1
|
Tallino S, Etebari R, McDonough I, Leon H, Sepulveda I, Winslow W, Bartholomew SK, Perez SE, Mufson EJ, Velazquez R. Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome. Nutrients 2024; 16:4167. [PMID: 39683562 DOI: 10.3390/nu16234167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. METHODS We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. RESULTS We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. CONCLUSIONS Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk.
Collapse
Affiliation(s)
- Savannah Tallino
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rachel Etebari
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ian McDonough
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hector Leon
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Isabella Sepulveda
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy Winslow
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Samantha K Bartholomew
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sylvia E Perez
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Elliott J Mufson
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Ramon Velazquez
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| |
Collapse
|
2
|
Wong H, Buck JM, Borski C, Pafford JT, Keller BN, Milstead RA, Hanson JL, Stitzel JA, Hoeffer CA. RCAN1 knockout and overexpression recapitulate an ensemble of rest-activity and circadian disruptions characteristic of Down syndrome, Alzheimer's disease, and normative aging. J Neurodev Disord 2022; 14:33. [PMID: 35610565 PMCID: PMC9128232 DOI: 10.1186/s11689-022-09444-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology that appear symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. METHODS The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice of both sexes. RESULTS We found that daily RCAN1 levels in the hippocampus and suprachiasmatic nucleus (SCN) of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and RCAN1-overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 deficiency and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and RCAN1-overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. We also found that RCAN1 deficiency but not RCAN1 overexpression altered protein levels of the clock gene Bmal1 in the SCN. CONCLUSIONS Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and possibly aging.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica T Pafford
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Ryan A Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA.
- Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Hawley LE, Prochaska F, Stringer M, Goodlett CR, Roper RJ. Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes. Pharmacol Biochem Behav 2022; 217:173404. [DOI: 10.1016/j.pbb.2022.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
4
|
Lovos A, Bottrill K, Sakhon S, Nyhuis C, Egleson E, Luongo A, Murphy M, Thurman AJ, Abbeduto L, Lee NR, Hughes K, Edgin J. Circadian Sleep-Activity Rhythm across Ages in Down Syndrome. Brain Sci 2021; 11:brainsci11111403. [PMID: 34827402 PMCID: PMC8615672 DOI: 10.3390/brainsci11111403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Across all ages, individuals with Down syndrome (DS) experience high rates of sleep problems as well as cognitive impairments. This study sought to investigate whether circadian rhythm disruption was also experienced by people with DS and whether this kind of sleep disorder may be correlated with cognitive performance. A cross-sectional study of 101 participants (58 with DS, 43 with typical development) included individuals in middle childhood (6–10 years old), adolescence (11–18 years old), and young adulthood (19–26 years old). Sleep and markers of circadian timing and robustness were calculated using actigraphy. Cognitive and behavioral data were gathered via a novel touchscreen battery (A-MAPTM, Arizona Memory Assessment for Preschoolers and Special Populations) and parent questionnaire. Results indicated that children and adolescents with DS slept the same amount as peers with typical development, but significant group differences were seen in phase timing. The circadian robustness markers, interdaily stability and intradaily variability of sleep-wake rhythms, were healthiest for children regardless of diagnostic group and worst for adults with DS. Amplitude of the 24-h activity profile was elevated for all individuals with DS. In analyses of the correlations between sleep quality, rhythms, and cognition in people with DS, interdaily stability was positively correlated with reaction time and negatively correlated with verbal and scene recall, a finding that indicates increased stability may paradoxically correlate with poorer cognitive outcomes. Further, we found no relations with sleep efficiency previously found in preschool and adult samples. Therefore, the current findings suggest that a thorough examination of sleep disorders in DS must take into account age as well as circadian robustness to better understand sleep-cognitive correlations in this group.
Collapse
Affiliation(s)
- Annalysa Lovos
- Department of Psychology, School of Mind, Brain and Behavior, College of Science, The University of Arizona, Tucson, AZ 85721, USA; (K.B.); (E.E.); (A.L.); (J.E.)
- Correspondence:
| | - Kenneth Bottrill
- Department of Psychology, School of Mind, Brain and Behavior, College of Science, The University of Arizona, Tucson, AZ 85721, USA; (K.B.); (E.E.); (A.L.); (J.E.)
| | - Stella Sakhon
- Statistics Department, Los Angeles Valley College, Van Nuys, Los Angeles, CA 91401, USA;
| | - Casandra Nyhuis
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Elizabeth Egleson
- Department of Psychology, School of Mind, Brain and Behavior, College of Science, The University of Arizona, Tucson, AZ 85721, USA; (K.B.); (E.E.); (A.L.); (J.E.)
| | - Alison Luongo
- Department of Psychology, School of Mind, Brain and Behavior, College of Science, The University of Arizona, Tucson, AZ 85721, USA; (K.B.); (E.E.); (A.L.); (J.E.)
| | - Melanie Murphy
- Department of Physiology and Buiphysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA; (A.J.T.); (L.A.)
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA; (A.J.T.); (L.A.)
| | - Nancy Raitano Lee
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA;
| | | | - Jamie Edgin
- Department of Psychology, School of Mind, Brain and Behavior, College of Science, The University of Arizona, Tucson, AZ 85721, USA; (K.B.); (E.E.); (A.L.); (J.E.)
- Sonoran University Center for Excellence in Developmental Disabilities (UCEDD), University of Arizona, Farmington, CT 06032, USA
| |
Collapse
|
5
|
Rueda N, Vidal V, García-Cerro S, Puente A, Campa V, Lantigua S, Narcís O, Bartesaghi R, Martínez-Cué C. Prenatal, but not Postnatal, Curcumin Administration Rescues Neuromorphological and Cognitive Alterations in Ts65Dn Down Syndrome Mice. J Nutr 2020; 150:2478-2489. [PMID: 32729926 DOI: 10.1093/jn/nxaa207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory. OBJECTIVES We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment. METHODS To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs. RESULTS Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice. CONCLUSION The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine, Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Roper RJ, Goodlett CR, Martínez de Lagrán M, Dierssen M. Behavioral Phenotyping for Down Syndrome in Mice. ACTA ACUST UNITED AC 2020; 10:e79. [PMID: 32780566 DOI: 10.1002/cpmo.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability, characterized by alterations in different behavioral symptom domains: neurodevelopment, motor behavior, and cognition. As mouse models have the potential to generate data regarding the neurological basis for the specific behavioral profile of DS, and may indicate pharmacological treatments with the potential to affect their behavioral phenotype, it is important to be able to assess disease-relevant behavioral traits in animal models in order to provide biological plausibility to the potential findings. The field is at a juncture that requires assessments that may effectively translate the findings acquired in mouse models to humans with DS. In this article, behavioral tests are described that are relevant to the domains affected in DS. A neurodevelopmental behavioral screen, the balance beam test, and the Multivariate Concentric Square Field test to assess multiple behavioral phenotypes and locomotion are described, discussing the ways to merge these findings to more fully understand cognitive strengths and weaknesses in this population. New directions for approaches to cognitive assessment in mice and humans are discussed. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preweaning neurodevelopmental battery Basic Protocol 2: Balance beam Basic Protocol 3: Multivariate concentric square field test (MCSF).
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Tsuji M, Ohshima M, Yamamoto Y, Saito S, Hattori Y, Tanaka E, Taguchi A, Ihara M, Ogawa Y. Cilostazol, a Phosphodiesterase 3 Inhibitor, Moderately Attenuates Behaviors Depending on Sex in the Ts65Dn Mouse Model of Down Syndrome. Front Aging Neurosci 2020; 12:106. [PMID: 32372946 PMCID: PMC7186592 DOI: 10.3389/fnagi.2020.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
People with Down syndrome, which is a trisomy of chromosome 21, exhibit intellectual disability from infancy and neuropathology similar to Alzheimer’s disease, such as amyloid plaques, from an early age. Recently, we showed that cilostazol, a selective inhibitor of phosphodiesterase (PDE) 3, promotes the clearance of amyloid β and rescues cognitive deficits in a mouse model of Alzheimer’s disease. The objective of the present study was to examine whether cilostazol improves behaviors in the most widely used animal model of Down syndrome, i.e., Ts65Dn mice. Mice were supplemented with cilostazol from the fetal period until young adulthood. Supplementation significantly ameliorated novel-object recognition in Ts65Dn females and partially ameliorated sensorimotor function as determined by the rotarod test in Ts65Dn females and hyperactive locomotion in Ts65Dn males. Cilostazol supplementation significantly shortened swimming distance in Ts65Dn males in the Morris water maze test, suggesting that the drug improved cognitive function, although it did not shorten swimming duration, which was due to decreased swimming speed. Thus, this study suggests that early supplementation with cilostazol partially rescues behavioral abnormalities seen in Down syndrome and indicates that the effects are sex-dependent.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
8
|
Martínez de Lagrán M. Mapping behavioral landscapes in Down syndrome animal models. PROGRESS IN BRAIN RESEARCH 2020; 251:145-179. [DOI: 10.1016/bs.pbr.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Corrales A, Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Diego M, Wilhem Filho D, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome. Behav Brain Res 2017; 334:142-154. [PMID: 28743603 DOI: 10.1016/j.bbr.2017.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Eduardo B Parisotto
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verónica Vidal
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Marian Diego
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Danilo Wilhem Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emilio J Sanchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
10
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|
11
|
López-Yoldi M, Stanhope KL, Garaulet M, Chen XG, Marcos-Gómez B, Carrasco-Benso MP, Santa Maria EM, Escoté X, Lee V, Nunez MV, Medici V, Martínez-Ansó E, Sáinz N, Huerta AE, Laiglesia LM, Prieto J, Martínez JA, Bustos M, Havel PJ, Moreno-Aliaga MJ. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects. FASEB J 2017; 31:1639-1649. [PMID: 28096235 DOI: 10.1096/fj.201600396rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
Abstract
Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of oxygen consumption rate (Vo2) was disrupted in aged obese CT-1-deficient (CT-1-/-) mice (12 mo). Although circadian rhythms of Vo2 were conserved in young lean CT-1-/- mice (2 mo), CT-1 deficiency caused a phase shift of the acrophase. Most of the clock genes studied (Clock, Bmal1, and Per2) displayed a circadian rhythm in adipose tissue of both wild-type (WT) and CT-1-/- mice. However, the pattern was altered in CT-1-/- mice toward a lower percentage of the rhythm or lower amplitude, especially for Bmal1 and Clock. Moreover, CT-1 mRNA levels in adipose tissue showed significant circadian fluctuations in young WT mice. In humans, CT-1 plasma profile exhibited a 24-h circadian rhythm in normal-weight but not in overweight subjects. The 24-h pattern of CT-1 was characterized by a pronounced increase during the night (from 02:00 to 08:00). These observations suggest a potential role for CT-1 in the regulation of metabolic circadian rhythms.-López-Yoldi, M., Stanhope, K. L., Garaulet, M., Chen, X. G., Marcos-Gómez, B., Carrasco-Benso, M. P., Santa Maria, E. M., Escoté, X., Lee, V., Nunez, M. V., Medici, V., Martínez-Ansó, E., Sáinz, N., Huerta, A. E., Laiglesia, L. M., Prieto, J., Martínez, J. A., Bustos, M., Havel, P. J., Moreno-Aliaga, M. J. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - X Guoxia Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Beatriz Marcos-Gómez
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | | | - Eva M Santa Maria
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd) and Institute of Health Carlos III, Madrid, Spain
| | - Xavier Escoté
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Marinelle V Nunez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Valentina Medici
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eduardo Martínez-Ansó
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jesús Prieto
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd) and Institute of Health Carlos III, Madrid, Spain.,Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain; and.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Maria J Moreno-Aliaga
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain; .,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain; and.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
12
|
Romano E, Cosentino L, Laviola G, De Filippis B. Genes and sex hormones interaction in neurodevelopmental disorders. Neurosci Biobehav Rev 2016; 67:9-24. [DOI: 10.1016/j.neubiorev.2016.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
13
|
Heise I, Fisher SP, Banks GT, Wells S, Peirson SN, Foster RG, Nolan PM. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome. GENES BRAIN AND BEHAVIOR 2015; 14:209-16. [PMID: 25558895 PMCID: PMC4409853 DOI: 10.1111/gbb.12198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022]
Abstract
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel-running analysis and video-based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep-like behaviour during the light phase of a 12:12-h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night-time was less effective in inducing sleep-like behaviour in Tc1 animals than in wild-type controls. In wheel-running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep-related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.
Collapse
Affiliation(s)
- I Heise
- Harwell Science and Innovation Campus, MRC Harwell, Harwell, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Kelley CM, Powers BE, Velazquez R, Ash JA, Ginsberg SD, Strupp BJ, Mufson EJ. Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Brain Pathol 2014; 24:33-44. [PMID: 23802663 PMCID: PMC4220609 DOI: 10.1111/bpa.12073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/23/2022] Open
Abstract
In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimer's disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5-8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype-matched males. Further, relative to genotype-matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post-processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Brian E. Powers
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Ramon Velazquez
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Jessica A. Ash
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNY
- Department of PsychiatryNew York University Langone Medical CenterNew YorkNY
- Department of Physiology & NeuroscienceNew York University Langone Medical CenterNew YorkNY
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Elliott J. Mufson
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| |
Collapse
|
15
|
Herault Y, Duchon A, Velot E, Maréchal D, Brault V. The in vivo Down syndrome genomic library in mouse. PROGRESS IN BRAIN RESEARCH 2012; 197:169-97. [PMID: 22541293 DOI: 10.1016/b978-0-444-54299-1.00009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational medicine and Neurogenetics program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, Strasbourg, France.
| | | | | | | | | |
Collapse
|
16
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
17
|
Olson LE, Mohan S. Bone density phenotypes in mice aneuploid for the Down syndrome critical region. Am J Med Genet A 2011; 155A:2436-45. [PMID: 21915988 DOI: 10.1002/ajmg.a.34203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/21/2011] [Indexed: 11/11/2022]
Abstract
Down syndrome (trisomy 21) is associated with reduced bone density in humans, but it is unclear whether this is due to specific effects of chromosome 21 genes or lifestyle factors. Mouse models with aneuploidy of segments of mouse chromosome 16 that are homologous to human chromosome 21 can be used to elucidate the mechanism by which Down syndrome phenotypes arise. Ts1Rhr and Ms1Rhr mice are trisomic and monosomic, respectively, for the hypothesized "Down syndrome critical region" containing approximately 33 genes. We assessed the skeletons of these mice from 3 to 16 weeks of age using dual X-ray absorptiometry. Ts1Rhr mice were unexpectedly similar to normal controls, showing that a larger region of trisomy is necessary to recapitulate the Down syndrome phenotype. Ms1Rhr mice, in contrast, showed decreases in weight, bone mineral content, bone mineral density, and bone area from weaning to adulthood. Regional bone density was also decreased in the femur, tibia, and lower lumbar spine. The microarchitecture of 3 week old Ms1Rhr femurs was then analyzed using µCT. Volumetric density, total tissue volume, bone volume, and bone fraction were all reduced in both cortical and trabecular bone. Ms1Rhr trabeculae were thinner and had decreased connectivity. A 31.5% reduction in the level of insulin-like growth factor I in the serum was found, and we hypothesize that this is responsible for the bone density phenotype. We discuss bone-related genes in the region and propose that humans with distal chromosome 21 deletions may exhibit reduced bone density.
Collapse
Affiliation(s)
- Lisa E Olson
- Musculoskeletal Disease Center, Loma Linda University, California, USA.
| | | |
Collapse
|
18
|
Faizi M, Bader PL, Tun C, Encarnacion A, Kleschevnikov A, Belichenko P, Saw N, Priestley M, Tsien RW, Mobley WC, Shamloo M. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer. Neurobiol Dis 2011; 43:397-413. [PMID: 21527343 PMCID: PMC3539757 DOI: 10.1016/j.nbd.2011.04.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: (i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), (ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and (iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down syndrome displays cognitive deficits which are mediated by an imbalance in the noradrenergic system. In this experimental model of Down syndrome a selective activation of β1-ADR does restore some of these behavioral deficits. Further mechanistic studies will be needed to investigate the failure of noradrenergic system and the role of β1-ADR in cognitive deficit and pathogenesis of DS in people. Restoring NE neurotransmission or a selective activation of β1)-ADR needs to be further investigated for the development of any potential therapeutic strategy for symptomatic relief of memory deficit in DS. Furthermore, due to the significant involvement of noradrenergic system in the cardiovascular function further safety and translational studies will be needed to ensure the safety and efficacy of this approach.
Collapse
Affiliation(s)
- Mehrdad Faizi
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| | - Patrick L. Bader
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | - Christine Tun
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| | - Angelo Encarnacion
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| | | | - Pavel Belichenko
- Department of Neuroscience, University of California, San Diego, La Jolla
| | - Nay Saw
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| | - Matthew Priestley
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| | - Richard W Tsien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla
| | - Mehrdad Shamloo
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine
| |
Collapse
|
19
|
Blazek JD, Gaddy A, Meyer R, Roper RJ, Li J. Disruption of bone development and homeostasis by trisomy in Ts65Dn Down syndrome mice. Bone 2011; 48:275-80. [PMID: 20870049 PMCID: PMC3021595 DOI: 10.1016/j.bone.2010.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022]
Abstract
Down syndrome (DS) is a genetic disorder resulting from trisomy 21 that causes cognitive impairment, low muscle tone and craniofacial alterations. Morphometric studies of the craniofacial and appendicular skeleton in individuals with DS suggest that bone development and homeostasis are affected by trisomy. The Ts65Dn mouse model has three copies of approximately half the genes found on human chromosome 21 and exhibits craniofacial skeletal and size differences similar to those observed in humans with DS. We hypothesized that Ts65Dn and euploid mice have distinct differences in bone development and homeostasis influencing both the craniofacial and appendicular skeletal phenotypes. Quantitative assessment of structural and mechanical properties of the femur in Ts65Dn and control mice at 6 and 16 weeks of age revealed significant deficiencies in trabecular and cortical bone architecture, bone mineral density, bone formation, and bone strength in trisomic bone. Furthermore, bone mineral density and dynamic dentin formation rate of the skull and incisor, respectively, were also reduced in Ts65Dn mice, demonstrating that trisomy significantly affects both the craniofacial and appendicular skeleton.
Collapse
Affiliation(s)
- Joshua D. Blazek
- Department of Biology, Indiana University-Purdue University Indianapolis and Indiana University Center for Regenerative Biology and Medicine, 723 W. Michigan Street, SL306, Indianapolis, IN 46202, USA
| | - Anna Gaddy
- Department of Biology, Indiana University-Purdue University Indianapolis and Indiana University Center for Regenerative Biology and Medicine, 723 W. Michigan Street, SL306, Indianapolis, IN 46202, USA
| | - Rachel Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis and Indiana University Center for Regenerative Biology and Medicine, 723 W. Michigan Street, SL306, Indianapolis, IN 46202, USA
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis and Indiana University Center for Regenerative Biology and Medicine, 723 W. Michigan Street, SL306, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis and Indiana University Center for Regenerative Biology and Medicine, 723 W. Michigan Street, SL306, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Garaulet M, Madrid JA. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 2010; 62:967-78. [PMID: 20580916 DOI: 10.1016/j.addr.2010.05.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
The present review starts from the classical physiological and nutritional studies related with food intake control, digestion, transport and absorption of nutrients. It continues with studies related with the metabolism of adipose tissue, and finish with modern experiments in genetics and molecular biology - all from a fresh, chronobiological point of view. Obesity will be explained as a fault in the circadian system, as pathology associated with "chronodisruption". The main gaps in chronobiological research related to obesity will be also identified and chronobiological-based therapies will be proposed in order to allow the resetting of the circadian rhythm among obese subjects.
Collapse
|
22
|
Shamloo M, Belichenko PV, Mobley WC. Comprehensive behavioral assays to enhance phenotype to genotype linkages and therapeutic screening in mouse models of Down syndrome. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mehrdad Shamloo
- Behavioral & Functional Neuroscience Laboratory, Institute for Neuro-Innovation & Translational Neurosciences, Stanford University School of Medicine, CA, USA
| | | | | |
Collapse
|
23
|
Ruby NF, Fernandez F, Zhang P, Klima J, Heller HC, Garner CC. Circadian locomotor rhythms are normal in Ts65Dn "Down syndrome" mice and unaffected by pentylenetetrazole. J Biol Rhythms 2010; 25:63-6. [PMID: 20075302 DOI: 10.1177/0748730409356202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ts65Dn mice are used extensively as a model for Down syndrome. Recent studies have reported conflicting evidence as to whether these mice express circadian rhythms. The authors therefore recorded locomotor activity patterns from these animals while they were housed under a standard light-dark cycle, constant darkness (DD), and constant light (LL). Contrary to expectations, Ts65Dn mice had more robust circadian rhythms with slightly shorter periods compared with their wild-type littermates. They also exhibited increased rhythm period and marked activity suppression when moved from DD to LL (i.e., Aschoff's rule). Administration of the GABA(A) antagonist pentylenetetrazole did not influence any of these circadian parameters. Thus, locomotor activity is under strict circadian control in Ts65Dn mice, suggesting that their cognitive deficits and sleep disturbances are not due to dysfunctional circadian timing as proposed previously.
Collapse
Affiliation(s)
- Norman F Ruby
- Biology Department, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Galante M, Jani H, Vanes L, Daniel H, Fisher EM, Tybulewicz VL, Bliss TV, Morice E. Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome. Hum Mol Genet 2009; 18:1449-63. [PMID: 19181682 PMCID: PMC2664148 DOI: 10.1093/hmg/ddp055] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.
Collapse
Affiliation(s)
- Micaela Galante
- Laboratoire de Pharmacologie de la Synapse, CNRS UMR 8619, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | - Lesley Vanes
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Hervé Daniel
- Laboratoire de Pharmacologie de la Synapse, CNRS UMR 8619, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor L.J. Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
25
|
Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 2008; 4:e1000040. [PMID: 18516223 PMCID: PMC2295261 DOI: 10.1371/journal.pgen.1000040] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 12/20/2022] Open
Abstract
Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain's critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.
Collapse
Affiliation(s)
- Alun R. Barnard
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Patrick M. Nolan
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|