity of endothelial cells by suppressing apoptotic factors and upregulating cyclins D and E. In addition, UA inhibited mitochondrial fission and restored mitochondrial fusion, which reduced the proportion of fragmented mitochondria within endothelial cells. UA enhanced mitochondrial biogenesis in endothelial cells by upregulating sirtuin 3 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha. These results suggested that activation of mitophagy may reduce hypoxia/reoxygenation-induced cardiac microvascular damage by improving mitochondrial quality control and increasing cell viability and proliferation.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Haizhe Ji
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Beijing, China
| | - Wenjuan Du
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lina Ren
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
45
|
Interaction between TRPML1 and p62 in Regulating Autophagosome-Lysosome Fusion and Impeding Neuroaxonal Dystrophy in Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8096009. [PMID: 35116093 PMCID: PMC8807035 DOI: 10.1155/2022/8096009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
The loss of transient receptor potential mucolipin 1 (TRPML1), an endosomal and lysosomal Ca2+-releasing channel, has been implicated in neurodegenerative disorders. Mounting evidence have shown that TRPML1 could clear intraneuronal amyloid-β (Aβ), which triggers a hypothesis that TRPML1 activation may be beneficial for axonal transport in Alzheimer's disease (AD). In this work, the functional roles of TRPML1 were studied in the APP/PS1 transgenic mice and Aβ1-42-stimulated hippocampal neurons HT22. We found that lentivirus-mediated overexpression of TRPML1 was shown to promote an accumulation of autolysosomes and increase brain-derived neurotrophic factor (BDNF) transportation to the nucleus, suggesting an axon-protective function. More importantly, we found that TRPML1 also increased p62 that interacted with dynein. Lentivirus-mediated knockdown of p62 or inhibition of dynein by ciliobrevin D stimulation was found to reduce autolysosome formation and nuclear accumulation of BDNF in HT22 cells with Aβ1-42 stimulation. Inhibition of p62 by XRK3F2 stimulation was observed to promote the death of hippocampal neurons of the APP/PS1 transgenic mice. TRPML1 recruited dynein by interacting with p62 to promote the autophagosome-lysosome fusion to mediate BDNF nuclear translocation to impede axon dystrophy in mice with Alzheimer-like phenotypes. In summary, these results demonstrate the presence of a TRPML1/p62/dynein regulatory network in AD, and activation of TRPML1 is required for axon protection to prevent neuroaxonal dystrophy.
Collapse
|
46
|
Xiang J, Zhang C, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Wang G, Zhang Y. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered 2022; 13:3486-3502. [PMID: 35068334 PMCID: PMC8974099 DOI: 10.1080/21655979.2022.2026552] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jie Xiang
- Monitoring Department, Guizhou Center for Disease Control and Prevention, Institute of Chronic Disease Prevention and Treatment, Guiyang, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Tietao Di
- Department of Trauma Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lianggang Wei
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xueli Wu
- Central Laboratory, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Gengxin Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
47
|
Naletova I, Greco V, Sciuto S, Attanasio F, Rizzarelli E. Ionophore Ability of Carnosine and Its Trehalose Conjugate Assists Copper Signal in Triggering Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Activation In Vitro. Int J Mol Sci 2021; 22:13504. [PMID: 34948299 PMCID: PMC8706131 DOI: 10.3390/ijms222413504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
l-carnosine (β-alanyl-l-histidine) (Car hereafter) is a natural dipeptide widely distributed in mammalian tissues and reaching high concentrations (0.7-2.0 mM) in the brain. The molecular features of the dipeptide underlie the antioxidant, anti-aggregating and metal chelating ability showed in a large number of physiological effects, while the biological mechanisms involved in the protective role found against several diseases cannot be explained on the basis of the above-mentioned properties alone, requiring further research efforts. It has been reported that l-carnosine increases the secretion and expression of various neurotrophic factors and affects copper homeostasis in nervous cells inducing Cu cellular uptake in keeping with the key metal-sensing system. Having in mind this l-carnosine ability, here we report the copper-binding and ionophore ability of l-carnosine to activate tyrosine kinase cascade pathways in PC12 cells and stimulate the expression of BDNF. Furthermore, the study was extended to verify the ability of the dipeptide to favor copper signaling inducing the expression of VEGF. Being aware that the potential protective action of l-carnosine is drastically hampered by its hydrolysis, we also report on the behavior of a conjugate of l-carnosine with trehalose that blocks the carnosinase degradative activity. Overall, our findings describe a copper tuning effect on the ability of l-carnosine and, particularly its conjugate, to activate tyrosine kinase cascade pathways.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
48
|
Zhang X, Feng J, Li X, Wu D, Wang Q, Li S, Shi C. Mitophagy in Diabetic Kidney Disease. Front Cell Dev Biol 2021; 9:778011. [PMID: 34957109 PMCID: PMC8703169 DOI: 10.3389/fcell.2021.778011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide and is the main microvascular complication of diabetes. The increasing prevalence of diabetes has increased the need for effective treatment of DKD and identification of new therapeutic targets for better clinical management. Mitophagy is a highly conserved process that selectively removes damaged or unnecessary mitochondria via the autophagic machinery. Given the important role of mitophagy in the increased risk of DKD, especially with the recent surge in COVID-19-associated diabetic complications, in this review, we provide compelling evidence for maintaining homeostasis in the glomeruli and tubules and its underlying mechanisms, and offer new insights into potential therapeutic approaches for treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuyu Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changhua Shi
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
50
|
Zuo L, Dai C, Yi L, Dong Z. 7,8-dihydroxyflavone ameliorates motor deficits via regulating autophagy in MPTP-induced mouse model of Parkinson's disease. Cell Death Discov 2021; 7:254. [PMID: 34545064 PMCID: PMC8452727 DOI: 10.1038/s41420-021-00643-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and diminished dopamine content in the striatum. Recent reports show that 7,8-dihydroxyflavone (DHF), a TrkB agonist, attenuates the α-synuclein deposition and ameliorates motor deficits. However, the underlying mechanism is unclear. In this study, we investigated whether autophagy is involved in the clearance of α-synuclein and the signaling pathway through which DHF exerts therapeutic effects. We found that the administration of DHF (5 mg/kg/day, i.p.) prevented the loss of dopaminergic neurons and improved motor functions in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, whereas these protective effects of DHF were completely blocked by autophagy inhibitor chloroquine (CQ). Further in vitro studies showed that autophagy was inhibited in N2A cells treated with 1-methyl-4-phenylpyridinium (MPP+), as reflected by a significant decrease in the expressions of autophagy marker proteins (Beclin1 and LC3II) and an increase in the expression of autophagic flux marker p62. DHF restored the impaired autophagy to control level in MPP+-treated N2A cells by inhibiting the ERK-LKB1-AMPK signaling pathway. Taken together, these results demonstrate that DHF exerts therapeutic effects in MPTP/MPP+-induced neurotoxicity by inhibiting the ERK-LKB1-AMPK signaling pathway and subsequently improving impaired autophagy.
Collapse
Affiliation(s)
- Li Zuo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunfang Dai
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|