1
|
Abstract
Between the 1930s and 1950s, scientists developed key principles of population genetics to try and explain the aging process. Almost a century later, these aging theories, including antagonistic pleiotropy and mutation accumulation, have been experimentally validated in animals. Although the theories have been much harder to test in humans despite research dating back to the 1970s, recent research is closing this evidence gap. Here we examine the strength of evidence for antagonistic pleiotropy in humans, one of the leading evolutionary explanations for the retention of genetic risk variation for non-communicable diseases. We discuss the analytical tools and types of data that are used to test for patterns of antagonistic pleiotropy and provide a primer of evolutionary theory on types of selection as a guide for understanding this mechanism and how it may manifest in other diseases. We find an abundance of non-experimental evidence for antagonistic pleiotropy in many diseases. In some cases, several studies have independently found corroborating evidence for this mechanism in the same or related sets of diseases including cancer and neurodegenerative diseases. Recent studies also suggest antagonistic pleiotropy may be involved in cardiovascular disease and diabetes. There are also compelling examples of disease risk variants that confer fitness benefits ranging from resistance to other diseases or survival in extreme environments. This provides increasingly strong support for the theory that antagonistic pleiotropic variants have enabled improved fitness but have been traded for higher burden of disease later in life. Future research in this field is required to better understand how this mechanism influences contemporary disease and possible consequences for their treatment.
Collapse
|
2
|
Zhang X, Norton J, Carrière I, Ritchie K, Chaudieu I, Ryan J, Ancelin ML. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder. Sci Rep 2017; 7:42676. [PMID: 28198454 PMCID: PMC5309880 DOI: 10.1038/srep42676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/13/2017] [Indexed: 01/31/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Tianjin Mental Health Center, Tianjin, China
| | - Joanna Norton
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Isabelle Carrière
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Karen Ritchie
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Faculty of Medicine, Imperial College, London, UK
| | - Isabelle Chaudieu
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Joanne Ryan
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Disease Epigenetics Group, Murdoch Children's Research Institute, and Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
3
|
Kurita GP, Ekholm O, Kaasa S, Klepstad P, Skorpen F, Sjøgren P. Genetic variation and cognitive dysfunction in opioid-treated patients with cancer. Brain Behav 2016; 6:e00471. [PMID: 27247849 PMCID: PMC4864175 DOI: 10.1002/brb3.471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects of single-nucleotide polymorphisms (SNPs) on the cognitive function of opioid-treated patients with cancer until now have not been explored, but they could potentially be related to poor functioning. This study aimed at identifying associations between SNPs of candidate genes, high opioid dose, and cognitive dysfunction. METHODS Cross-sectional multicenter study (European Pharmacogenetic Opioid Study, 2005-2008); 1586 patients; 113 SNPs from 41 genes. INCLUSION CRITERIA cancer, age ≥18 year, opioid treatment, and available genetic data. Cognitive assessment by Mini-Mental State Examination (MMSE). ANALYSES SNPs were rejected if violation of Hardy-Weinberg equilibrium (P < 0.0005), or minor allele frequency <5%; patients were randomly divided into discovery sample (2/3 for screening) and validation sample (1/3 for confirmatory test); false discovery rate of 10% for determining associations (Benjamini-Hochberg method). Co-dominant, dominant, and recessive models were analyzed by Kruskal-Wallis and Mann-Whitney tests. RESULTS In the co-dominant model significant associations (P < 0.05) between MMSE scores and SNPs in the HTR3E,TACR1, and IL6 were observed in the discovery sample, but the replication in the validation sample did not confirm it. Associations between MMSE scores among patients receiving ≥400 mg morphine equivalent dose/day and SNPs in TNFRSF1B,TLR5,HTR2A, and ADRA2A were observed, but they could not be confirmed in the validation sample. After correction for multiple testing, no SNPs were significant in the discovery sample. Dominant and recessive models also did not confirm significant associations. CONCLUSIONS The findings did not support influence of those SNPs analyzed to explain cognitive dysfunction in opioid-treated patients with cancer.
Collapse
Affiliation(s)
- Geana Paula Kurita
- Multidisciplinary Pain Centre Department of Neuroanaesthesiology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark; Department of Oncology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Ola Ekholm
- National Institute of Public Health University of Southern Denmark Copenhagen Denmark
| | - Stein Kaasa
- Department of Oncology Oslo University Hospital/University of Oslo Norway; European Palliative Care Research Centre Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Pål Klepstad
- Department of Intensive Care Medicine St Olavs Hospital Trondheim University Hospital Trondheim Norway; Department of Circulation and Medical Imaging Norwegian University of Science and Technology Norway
| | - Frank Skorpen
- Department of Laboratory Medicine Children's and Women's Health Norwegian University of Science and Technology Trondheim Norway
| | - Per Sjøgren
- Section of Palliative Medicine Department of Oncology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark; Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
4
|
Lyall DM, Lopez LM, Bastin ME, Maniega SM, Penke L, Valdés Hernández MDC, Royle NA, Starr JM, Porteous DJ, Wardlaw JM, Deary IJ. ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. Behav Genet 2012; 43:13-23. [PMID: 23229623 DOI: 10.1007/s10519-012-9570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
The non-synonymous mutations arg16gly (rs1042713) and gln27glu (rs1042714) in the adrenergic β-2 receptor gene (ADRB2) have been associated with cognitive function and brain white matter integrity. The current study aimed to replicate these findings and expand them to a broader range of cognitive and brain phenotypes. The sample used is a community-dwelling group of older people, the Lothian Birth Cohort 1936. They had been assessed cognitively at age 11 years, and undertook further cognitive assessments and brain diffusion MRI tractography in older age. The sample size range for cognitive function variables was N = 686-765, and for neuroimaging variables was N = 488-587. Previously-reported findings with these genetic variants did not replicate in this cohort. Novel, nominally significant associations were observed; notably, the integrity of the left arcuate fasciculus mediated the association between rs1042714 and the Digit Symbol Coding test of information processing speed. No significant associations of cognitive and brain phenotypes with ADRB2 variants survived correction for false discovery rate. Previous findings may therefore have been subject to type 1 error. Further study into links between ADRB2, cognitive function and brain white matter integrity is required.
Collapse
Affiliation(s)
- Donald M Lyall
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. Int J Epidemiol 2011; 41:1576-84. [PMID: 22253310 DOI: 10.1093/ije/dyr197] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This cohort profile describes the origins, tracing, recruitment, testing and follow-up of the University of Edinburgh-based Lothian Birth Cohorts of 1921 (LBC1921; N = 550) and 1936 (LBC1936; N = 1091). The participants undertook a general intelligence test at age 11 years and were recruited for these cohorts at mean ages of 79 (LBC1921) and 70 (LBC1936). The LBC1921 have been examined at mean ages of 79, 83, 87 and 90 years. The LBC1936 have been examined at mean ages of 70 and 73 years, and are being seen at 76 years. Both samples have an emphasis on the ageing of cognitive functions as outcomes. As they have childhood intelligence test scores, the cohorts' data have been used to search for determinants of lifetime cognitive changes, and also cognitive change within old age. The cohorts' outcomes also include a range of physical and psycho-social aspects of well-being in old age. Both cohorts have a wide range of variables: genome-wide genotyping, demographics, psycho-social and lifestyle factors, cognitive functions, medical history and examination, and biomarkers (from blood and urine). The LBC1936 participants also have a detailed structural magnetic resonance imaging (MRI) brain scan. A range of scientific findings is described, to illustrate the possible uses of the cohorts.
Collapse
Affiliation(s)
- Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK.
| | | | | | | |
Collapse
|
6
|
Harris SE, Deary IJ. The genetics of cognitive ability and cognitive ageing in healthy older people. Trends Cogn Sci 2011; 15:388-94. [PMID: 21840749 DOI: 10.1016/j.tics.2011.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/01/2023]
Abstract
Determining the genetic influences on cognitive ability in old age and in cognitive ageing are important areas of research in an increasingly ageing society. Heritability studies indicate that genetic variants strongly influence cognitive ability differences throughout the lifespan, including in old age. To date, however, only the genes encoding apolipoprotein E (APOE) and possibly catechol-O-methyl transferase (COMT), brain-derived neurotrophic factor (BDNF) and dystrobrevin binding protein 1 (DTNBP1) have repeatedly been associated in candidate gene studies with cognitive decline or with cognitive ability in older individuals. Genome-wide association studies have identified further potential loci, but results are tentative. Advances in exome and/or whole-genome sequencing, transcriptomics, proteomics and methylomics hold significant promise for uncovering the genetic underpinnings of cognitive ability and decline in old age.
Collapse
Affiliation(s)
- Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Medical Genetics Section, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | |
Collapse
|
7
|
van Soelen ILC, Brouwer RM, van Leeuwen M, Kahn RS, Hulshoff Pol HE, Boomsma DI. Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Res Hum Genet 2011; 14:119-28. [PMID: 21425893 DOI: 10.1375/twin.14.2.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The longitudinal stability of IQ is well-documented as is its increasing heritability with age. In a longitudinal twin study, we addressed the question to what extent heritability and stability differ for full scale (FSIQ), verbal (VIQ), and performance IQ (PIQ) in childhood (age 9-11 years), and early adolescence (age 12-14 years). Genetic and environmental influences and correlations over time were evaluated in an extended twin design, including Dutch twins and their siblings. Intelligence was measured by the Wechsler Intelligence Scale for children - Third version (WISC III). Heritability in childhood was 34% for FSIQ, 37% for VIQ, and 64% for PIQ, and increased up to 65%, 51%, and 72% in early adolescence. The influence of common environment decreased between childhood and early adolescence from explaining 43% of the phenotypic variance for FSIQ to 18% and from 42% for VIQ to 26%. For PIQ common environmental influences did not play a role, either in childhood or in early adolescence. The stability in FSIQ and VIQ across the 3-year interval (r(p)) was .72 for both measures and was explained by genetic and common environmental correlations across time (FSIQ, r(g) = .96, r(c) = 1.0; VIQ, r(g) =.78, r(c) = 1.0). Stability of PIQ (r(p) =.56) was lower and was explained by genetic influences (r(g) = .90). These results confirm the robust findings of increased heritability of general cognitive abilities during the transition from childhood to adolescence. Interestingly, results for PIQ differ from those for FSIQ and VIQ, in that no significant contribution of environment shared by siblings from the same family was detected.
Collapse
Affiliation(s)
- Inge L C van Soelen
- Department of Biological Psychology, VU University Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
9
|
Wills C. Genetic and Phenotypic Consequences of Introgression Between Humans and Neanderthals. ADVANCES IN GENETICS 2011; 76:27-54. [DOI: 10.1016/b978-0-12-386481-9.00002-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Konopka G, Geschwind DH. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior. Neuron 2010; 68:231-44. [PMID: 20955931 DOI: 10.1016/j.neuron.2010.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 01/01/2023]
Abstract
The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of nontraditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain was built upon. Furthermore, these integrative approaches should provide important insights into human diseases.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
11
|
Abstract
The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway.
| | | |
Collapse
|
12
|
Abstract
Patterns and risks of human disease have evolved. In this article, I review evidence regarding the importance of recent adaptive evolution, positive selection, and genomic conflicts in shaping the genetic and phenotypic architectures of polygenic human diseases. Strong recent selection in human populations can create and maintain genetically based disease risk primarily through three processes: increased scope for dysregulation from recent human adaptations, divergent optima generated by intraspecific genomic conflicts, and transient or stable deleterious by-products of positive selection caused by antagonistic pleiotropy, ultimately due to trade-offs at the levels of molecular genetics, development, and physiology. Human disease due to these processes appears to be concentrated in three sets of phenotypes: cognition and emotion, reproductive traits, and life-history traits related to long life-span. Diverse, convergent lines of evidence suggest that a small set of tissues whose pleiotropic patterns of gene function and expression are under especially strong selection-brain, placenta, testis, prostate, breast, and ovary-has mediated a considerable proportion of disease risk in modern humans.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University, Burnaby, B. C., Canada V5A 1S6.
| |
Collapse
|
13
|
Kulminski AM, Culminskaya I, Ukraintseva SV, Arbeev KG, Land KC, Yashin AI. Beta2-adrenergic receptor gene polymorphisms as systemic determinants of healthy aging in an evolutionary context. Mech Ageing Dev 2010; 131:338-45. [PMID: 20399803 PMCID: PMC2895994 DOI: 10.1016/j.mad.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/25/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The Gln(27)Glu polymorphism but not the Arg(16)Gly polymorphism of the beta2-adrenergic receptor (ADRB2) gene appears to be associated with a broad range of aging-associated phenotypes, including cancers at different sites, myocardial infarction (MI), intermittent claudication (IC), and overall/healthy longevity in the Framingham Heart Study Offspring cohort. The Gln(27)Gln genotype increases risks of cancer, MI and IC, whereas the Glu(27) allele or, equivalently, the Gly(16)Glu(27) haplotype tends to be protective against these diseases. Genetic associations with longevity are of opposite nature at young-old and oldest-old ages highlighting the phenomenon of antagonistic pleiotropy. The mechanism of antagonistic pleiotropy is associated with an evolutionary-driven advantage of carriers of a derived Gln(27) allele at younger ages and their survival disadvantage at older ages as a result of increased risks of cancer, MI and IC. The ADRB2 gene can play an important systemic role in healthy aging in evolutionary context that warrants exploration in other populations.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Center for Population Health and Aging, Duke University Population Research Institute, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
14
|
White matter integrity in the splenium of the corpus callosum is related to successful cognitive aging and partly mediates the protective effect of an ancestral polymorphism in ADRB2. Behav Genet 2010; 40:146-56. [PMID: 20087642 DOI: 10.1007/s10519-009-9318-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
Abstract
It has recently been reported that the evolutionarily ancestral alleles of two functional polymorphisms in the beta(2)-adrenergic receptor gene (ADRB2) were related to higher cognitive ability in the 70 year old participants of the Lothian Birth Cohort 1936 (LBC1936). One emerging important factor in cognitive aging is the integrity of white matter tracts in the brain. Here, we used diffusion tensor MRI-based tractography to assess the integrity of eight white matter tracts in a subsample of the LBC1936. Higher integrity of the splenium of the corpus callosum predicted better cognitive ability in old age, even after controlling for IQ at age 11. Also, the ancestral allele of one ADRB2 SNP was associated with both splenium integrity and better cognitive aging. While the effects of the SNP and splenium integrity on cognitive aging were largely independent, there was some evidence for a partial mediation effect of ADRB2 status via splenium integrity.
Collapse
|
15
|
Payton A. The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychol Rev 2009; 19:451-77. [DOI: 10.1007/s11065-009-9116-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
|
16
|
Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126:215-32. [PMID: 19294424 DOI: 10.1007/s00439-009-0655-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/08/2009] [Indexed: 02/07/2023]
Abstract
Individual differences in intelligence (cognitive abilities) are a prominent aspect of human psychology, and play a substantial role in influencing important life outcomes. Their phenotypic structure-as described by the science of psychometrics-is well understood and well replicated. Approximately half of the variance in a broad range of cognitive abilities is accounted by a general cognitive factor (g), small proportions of cognitive variance are caused by separable broad domains of mental function, and the substantial remainder is caused by variance that is unique to highly specific cognitive skills. The heritability of g is substantial. It increases from a low value in early childhood of about 30%, to well over 50% in adulthood, which continues into old age. Despite this, there is still almost no replicated evidence concerning the individual genes, which have variants that contribute to intelligence differences. Here, we describe the human intelligence phenotype, summarise the evidence for its heritability, provide an overview of and comment on molecular genetic studies, and comment on future progress in the field.
Collapse
Affiliation(s)
- Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, Scotland, UK.
| | | | | |
Collapse
|