1
|
Asbury S, Lai JKY, Rilett KC, Haqqee Z, Darwin BC, Ellegood J, Lerch JP, Foster JA. Host genetics maps to behaviour and brain structure in developmental mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:1. [PMID: 39748372 PMCID: PMC11697848 DOI: 10.1186/s12993-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age. The influence of genetics, sex, and early life stress on behaviour and neuroanatomy was determined using traditional statistical and machine learning methods. Analytical results demonstrated that neuroanatomical diversity was primarily associated with genotype whereas behavioural phenotypic diversity was observed to be more susceptible to gene-environment variation. We describe a standardized mouse phenotyping pipeline, termed the Developmental Behavioural Milestones (DBM) Pipeline released alongside the 1000 Mouse Developmental Behavioural Milestones (1000 Mouse DBM) database to institute a novel framework for reproducible interventional neuroscience research.
Collapse
Affiliation(s)
- Sarah Asbury
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Y Lai
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kelly C Rilett
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Zeeshan Haqqee
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- Research Institute at St. Joe's Hamilton, Hamilton, ON, Canada.
- Center for Depression Research and Clinical Care, Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Boyboy BAG, Ichiyanagi K. Insertion of short L1 sequences generates inter-strain histone acetylation differences in the mouse. Mob DNA 2024; 15:11. [PMID: 38730323 PMCID: PMC11084082 DOI: 10.1186/s13100-024-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gene expression divergence between populations and between individuals can emerge from genetic variations within the genes and/or in the cis regulatory elements. Since epigenetic modifications regulate gene expression, it is conceivable that epigenetic variations in cis regulatory elements can also be a source of gene expression divergence. RESULTS In this study, we compared histone acetylation (namely, H3K9ac) profiles in two mouse strains of different subspecies origin, C57BL/6 J (B6) and MSM/Ms (MSM), as well as their F1 hybrids. This identified 319 regions of strain-specific acetylation, about half of which were observed between the alleles of F1 hybrids. While the allele-specific presence of the interferon regulatory factor 3 (IRF3) binding sequence was associated with allele-specific histone acetylation, we also revealed that B6-specific insertions of a short 3' fragment of LINE-1 (L1) retrotransposon occur within or proximal to MSM-specific acetylated regions. Furthermore, even in hyperacetylated domains, flanking regions of non-polymorphic 3' L1 fragments were hypoacetylated, suggesting a general activity of the 3' L1 fragment to induce hypoacetylation. Indeed, we confirmed the binding of the 3' region of L1 by three Krüppel-associated box domain-containing zinc finger proteins (KZFPs), which interact with histone deacetylases. These results suggest that even a short insertion of L1 would be excluded from gene- and acetylation-rich regions by natural selection. Finally, mRNA-seq analysis for F1 hybrids was carried out, which disclosed a link between allele-specific promoter/enhancer acetylation and gene expression. CONCLUSIONS This study disclosed a number of genetic changes that have changed the histone acetylation levels during the evolution of mouse subspecies, a part of which is associated with gene expression changes. Insertions of even a very short L1 fragment can decrease the acetylation level in their neighboring regions and thereby have been counter-selected in gene-rich regions, which may explain a long-standing mystery of discrete genomic distribution of LINEs and SINEs.
Collapse
Affiliation(s)
- Beverly Ann G Boyboy
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Imai Y, Tanave A, Matsuyama M, Koide T. Efficient genome editing in wild strains of mice using the i-GONAD method. Sci Rep 2022; 12:13821. [PMID: 35970947 PMCID: PMC9378668 DOI: 10.1038/s41598-022-17776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Wild mouse strains have been used for many research studies, because of the high level of inter-strain genetic and phenotypic variations in them, in addition to the characteristic phenotype maintained from wild mice. However, since application of the current genetic engineering method on wild strains is not easy, there are limited studies that have attempted to apply gene modification techniques in wild strains. Recently, i-GONAD, a new method for genome editing that does not involve any ex vivo manipulation of unfertilized or fertilized eggs has been reported. We applied i-GONAD method for genome editing on a series of wild strains and showed that genome editing is efficiently possible using this method. We successfully made genetically engineered mice in seven out of the nine wild strains. Moreover, we believe that it is still possible to apply milder conditions and improve the efficiencies for the remaining two strains. These results will open avenues for studying the genetic basis of various phenotypes that are characteristic to wild strains. Furthermore, applying i-GONAD will be also useful for other mouse resources in which genetic manipulation is difficult using the method of microinjection into fertilized eggs.
Collapse
Affiliation(s)
- Yuji Imai
- grid.288127.60000 0004 0466 9350Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Akira Tanave
- grid.508743.dLaboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, 565-0871 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, Okayama, 701-0202 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan.
| |
Collapse
|
4
|
Lombardo B, Pagani M, De Rosa A, Nunziato M, Migliarini S, Garofalo M, Terrile M, D’Argenio V, Galbusera A, Nuzzo T, Ranieri A, Vitale A, Leggiero E, Di Maio A, Barsotti N, Borello U, Napolitano F, Mandarino A, Carotenuto M, Heresco-Levy U, Pasqualetti M, Malatesta P, Gozzi A, Errico F, Salvatore F, Pastore L, Usiello A. D-aspartate oxidase gene duplication induces social recognition memory deficit in mice and intellectual disabilities in humans. Transl Psychiatry 2022; 12:305. [PMID: 35915065 PMCID: PMC9343392 DOI: 10.1038/s41398-022-02088-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.
Collapse
Affiliation(s)
- Barbara Lombardo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Marco Pagani
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Arianna De Rosa
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marcella Nunziato
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Migliarini
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Martina Garofalo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Marta Terrile
- grid.5606.50000 0001 2151 3065Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, 16132 Genoa, Italy ,grid.496862.70000 0004 0544 6263Present Address: Novartis Ireland ltd, D04A9N6 Dublin 4, Ireland
| | - Valeria D’Argenio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, Università San Raffaele, 00166 Rome, Italy
| | - Alberto Galbusera
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Nuzzo
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.9841.40000 0001 2200 8888Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Annaluisa Ranieri
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Andrea Vitale
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Eleonora Leggiero
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Anna Di Maio
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Noemi Barsotti
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Francesco Napolitano
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Alessandra Mandarino
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Marco Carotenuto
- grid.9841.40000 0001 2200 8888Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Uriel Heresco-Levy
- grid.414060.70000 0004 0470 6676Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, 9190501 Jerusalem, Israel ,grid.9619.70000 0004 1937 0538Hadassah Medical School, Hebrew University, 9190501 Jerusalem, Israel
| | - Massimo Pasqualetti
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy ,grid.5395.a0000 0004 1757 3729Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
| | - Paolo Malatesta
- grid.5606.50000 0001 2151 3065Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Alessandro Gozzi
- grid.25786.3e0000 0004 1764 2907Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Francesco Errico
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro modelli animali (Federico II, 80131, Naples; Tor Vergata, Rome and "G. D'Annunzio", Chieti-Pescara), Naples, Italy.
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy.
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145, Naples, Italy. .,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
5
|
Okumura K, Saito M, Wakabayashi Y. A wild-derived inbred mouse strain, MSM/Ms, provides insights into novel skin tumor susceptibility genes. Exp Anim 2021; 70:272-283. [PMID: 33776021 PMCID: PMC8390311 DOI: 10.1538/expanim.21-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex
interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis
of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased
susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous
reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here,
we review mapped Stmm (skintumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances
in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene
(DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Megumi Saito
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Yuichi Wakabayashi
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| |
Collapse
|
6
|
Arakawa T. Possibility of Autonomous Estimation of Shiba Goat’s Estrus and Non-Estrus Behavior by Machine Learning Methods. Animals (Basel) 2020; 10:ani10050771. [PMID: 32365596 PMCID: PMC7278493 DOI: 10.3390/ani10050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.
Collapse
Affiliation(s)
- Toshiya Arakawa
- Department of Mechanical Systems Engineering, Aichi University of Technology, Gamagori-shi, Aichi 443-0047, Japan
| |
Collapse
|
7
|
Knoll AT, Jiang K, Levitt P. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12431. [PMID: 29052939 PMCID: PMC5910301 DOI: 10.1111/gbb.12431] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability.
Collapse
Affiliation(s)
- A. T. Knoll
- Program in Developmental NeurogeneticsInstitute for the Developing Mind, The Saban Research Institute, Children’s Hospital Los AngelesLos AngelesCA
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - K. Jiang
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - P. Levitt
- Program in Developmental NeurogeneticsInstitute for the Developing Mind, The Saban Research Institute, Children’s Hospital Los AngelesLos AngelesCA
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
8
|
Abstract
The identification of genes affecting sociality can give insights into the maintenance and development of sociality and personality. In this study, we used the combination of an advanced intercross between wild and domestic chickens with a combined QTL and eQTL genetical genomics approach to identify genes for social reinstatement, a social and anxiety-related behavior. A total of 24 social reinstatement QTL were identified and overlaid with over 600 eQTL obtained from the same birds using hypothalamic tissue. Correlations between overlapping QTL and eQTL indicated five strong candidate genes, with the gene TTRAP being strongly significantly correlated with multiple aspects of social reinstatement behavior, as well as possessing a highly significant eQTL.
Collapse
|
9
|
Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains. G3-GENES GENOMES GENETICS 2017; 7:3449-3457. [PMID: 28855285 PMCID: PMC5633393 DOI: 10.1534/g3.117.300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.
Collapse
|
10
|
Arakawa T, Tanave A, Takahashi A, Kakihara S, Koide T, Tsuchiya T. Automated Estimation of Mouse Social Behaviors Based on a Hidden Markov Model. Methods Mol Biol 2017; 1552:185-197. [PMID: 28224500 DOI: 10.1007/978-1-4939-6753-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent innovations in sensing and Information and Communication Technology (ICT) have enabled researchers in animal behavior to collect an enormous amount of data. Consequently, the development of an automated system to substitute for some of the observations and analyses that are performed currently by expert researchers is becoming a crucial issue so that the vast amount of accumulated data can be processed efficiently. For this purpose, we introduce a process for the automated classification of the social interactive status of two mice in a square field on the basis of a Hidden Markov model (HMM). We developed two models: one for the classification of two states, namely, indifference and interaction, and the other for three states, namely, indifference, sniffing, and following. The HMM was trained with data from 50 pairs of mice as provided by expert human observers. We measured the performance of the HMM by determining its rate of concordance with human observation. We found that sniffing behavior was segmented well by the HMM; however, following behavior was not segmented well by the HMM in terms of percentage concordance. We also developed software called DuoMouse, an automated system for the classification of social interactive behavior of mice, that was based on the HMM. Finally, we compared two implementations of the HMM that were based on a histogram and a Gaussian mixture model.
Collapse
Affiliation(s)
- Toshiya Arakawa
- Department of Mechanical Systems Engineering, Aichi University of Technology, Gamagori, Aichi, 443-0047, Japan.
| | - Akira Tanave
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, 105-0001, Japan.,Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, 411-8540, Japan
| | - Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, 411-8540, Japan.,Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Satoshi Kakihara
- Formerly National Graduate, Institute for Policy Studies, Minato-ku, Tokyo, 106-8677, Japan
| | - Tsuyoshi Koide
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, 105-0001, Japan.,Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Tsuchiya
- National Graduate Institute for Policy Studies, Minato-ku, Tokyo, 106-8677, Japan.,The Institute of Statistical Mathematics, Tachikawa, Tokyo, 190-8562, Japan
| |
Collapse
|
11
|
Panksepp JB, Rodriguez ED, Ryabinin AE. Sweetened ethanol drinking during social isolation: enhanced intake, resistance to genetic heterogeneity and the emergence of a distinctive drinking pattern in adolescent mice. GENES BRAIN AND BEHAVIOR 2016; 16:369-383. [PMID: 27706910 DOI: 10.1111/gbb.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/15/2023]
Abstract
With its ease of availability during adolescence, sweetened ethanol ('alcopops') is consumed within many contexts. We asked here whether genetically based differences in social motivation are associated with how the adolescent social environment impacts voluntary ethanol intake. Mice with previously described differences in sociability (BALB/cJ, C57BL/6J, FVB/NJ and MSM/MsJ strains) were weaned into isolation or same-sex pairs (postnatal day, PD, 21), and then given continuous access to two fluids on PDs 34-45: one containing water and the other containing an ascending series of saccharin-sweetened ethanol (3-6-10%). Prior to the introduction of ethanol (PDs 30-33), increased water and food intake was detected in some of the isolation-reared groups, and controls indicated that isolated mice also consumed more 'saccharin-only' solution. Voluntary drinking of 'ethanol-only' was also higher in a subset of the isolated groups on PDs 46-49. However, sweetened ethanol intake was increased in all isolated strain × sex combinations irrespective of genotype. Surprisingly, blood ethanol concentration (BEC) was not different between these isolate and socially housed groups 4 h into the dark phase. Using lickometer-based measures of intake in FVB mice, we identified that a predominance of increased drinking during isolation transpired outside of the typical circadian consumption peak, occurring ≈8.5 h into the dark phase, with an associated difference in BEC. These findings collectively indicate that isolate housing leads to increased consumption of rewarding substances in adolescent mice independent of their genotype, and that for ethanol this may be because of when individuals drink during the circadian cycle.
Collapse
Affiliation(s)
- J B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
12
|
Endo N, Rahayu LP, Arakawa T, Tanaka T. Video tracking analysis of behavioral patterns during estrus in goats. J Reprod Dev 2015; 62:115-9. [PMID: 26560676 PMCID: PMC4768785 DOI: 10.1262/jrd.2015-118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report a new method for measuring behavioral patterns during estrus in goats based on video
tracking analysis. Data were collected from cycling goats, which were in estrus (n = 8) or not in estrus (n =
8). An observation pen (2.5 m × 2.5 m) was set up in the corner of the female paddock with one side adjacent
to a male paddock. The positions and movements of goats were tracked every 0.5 sec for 10 min by using a video
tracking software, and the trajectory data were used for the analysis. There were no significant differences
in the durations of standing and walking or the total length of movement. However, the number of approaches to
a male and the duration of staying near the male were higher in goats in estrus than in goats not in estrus.
The proposed evaluation method may be suitable for detailed monitoring of behavioral changes during estrus in
goats.
Collapse
Affiliation(s)
- Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
13
|
Takahashi A, Sugimoto H, Kato S, Shiroishi T, Koide T. Mapping of Genetic Factors That Elicit Intermale Aggressive Behavior on Mouse Chromosome 15: Intruder Effects and the Complex Genetic Basis. PLoS One 2015; 10:e0137764. [PMID: 26389588 PMCID: PMC4577130 DOI: 10.1371/journal.pone.0137764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
Despite high estimates of the heritability of aggressiveness, the genetic basis for individual differences in aggression remains unclear. Previously, we showed that the wild-derived mouse strain MSM/Ms (MSM) exhibits highly aggressive behaviors, and identified chromosome 15 (Chr 15) as the location of one of the genetic factors behind this escalated aggression by using a panel of consomic strains of MSM in a C57BL/6J (B6) background. To understand the genetic effect of Chr 15 derived from MSM in detail, this study examined the aggressive behavior of a Chr 15 consomic strain towards different types of opponent. Our results showed that both resident and intruder animals had to have the same MSM Chr 15 genotype in order for attack bites to increase and attack latency to be reduced, whereas there was an intruder effect of MSM Chr 15 on tail rattle behavior. To narrow down the region that contains the genetic loci involved in the aggression-eliciting effects on Chr 15, we established a panel of subconsomic strains of MSM Chr 15. Analysis of these strains suggested the existence of multiple genes that enhance and suppress aggressive behavior on Chr 15, and these loci interact in a complex way. Regression analysis successfully identified four genetic loci on Chr 15 that influence attack latency, and one genetic locus that partially elicits aggressive behaviors was narrowed down to a 4.1-Mbp region (from 68.40 Mb to 72.50 Mb) on Chr 15.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
| | - Hiroki Sugimoto
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shogo Kato
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
| | - Toshihiko Shiroishi
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- Mammalian Genetics Laboratory, NIG, Mishima, Shizuoka, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Campbell JM, Carter PA, Wheeler PA, Thorgaard GH. Aggressive behavior, brain size and domestication in clonal rainbow trout lines. Behav Genet 2015; 45:245-54. [PMID: 25647468 DOI: 10.1007/s10519-014-9696-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/22/2014] [Indexed: 11/25/2022]
Abstract
Domestication causes behavior and brain size changes in many species. We addressed three questions using clonal rainbow trout lines: What are the mirror-elicited aggressive tendencies in lines with varying degrees of domestication? How does brain size relate to genotype and domestication level? Finally, is there a relationship between aggressive behavior and brain size? Clonal lines, although sampling a limited subset of the species variation, provide us with a reproducible experimental system with which we can develop hypotheses for further research. We performed principal component analyses on 12 continuous behavior and brain/body size variables and one discrete behavioral variable ("yawn") and detected several aggression syndromes. Two behaviors, "freeze" and "escape", associated with high domestication; "display" and "yawn" behavior associated with wild lines and "swim against the mirror" behavior associated with semi-wild and domestic lines. Two brain size traits, total brain and olfactory volume, were significantly related to domestication level when taking total body size into account, with domesticated lines having larger total brain volume and olfactory regions. The aggression syndromes identified indicate that future QTL mapping studies on domestication-related traits would likely be fruitful.
Collapse
Affiliation(s)
- Janet M Campbell
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | | | | | | |
Collapse
|
15
|
Lee YA, Goto Y. Prefrontal cortical dopamine from an evolutionary perspective. Neurosci Bull 2015; 31:164-74. [PMID: 25617024 DOI: 10.1007/s12264-014-1499-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/28/2014] [Indexed: 01/12/2023] Open
Abstract
In this article, we propose the hypothesis that the prefrontal cortex (PFC) acquired neotenic development as a consequence of mesocortical dopamine (DA) innervation, which in turn drove evolution of the PFC into becoming a complex functional system. Accordingly, from the evolutionary perspective, decreased DA signaling in the PFC associated with such adverse conditions as chronic stress may be considered as an environmental adaptation strategy. Psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder may also be understood as environmental adaptation or a by-product of such a process that has emerged through evolution in humans. To investigate the evolutionary perspective of DA signaling in the PFC, domestic animals such as dogs may be a useful model.
Collapse
Affiliation(s)
- Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, South Korea
| | | |
Collapse
|
16
|
Arakawa T, Tanave A, Ikeuchi S, Takahashi A, Kakihara S, Kimura S, Sugimoto H, Asada N, Shiroishi T, Tomihara K, Tsuchiya T, Koide T. A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware. J Neurosci Methods 2014; 234:127-34. [DOI: 10.1016/j.jneumeth.2014.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
17
|
Takahashi A, Shiroishi T, Koide T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes. Front Neurosci 2014; 8:156. [PMID: 24966813 PMCID: PMC4052355 DOI: 10.3389/fnins.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The Japanese wild-derived mouse strain MSM/Ms (MSM) retains a wide range of traits related to behavioral wildness, including high levels of emotionality and avoidance of humans. In this study, we observed that MSM showed a markedly higher level of aggression than the standard laboratory strain C57BL/6J. Whereas almost all MSM males showed high frequencies of attack bites and pursuit in the resident-intruder test, only a few C57BL/6J males showed aggressive behaviors, with these behaviors observed at only a low frequency. Sexually mature MSM males in their home cages killed their littermates, or sometimes female pair-mates. To study the genetic and neurobiological mechanisms that underlie the escalated aggression observed in MSM mice, we analyzed reciprocal F1 crosses and five consomic strains of MSM (Chr 4, 13, 15, X and Y) against the background of C57BL/6J. We identified two chromosomes, Chr 4 and Chr 15, which were involved in the heightened aggression observed in MSM. These chromosomes had different effects on aggression: whereas MSM Chr 15 increased agitation and initiation of aggressive events, MSM Chr 4 induced a maladaptive level of aggressive behavior. Expression analysis of mRNAs of serotonin receptors, serotonin transporter and Tph2, an enzyme involved in serotonin synthesis in seven brain areas, indicated several differences among MSM, C57BL/6J, and their consomic strains. We found that Tph2 expression in the midbrain was increased in the Chr 4 consomic strain, as well as in MSM, and that there was a strong positive genetic correlation between aggressive behavior and Tph2 expression at the mRNA level. Therefore, it is possible that increased expression of the Tph2 gene is related to escalated aggression observed in MSM.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| | - Toshihiko Shiroishi
- Department of Genetics, SOKENDAI Mishima, Japan ; Mammalian Genetics Laboratory, National Institute of Genetics (NIG) Mishima, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| |
Collapse
|
18
|
Segregation of a QTL cluster for home-cage activity using a new mapping method based on regression analysis of congenic mouse strains. Heredity (Edinb) 2014; 113:416-23. [PMID: 24781804 PMCID: PMC4220717 DOI: 10.1038/hdy.2014.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023] Open
Abstract
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs.
Collapse
|
19
|
FMRI and fcMRI phenotypes map the genomic effect of chromosome 13 in Brown Norway and Dahl salt-sensitive rats. Neuroimage 2014; 90:403-12. [DOI: 10.1016/j.neuroimage.2013.09.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023] Open
|
20
|
Gene-trap mutagenesis using Mol/MSM-1 embryonic stem cells from MSM/Ms mice. Mamm Genome 2013; 24:228-39. [DOI: 10.1007/s00335-013-9452-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 12/12/2022]
|
21
|
Takahashi A, Miczek KA. Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 2013; 17:3-44. [PMID: 24318936 DOI: 10.1007/7854_2013_263] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals' survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques, e.g., immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here, we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), excitatory and inhibitory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie individual differences in aggression, using the so-called forward genetics approach.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, (NIG), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan,
| | | |
Collapse
|
22
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
23
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
24
|
Koide T, Ikeda K, Ogasawara M, Shiroishi T, Moriwaki K, Takahashi A. A new twist on behavioral genetics by incorporating wild-derived mouse strains. Exp Anim 2011; 60:347-54. [PMID: 21791874 DOI: 10.1538/expanim.60.347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Behavior has been proven to be extremely variable among human individuals. One of the most important factors for such variations of behavior is genetic diversity. A variety of mouse strains are reportedly suitable animal models for investigating the genetic basis of large individual differences in behavior. Laboratory strains have been shown to exhibit different behavioral traits due to variations in their genetic background. However, they show low-level genetic polymorphism because the original colony used for establishing the strains comprises a relatively small number of mice. Furthermore, because the laboratory strains were derived from fancy mice, they have lost the original behavioral phenotype of wild mice. Therefore, incorporation of inbred strains derived from wild mice of different mouse subspecies for behavioral studies is a marked advantage. In the long-term process of establishing a variety of wild-derived inbred strains from wild mice captured all over the world, a number of strains have been established. We previously identified a marked variety in behavioral traits using a Mishima battery. This review reports on the usefulness of wild-derived strains for genetic analyses of behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Nishi A, Ishii A, Takahashi A, Shiroishi T, Koide T. QTL analysis of measures of mouse home-cage activity using B6/MSM consomic strains. Mamm Genome 2010; 21:477-85. [PMID: 20886216 PMCID: PMC2974199 DOI: 10.1007/s00335-010-9289-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 11/09/2022]
Abstract
The activity of mice in their home cage is influenced greatly by the cycle of light and dark. In addition, home-cage activity shows remarkable time-dependent changes that result in a prominent temporal pattern. The wild-derived mouse strain MSM/Ms (MSM) exhibits higher total activity in the home cage than does C57BL/6 (B6), a commonly used laboratory strain. In addition, there is a clear strain difference in the temporal pattern of home-cage activity. This study aimed to clarify the genetic basis of strain differences in the temporal pattern of home-cage activity between MSM and B6. Through the comparison of temporal patterns of home-cage activity between B6 and MSM, the pattern can be classified into five temporal components: (1) resting phase, (2) anticipation phase, (3) 1st phase, (4) 2nd phase, and (5) 3rd phase. To identify quantitative trait loci (QTLs) involved in these temporal components, we used consomic strains established from crosses between B6 and MSM. Five consomic strains, for Chrs 2T (telomere), 3, 4, 13, and 14, showed significantly higher total activity than B6. In contrast, the consomic strains of Chrs 6C (centromere), 7T, 9, 11, and 15 were less active than B6. This indicates that multigenic factors regulate the total activity. Further analysis showed an impact of QTLs on the temporal components of home-cage activity. The present data showed that each temporal component was regulated by different combinations of multigenic factors, with some overlap. These temporal component-related QTLs are important to understand fully the genetic mechanisms that underlie home-cage activity.
Collapse
Affiliation(s)
- Akinori Nishi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-0801, Japan
| | | | | | | | | |
Collapse
|
26
|
Dowse H, Umemori J, Koide T. Ultradian components in the locomotor activity rhythms of the genetically normal mouse, Mus musculus. J Exp Biol 2010; 213:1788-95. [DOI: 10.1242/jeb.038877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ultradian periodicities in physiological processes have been reported for a wide variety of organisms and may appear as bouts in locomotor activity. In some instances, this temporal organization can be related to some ethological strategy. In mice, however, ultradian rhythms have been reported largely in animals with circadian pacemakers disrupted either by genetic or surgical manipulation. Using analysis techniques capable of resolving periodicities in the ultradian range in the presence of strong diel periodicity, we found unequivocal evidence of ultradian rhythms in mice entrained to an light:dark cycle. We collected locomotor activity data of individuals from 11 genetically disparate strains of mice whose activity was recorded in 12 h:12 h L:D photoperiods for 3 days. Data were subjected to maximum entropy spectral analysis and autocorrelation, both before and after filtering to remove the 24-h periodicity. We found that every strain had a majority of individuals with strong ultradian rhythms ranging from ~3 to ~5 h. These periodicities were commonly visible in individual animals both in high-pass-filtered and in unfiltered data. Furthermore, when all raw data from a given strain were pooled to get a 24-h ensemble average across all animals and days, the rhythms continued to be discernable. We fitted Fourier series to these form estimates to model the frequency structure of each strain and found significant effects of strain and an interaction between period and strain indicating significant genetic variation for rhythmicity in the ultradian range. The techniques employed in this study should have wider use in a range of organisms and fields.
Collapse
Affiliation(s)
- Harold Dowse
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | - Juzoh Umemori
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|