1
|
Baud O, Knoop M. [Oxytocin as a neuroprotective strategy in neonates: concept and preclinical evidence]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:418-424. [PMID: 38145743 DOI: 10.1016/j.gofs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Prematurity and intra-uterine growth retardation are responsible for brain damage associated with various neurocognitive and behavioral disorders in more than 9 million children each year. Most pharmacological strategies aimed at preventing perinatal brain injury have not demonstrated substantial clinical benefits so far. In contrast, enrichment of the newborn's environment appears to have positive effects on brain structure and function, influences newborn hormonal responses, and has lasting neurobehavioral consequences during infancy and adulthood. Oxytocin (OT), a neuropeptide released by the hypothalamus, may represent the hormonal basis for these long-term effects. METHOD This review of the literature summarizes the knowledge concerning the effect of OT in the newborn and the preclinical data supporting its neuroprotective effect. RESULTS OT plays a role during the perinatal period, in parent-child attachment and in social behavior. Furthermore, preclinical studies strongly suggest that endogenous and synthetic OT is capable of regulating the inflammatory response of the central nervous system in response to situations of prematurity or more generally insults to the developing brain. The long-term effect of synthetic OT administration during labor is also discussed. CONCLUSION All the conceptual and experimental data converge to indicate that OT would be a promising candidate for neonatal neuroprotection, in particular through the regulation of neuroinflammation.
Collapse
Affiliation(s)
- Olivier Baud
- Laboratoire du développement, Université de Genève, Genève, Suisse; Inserm U1141, Université Paris Cité, Paris, France; Service de Soins Intensifs Pédiatriques et Néonatologie, Hôpitaux Universitaires de Genève, Genève, Suisse.
| | - Marit Knoop
- Laboratoire du développement, Université de Genève, Genève, Suisse
| |
Collapse
|
2
|
Eid K, Bjørk MH, Gilhus NE, Torkildsen Ø. Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms. Int J Mol Sci 2024; 25:1520. [PMID: 38338799 PMCID: PMC10855716 DOI: 10.3390/ijms25031520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Adverse childhood experiences (ACEs), such as abuse, neglect, and household dysfunction, contribute to long-term systemic toxic stress and inflammation that may last well into adulthood. Such early-life stressors have been associated with increased susceptibility to multiple sclerosis (MS) in observational studies and with the development of experimental autoimmune encephalomyelitis in animal models. In this review, we summarize the evidence for an ACE-mediated increase in MS risk, as well as the potential mechanisms for this association. ACEs dysregulate neurodevelopment, stress responses, and immune reactivity; they also alter the interplay between the immune system and neural networks. All of this may be relevant for MS risk. We further discuss how ACEs induce epigenetic changes and how the toxic stress caused by ACEs may reactivate the Epstein-Barr Virus (EBV), a key risk factor for MS. We conclude by suggesting new initiatives to obtain further insights into this topic.
Collapse
Affiliation(s)
- Karine Eid
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 71, 5053 Bergen, Norway; (M.-H.B.); (N.E.G.)
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
| | - Marte-Helene Bjørk
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 71, 5053 Bergen, Norway; (M.-H.B.); (N.E.G.)
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- NorHead, Norwegian Center for Headache Research, 5021 Bergen, Norway
| | - Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 71, 5053 Bergen, Norway; (M.-H.B.); (N.E.G.)
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
| | - Øivind Torkildsen
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
3
|
Baud O, Knoop M, Jacquens A, Possovre ML. [Oxytocin: a new target for neuroprotection?]. Biol Aujourdhui 2023; 216:145-153. [PMID: 36744980 DOI: 10.1051/jbio/2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 02/07/2023]
Abstract
Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante-/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders affecting more than 9 million children each year. Most pharmacological candidates to prevent perinatal brain damage have failed to demonstrate substantial benefits. In contrast, environment enrichment based on developmental care, skin-to-skin contact and vocal/music exposure appear to exert positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the neonatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. In particular, excessive cortisol release in response to perinatal stress associated with prematurity or IUGR is recognized to induce brain-programming effects and neuroinflammation, a key predictor of subsequent neurological impairments. These deleterious effects are known to be balanced by oxytocin (OT), a neuropeptide released by the hypothalamus, which plays a role during the perinatal period and in social behavior. In addition, preclinical studies suggest that OT is able to regulate the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with developing white matter damage, we recently reported that carbetocin, a brain permeable OT receptor (OTR) agonist, induced a significant reduction of activated microglia, the primary immune cells of the brain. Moreover, this reduced microglia reactivity was associated with long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the mechanisms linking endogenous OT and central inflammation response to injury have not yet been established. Further studies are needed to assess the protective role of OT in the developing brain through modulation of microglial activation, a key feature of brain injury observed in infants born preterm or growth-restricted. They are expected to have several impacts in the near future not only for improving knowledge of microglial cell physiology and reactivity during brain development, but also to design clinical trials testing interventions associated with endogenous OT release as a relevant strategy to alleviate neuroinflammation in neonates.
Collapse
Affiliation(s)
- Olivier Baud
- Laboratoire du développement, Université de Genève, Genève, Suisse - Inserm U1141, Université Paris Cité, 75019 Paris, France - Service de Soins Intensifs Pédiatriques et Néonatologie, Hôpitaux Universitaires de Genève, 30 boulevard de Cluse, 1205 Genève, Suisse
| | - Marit Knoop
- Laboratoire du développement, Université de Genève, Genève, Suisse
| | - Alice Jacquens
- Laboratoire du développement, Université de Genève, Genève, Suisse - Inserm U1141, Université Paris Cité, 75019 Paris, France
| | | |
Collapse
|
4
|
Yang Q, Hu YQ, Zeng ZH, Liu SJ, Wu T, Zhang GH. The Relationship of Family Functioning and Suicidal Ideation among Adolescents: The Mediating Role of Defeat and the Moderating Role of Meaning in Life. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15895. [PMID: 36497966 PMCID: PMC9740712 DOI: 10.3390/ijerph192315895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate the relationship between family functioning and suicidal ideation among adolescents. METHOD A total of 4515 junior and senior high school students were assessed using the Family APGAR, the Depressive Symptom Index-Suicidality Subscale, the Defeat Scale, and the Chinese Meaning in Life Questionnaire. RESULTS This study found pairwise correlations between suicidal ideation, family functioning, defeat, and meaning in life. Specifically, family functioning was an influencing factor of adolescent suicidal ideation, and defeat was a mediator of the relationship between family functioning and adolescent suicidal ideation; meaning in life was found to be a moderator of the first half of the mediation process by defeat, that is, it moderated the influence of family functioning on adolescent defeat. CONCLUSIONS This study demonstrated that the relationship between family functioning and adolescent suicidal ideation, as well as the influence of defeat and meaning in life on this relationship, constituted a moderated intermediary model. This finding has both theoretical and practical value for the implementation of a psychosocial model of adolescent suicide prevention and intervention.
Collapse
Affiliation(s)
- Qin Yang
- School of Education Science, Hunan Normal University, Changsha 410081, China
- School of Pre-School Education, Changsha Normal University, Changsha 410100, China
| | - Yi-Qiu Hu
- School of Education Science, Hunan Normal University, Changsha 410081, China
- School of Psychology, Hainan Normal University, Haikou 571158, China
| | - Zi-Hao Zeng
- School of Education Science, Hunan Normal University, Changsha 410081, China
| | - Shuang-Jin Liu
- School of Education Science, Hunan Normal University, Changsha 410081, China
| | - Tong Wu
- School of Education Science, Hunan Normal University, Changsha 410081, China
| | - Gang-Huai Zhang
- School of Pre-School Education, Changsha Normal University, Changsha 410100, China
| |
Collapse
|
5
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
6
|
Maternal separation leads to regional hippocampal microglial activation and alters the behavior in the adolescence in a sex-specific manner. Brain Behav Immun Health 2021; 9:100142. [PMID: 34589889 PMCID: PMC8474514 DOI: 10.1016/j.bbih.2020.100142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022] Open
Abstract
Early life adversities during childhood (such as maltreatment, abuse, neglect, or parental deprivation) may increase the vulnerability to cognitive disturbances and emotional disorders in both, adolescence and adulthood. Maternal separation (MS) is a widely used model to study stress-related changes in brain and behavior in rodents. In this study, we investigated the effect of MS (postnatal day 2–14, 3 h/day) in both, female and male adolescent mice. Specifically, we evaluated (i) the spatial working memory, anxiety and depressive-like behavior, (ii) the hippocampal synaptic gene expression, and (iii) the hippocampal neuroinflammatory response. Our results show that MS significantly increased depressive-like behavior in adolescent female mice and altered the spatial memory in adolescent male mice. In addition, MS led to decreased expression of genes related to synaptic function (5ht6r, Synaptophysin, and Cox-2) and induced an exacerbated microglial activation in dentate gyrus (DG), CA1, and CA3. However, while the levels of hippocampal inflammatory cytokines were not modified by MS, they did follow a sex-specific expression in adolescent mice. Taken together, our results suggest that MS induces long-term changes in hippocampal microglia and synaptic gene expression, alters the spatial memory, and induces depressive-like behavior in the adolescent mice, in a sex-specific manner. In wildtype adolescent mice (6 weeks of age):Maternal separation alters spatial working memory in males and induces depressive-like behavior in females. Maternal separation changes hippocampal synaptic gene expression. Maternal separation activates microglia in dentate gyrus, CA1, and CA3 but does not affect hippocampal cytokine levels. However, males present higher levels of cytokines compared to females.
Collapse
|
7
|
Zhang Q, Liu F, Yan W, Wu Y, Wang M, Wei J, Wang S, Zhu X, Chai X, Zhao S. Prolonged maternal separation alters neurogenesis and synaptogenesis in postnatal dentate gyrus of mice. Bipolar Disord 2021; 23:376-390. [PMID: 32805776 DOI: 10.1111/bdi.12986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.
Collapse
Affiliation(s)
- Qianru Zhang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Shuzhong Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Han JP, Lee JH, Lee GS, Koo OJ, Yeom SC. Positive Correlation between nNOS and Stress-Activated Bowel Motility Is Confirmed by In Vivo HiBiT System. Cells 2021; 10:1028. [PMID: 33925396 PMCID: PMC8145384 DOI: 10.3390/cells10051028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) has various roles as a neurotransmitter. However, studies to date have produced insufficient data to fully support the correlation between nNOS and bowel motility. This study aimed to investigate the correlation between nNOS expression and gastrointestinal (GI) tract motility using a stress-induced neonatal maternal separation (NMS) mouse model. In this study, we generated a genetically modified mouse with the HiBiT sequence knock-in into the nNOS gene using CRISPR/Cas9 for analyzing accurate nNOS expression. nNOS expression was measured in the stomach, small intestine, large intestine, adrenal gland, and hypothalamus tissues after establishing the NMS model. The NMS model exhibited a significant increase in nNOS expression in large intestine, adrenal gland, and hypothalamus. Moreover, a significant positive correlation was observed between whole gastrointestinal transit time and the expression level of nNOS. We reasoned that NMS induced chronic stress and consequent nNOS activation in the hypothalamic-pituitary-adrenal (HPA) axis, and led to an excessive increase in intestinal motility in the lower GI tract. These results demonstrated that HiBiT is a sensitive and valuable tool for analyzing in vivo gene activation, and nNOS could be a biomarker of the HPA axis-linked lower intestinal tract dysfunction.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Green, Institute of Green BioScience and Technology, Seoul National University, 1447 Pyeongchang-ro, Daewha, Pyeongchang 25354, Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Green, Institute of Green BioScience and Technology, Seoul National University, 1447 Pyeongchang-ro, Daewha, Pyeongchang 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Green, Institute of Green BioScience and Technology, Seoul National University, 1447 Pyeongchang-ro, Daewha, Pyeongchang 25354, Korea
| | - Ok Jae Koo
- Toolgen Inc., Gasan Digital-ro, Geumcheon, Seoul 08594, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Green, Institute of Green BioScience and Technology, Seoul National University, 1447 Pyeongchang-ro, Daewha, Pyeongchang 25354, Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanank, Seoul 08826, Korea
| |
Collapse
|
9
|
Khaw YM, Majid D, Oh S, Kang E, Inoue M. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nat Commun 2021; 12:105. [PMID: 33397973 PMCID: PMC7782805 DOI: 10.1038/s41467-020-20302-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Environmental triggers have important functions in multiple sclerosis (MS) susceptibility, phenotype, and trajectory. Exposure to early life trauma (ELT) has been associated with higher relapse rates in MS patients; however, the underlying mechanisms are not well-defined. Here we show ELT induces mechanistic and phenotypical alterations during experimental autoimmune encephalitis (EAE). ELT sustains downregulation of immune cell adrenergic receptors, which can be attributed to chronic norepinephrine circulation. ELT-subjected mice exhibit interferon-β resistance and neurodegeneration driven by lymphotoxin and CXCR2 involvement. These phenotypic changes are observed in control EAE mice treated with β1 adrenergic receptor antagonist. Conversely, β1 adrenergic receptor agonist treatment to ELT mice abrogates phenotype changes via restoration of immune cell β1 adrenergic receptor function. Our results indicate that ELT alters EAE phenotype via downregulation of β1 adrenergic signaling in immune cells. These results have implications for the effect of environmental factors in provoking disease heterogeneity and might enable prediction of long-term outcomes in MS.
Collapse
Affiliation(s)
- Yee Ming Khaw
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Danish Majid
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign School of Molecular and Cell Biology, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Sungjong Oh
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign School of Molecular and Cell Biology, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Eunjoo Kang
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Makoto Inoue
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Antecedent presentation of neurological phenotypes in the Collaborative Cross reveals four classes with complex sex-dependencies. Sci Rep 2020; 10:7918. [PMID: 32404926 PMCID: PMC7220920 DOI: 10.1038/s41598-020-64862-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Antecedent viral infection may contribute to increased susceptibility to several neurological diseases, such as multiple sclerosis and Parkinson’s disease. Variation in clinical presentations of these diseases is often associated with gender, genetic background, or a combination of these and other factors. The complicated etiologies of these virally influenced diseases are difficult to study in conventional laboratory mouse models, which display a very limited number of phenotypes. We have used the genetically and phenotypically diverse Collaborative Cross mouse panel to examine complex neurological phenotypes after viral infection. Female and male mice from 18 CC strains were evaluated using a multifaceted phenotyping pipeline to define their unique disease profiles following infection with Theiler’s Murine Encephalomyelitis Virus, a neurotropic virus. We identified 4 distinct disease progression profiles based on limb-specific paresis and paralysis, tremors and seizures, and other clinical signs, along with separate gait profiles. We found that mice of the same strain had more similar profiles compared to those of different strains, and also identified strains and phenotypic parameters in which sex played a significant role in profile differences. These results demonstrate the value of using CC mice for studying complex disease subtypes influenced by sex and genetic background. Our findings will be useful for developing novel mouse models of virally induced neurological diseases with heterogenous presentation, an important step for designing personalized, precise treatments.
Collapse
|
11
|
Ferle V, Repouskou A, Aspiotis G, Raftogianni A, Chrousos G, Stylianopoulou F, Stamatakis A. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol Behav 2019; 215:112791. [PMID: 31870943 DOI: 10.1016/j.physbeh.2019.112791] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Exposure to early life stress affects the development and function of the brain and when followed by adversities in adulthood, the negative effects of stress are enhanced. Microglia has been proposed as a potential mediator of this phenomenon. In the present study, we investigated the long-term effects of mild early life stress, the consequences of a stressor in adulthood as well as their interaction on microglial and cytokine (PPARγ, IL-1β and TNFα) levels in the brain of adult male rats. As an early life stress we used a model of maternal neglect, in which the dam is present but non-accessible to the pup for 15 min during postnatal days 10-13; as a stressor in adulthood we exposed animals to chronic social defeat (CSD) for 3 weeks. We determined in the hippocampus, prefrontal cortex and amygdala, the number of Iba-1+ microglial cells, the number of PPARγ+ cells as well as the relative expression of PPARγ, IL-1β and TNFα mRNA by qPCR. Following exposure to CSD, the number of Iba-1+ cells was increased in the hippocampus and the prefrontal cortex of adult animals exposed to mild early life stress, while in the absence of CSD no such difference was observed. Moreover, following CSD PPARγ levels were increased in the hippocampus of adult males exposed as neonates to "maternal neglect". Our findings support the notion that early life stress, even a mild one, primes microglia and enhances its reactivity to a second stressful event, later in life, in accord with the "two-hit" hypothesis.
Collapse
Affiliation(s)
- Vasiliki Ferle
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Anastasia Repouskou
- Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| | - George Aspiotis
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Androniki Raftogianni
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - George Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Aghia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Fotini Stylianopoulou
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| | - Antonios Stamatakis
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
12
|
Zajdel J, Zager A, Blomqvist A, Engblom D, Shionoya K. Acute maternal separation potentiates the gene expression and corticosterone response induced by inflammation. Brain Behav Immun 2019; 77:141-149. [PMID: 30590109 DOI: 10.1016/j.bbi.2018.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023] Open
Abstract
Maternal care is crucial for infants and profoundly affects their responses to different kinds of stressors. Here, we examined how maternal separation affects inflammatory gene expression and the corticosterone response to an acute immune challenge induced by lipopolysaccharide (LPS; 40 µg/kg ip) in mouse pups, 8-9 days old. Maternal separation initially attenuated LPS-induced hypothalamic pro-inflammatory gene expression, but later, at 3 h after immune challenge, robustly augmented such gene expression and increased serum corticosterone levels. Providing the pups with a warm and soft object prevented the separation-induced augmented hypothalamic-pituitary-adrenal (HPA)-axis response. It also prevented the potentiated induction of some, but not all, inflammatory genes to a similar extent as did the dam. Our results show that maternal separation potentiates the inflammatory response and the resulting HPA-axis activation, which may have detrimental effects if separation is prolonged or repeated.
Collapse
Affiliation(s)
- Joanna Zajdel
- Center for Social and Affective Neuroscience and Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Adriano Zager
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - David Engblom
- Center for Social and Affective Neuroscience and Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| |
Collapse
|
13
|
Meknatkhah S, Sharif Dashti P, Mousavi MS, Zeynali A, Ahmadian S, Karima S, Saboury AA, Riazi GH. Psychological stress effects on myelin degradation in the cuprizone-induced model of demyelination. Neuropathology 2018; 39:14-21. [PMID: 30536911 DOI: 10.1111/neup.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is known as the most common demyelinating disease worldwide in which previous studies have shown that stress is a risk factor for the disease's onset and progression. Nevertheless, further studies are needed to investigate the consequences of stress in MS pathology. In this study, after 5 days of exposure to psychological and physical stress as a repetitive distress modality, rats were treated with cuprizone. The demyelination degree was compared in animal groups using Luxol fast blue staining, immunohistochemical staining for myelin basic protein and transmission electron microscopy. Outcomes revealed that animals exposed to stress prior to cuprizone ingestion, elicit more intense demyelination. Continuous psychological distress has more severe effects on myelin sheath destruction in the preclinical stage.
Collapse
Affiliation(s)
- Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Pouya Sharif Dashti
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Amirbahador Zeynali
- Department of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed Karima
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
14
|
Sharif K, Watad A, Coplan L, Lichtbroun B, Krosser A, Lichtbroun M, Bragazzi NL, Amital H, Afek A, Shoenfeld Y. The role of stress in the mosaic of autoimmunity: An overlooked association. Autoimmun Rev 2018; 17:967-983. [PMID: 30118900 DOI: 10.1016/j.autrev.2018.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Stress is defined as the pscyophysiological reaction in which the steady state is disturbed or threatened. Stress is not always perceived as a negative response. Stress results when environmental demands exceed an individuals' adaptive capacities. Autoimmune diseases are heterogeneous group of chronic diseases which occur secondary to loss of self antigen tolerance. The etiopathogenesis of autoimmune disease is uncertain. Genetic factors as well as environmental factors appear to interplay, leading to a cascade of events resulting in disease onset. Stress has been postulated to play a role in disease onset in the genetically susceptible patients. During the stress response, catecholamines and glucocorticoids are released from locus coeruleus and adrenal gland. These biomolecules exert control over various immune cells in the innate and adaptive arms of the immune system, thereby altering the cytokine profile released. The increase of IL-4 promotes T-helper 2 (Th2) cell differentiation, while the decrease in IL-12 and the increased IL-10 production reduce the number of T-helper 1 (Th1) cells. The relationship between stress and autoimmune diseases is intricate. Stress has been shown to be associated with disease onset, and disease exacerbations in rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Graves' disease as well as other autoimmune conditions. In certain conditions such as psoriasis, stress has been implicated in delaying lesion clearance upon the application of standard treatment regimes. Finally, psychological therapy and cognitive behavioral therapy aimed to reduce stress levels was shown to be effective in influencing better outcomes in many autoimmune diseases. The purpose of this paper is to closer inspect the clinical evidence regarding the role of stress on influencing the various aspects of disease entities.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abdulla Watad
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Nicola Luigi Bragazzi
- School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Howard Amital
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arnon Afek
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Head of The Mosaic of Autoimmunity Project, Saint Petersburg State University, Israel; Head of The Mosaic of Autoimmunity Project, Saint Petersburg State University, Russia.
| |
Collapse
|
15
|
Neonatal corticosterone mitigates autoimmune neuropsychiatric disorders associated with streptococcus in mice. Sci Rep 2018; 8:10188. [PMID: 29976948 PMCID: PMC6033871 DOI: 10.1038/s41598-018-28372-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/12/2018] [Indexed: 01/27/2023] Open
Abstract
Increased glucocorticoid concentrations have been shown to favor resilience towards autoimmune phenomena. Here, we addressed whether experimentally induced elevations in circulating glucocorticoids mitigate the abnormalities exhibited by an experimental model of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). This is a pathogenic hypothesis linking repeated exposures to Group-A-beta-hemolytic streptococcus (GAS), autoantibodies targeting selected brain nuclei and neurobehavioral abnormalities. To persistently elevate glucocorticoid concentrations, we supplemented lactating SJL/J mice with corticosterone (CORT; 80 mg/L) in the drinking water. Starting in adolescence (postnatal day 28), developing offspring were exposed to four injections - at bi-weekly intervals - of a GAS homogenate and tested for behavioral, immunological, neurochemical and molecular alterations. GAS mice showed increased perseverative behavior, impaired sensorimotor gating, reduced reactivity to a serotonergic agonist and inflammatory infiltrates in the anterior diencephalon. Neonatal CORT persistently increased circulating glucocorticoids concentrations and counteracted these alterations. Additionally, neonatal CORT increased peripheral and CNS concentrations of the anti-inflammatory cytokine IL-9. Further, upstream regulator analysis of differentially expressed genes in the striatum showed that the regulatory effect of estradiol is inhibited in GAS-treated mice and activated in GAS-treated mice exposed to CORT. These data support the hypothesis that elevations in glucocorticoids may promote central immunomodulatory processes.
Collapse
|
16
|
Zinni M, Colella M, Batista Novais AR, Baud O, Mairesse J. Modulating the Oxytocin System During the Perinatal Period: A New Strategy for Neuroprotection of the Immature Brain? Front Neurol 2018; 9:229. [PMID: 29706926 PMCID: PMC5908892 DOI: 10.3389/fneur.2018.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Oxytocin is a neurohypophysal hormone known for its activity during labor and its role in lactation. However, the function of oxytocin (OTX) goes far beyond the peripheral regulation of reproduction, and the central effects of OTX have been extensively investigated, since it has been recognized to influence the learning and memory processes. OTX has also prominent effects on social behavior, anxiety, and autism. Interaction between glucocorticoids, OTX, and maternal behavior may have long-term effects on the developmental program of the developing brain subjected to adverse events during pre and perinatal periods. OTX treatment in humans improves many aspects of social cognition and behavior. Its effects on the hypothalamic–pituitary–adrenal axis and inflammation appear to be of interest in neonates because these properties may confer benefits when the perinatal brain has been subjected to injury. Indeed, early life inflammation and abnormal adrenal response to stress have been associated with an abnormal white matter development. Recent investigations demonstrated that OTX is involved in the modulation of microglial reactivity in the developing brain. This review recapitulates state-of-the art data supporting the hypothesis that the OTX system could be considered as an innovative candidate for neuroprotection, especially in the immature brain.
Collapse
Affiliation(s)
- Manuela Zinni
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Marina Colella
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Aline Rideau Batista Novais
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,Neonatal Intensive Care Unit, Robert Debré Children's Hospital, Paris, France
| | - Olivier Baud
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland.,Division of Neonatology, Geneva Children's Hospital, Geneva, Switzerland
| | - Jérôme Mairesse
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Burke NN, Fan CY, Trang T. Microglia in health and pain: impact of noxious early life events. Exp Physiol 2018; 101:1003-21. [PMID: 27474262 DOI: 10.1113/ep085714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the origins and development of microglia, and how stress, pain or inflammation in early life disturbs microglial function during critical developmental periods, leading to altered pain sensitivity and/or increased risk of chronic pain in later life. What advances does it highlight? We highlight recent advances in understanding how disrupted microglial function impacts the developing nervous system and the consequences for pain processing and susceptibility for development of chronic pain in later life. The discovery of microglia is accredited to Pío del Río-Hortega, who recognized this 'third element' of CNS cells as being morphologically distinct from neurons and astrocytes. For decades after this finding, microglia were altogether ignored or relegated as simply being support cells. Emerging from virtual obscurity, microglia have now gained notoriety as immune cells that assume a leading role in the development, maintenance and protection of a healthy CNS. Pioneering studies have recently shed light on the origins of microglia, their role in the developing nervous system and the complex roles they play beyond the immune response. These studies reveal that altered microglial function can have a profoundly negative impact on the developing brain and may be a determinant in a range of neurodevelopmental disorders and neurodegenerative diseases. The realization that aberrant microglial function also critically underlies chronic pain, a debilitating disorder that afflicts over 1.5 billion people worldwide, was a major conceptual leap forward in the pain field. Adding to this advance is emerging evidence that early life noxious experiences can have a long-lasting impact on central pain processing and adult pain sensitivity. With microglia now coming of age, in this review we examine the association between adverse early life events, such as stress, injury or inflammation, and the influence of sex differences, on the role of microglia in pain physiology in adulthood.
Collapse
Affiliation(s)
- Nikita N Burke
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Churmy Y Fan
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Aguirre-Benítez EL, Porras MG, Parra L, González-Ríos J, Garduño-Torres DF, Albores-García D, Avendaño A, Ávila-Rodríguez MA, Melo AI, Jiménez-Estrada I, Mendoza-Garrido ME, Toriz C, Diaz D, Ibarra-Coronado E, Mendoza-Ángeles K, Hernández-Falcón J. Disruption of behavior and brain metabolism in artificially reared rats. Dev Neurobiol 2017; 77:1413-1429. [DOI: 10.1002/dneu.22548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mercedes G. Porras
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Leticia Parra
- Departamento de Anatomía, Facultad de Medicina; UNAM; México Mexico
| | | | | | | | - Arturo Avendaño
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, UNAM; México Mexico
| | | | - Angel I. Melo
- Centro de Investigación en Reproducción Animal CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62. C.P. Tlaxcala, C.P; Tlaxcala 90000 México
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Ma. Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - César Toriz
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Daniel Diaz
- Centro de Ciencias de la Complejidad (C3) UNAM; México México
| | - Elizabeth Ibarra-Coronado
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Karina Mendoza-Ángeles
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Jesús Hernández-Falcón
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| |
Collapse
|
19
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
20
|
Macrì S. Neonatal corticosterone administration in rodents as a tool to investigate the maternal programming of emotional and immune domains. Neurobiol Stress 2016; 6:22-30. [PMID: 28229106 PMCID: PMC5314439 DOI: 10.1016/j.ynstr.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Collapse
|
21
|
Wearick-Silva LE, Marshall P, Viola TW, Centeno-Silva A, de Azeredo LA, Orso R, Li X, Donadio MV, Bredy TW, Grassi-Oliveira R. Running during adolescence rescues a maternal separation-induced memory impairment in female mice: Potential role of differential exon-specific BDNF expression. Dev Psychobiol 2016; 59:268-274. [PMID: 27807856 DOI: 10.1002/dev.21487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022]
Abstract
Exposure to early life stress has been associated with memory impairments related to changes in brain-derived neurotrophic factor (BDNF) signaling. However, the potential impact of physical exercise to reverse these effects of maternal separation has been under investigated. Mice were subjected to maternal separation during the first 2 weeks of life and then exposed to a 3-week running protocol during adolescence. The spontaneous object recognition task was performed during adolescence followed by analysis of hippocampal expression of exons I, IV, and IX of the BDNF gene. As expected, maternal separation impaired recognition memory and this effect was reversed by exercise. In addition, running increased BDNF exon I expression, but decreased expression of BDNF exon IV in all groups, while exon IX expression increased only in MS animals exposed to exercise. Our data suggest that memory deficits can be attenuated by exercise and specific transcripts of the BDNF gene are dynamically regulated following both MS and exercise.
Collapse
Affiliation(s)
- Luis Eduardo Wearick-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Paul Marshall
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Thiago Wendt Viola
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Anderson Centeno-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Araújo de Azeredo
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Xiang Li
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Márcio V Donadio
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Rodrigo Grassi-Oliveira
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
22
|
Grassi-Oliveira R, Honeycutt JA, Holland FH, Ganguly P, Brenhouse HC. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines. Psychoneuroendocrinology 2016; 71:19-30. [PMID: 27235636 PMCID: PMC5412140 DOI: 10.1016/j.psyneuen.2016.04.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022]
Abstract
Childhood adversity increases vulnerability to psychiatric disorders that emerge in adolescence, in a sex-dependent manner. Early adversity modeled in rodents with maternal separation (MS) affects cognition and medial prefrontal cortex (mPFC) circuitry. Humans and animals exposed to early life adversity also display heightened circulating inflammatory cytokines, however the predictive relationship of these early measures with later behavioral deficits is unknown. Here, male and female rats were exposed to MS or control rearing during the postnatal period (P2-21). Blood samples were taken at distinct developmental time points for analysis of the pro-inflammatory cytokine IL-1β and the anti-inflammatory cytokines IL-4, and IL-10, followed by win-shift cognitive testing and analysis of mPFC parvalbumin (PVB) immunofluorescent interneurons in adolescence. Regression analyses were conducted to explore the relationship between early cytokines and adolescent behavioral measures. We observed sex- and age-dependent effects of MS on circulating cytokines. MS also yielded adolescent decreases in mPFC PVB and cognitive deficits, which were predicted by early cytokine expression in a sex- and experience-dependent manner. Taken together, the present data reveals that circulating cytokines and PVB levels are predictive of adolescent cognitive deficits, and therefore provide compelling evidence for a putative role of early biomarkers in mediating MS-induced behavioral dysfunction. Importantly, predictive relationships often depended on sex and on MS history, suggesting that early life experiences may yield individualistic mechanisms of vulnerability compared to the general population.
Collapse
Affiliation(s)
- Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre 90619-900, RS, Brazil
| | - Jennifer A Honeycutt
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Freedom H Holland
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Prabarna Ganguly
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA.
| |
Collapse
|
23
|
Burke NN, Finn DP, McGuire BE, Roche M. Psychological stress in early life as a predisposing factor for the development of chronic pain: Clinical and preclinical evidence and neurobiological mechanisms. J Neurosci Res 2016; 95:1257-1270. [DOI: 10.1002/jnr.23802] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nikita N. Burke
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| | - David P. Finn
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland; Galway Ireland
| | - Brian E. McGuire
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Psychology, National University of Ireland; Galway Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| |
Collapse
|
24
|
Spinello C, Laviola G, Macrì S. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies. Front Neurosci 2016; 10:310. [PMID: 27445678 PMCID: PMC4928151 DOI: 10.3389/fnins.2016.00310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence suggests that Tourette's Syndrome (TS) - a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances - can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes.
Collapse
Affiliation(s)
- Chiara Spinello
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Roma, Italy
| | - Giovanni Laviola
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Roma, Italy
| | - Simone Macrì
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Roma, Italy
| |
Collapse
|
25
|
Tractenberg SG, Levandowski ML, de Azeredo LA, Orso R, Roithmann LG, Hoffmann ES, Brenhouse H, Grassi-Oliveira R. An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev 2016; 68:489-503. [PMID: 27328784 DOI: 10.1016/j.neubiorev.2016.06.021] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/13/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
Abstract
Early life stress (ELS) developmental effects have been widely studied by preclinical researchers. Despite the growing body of evidence from ELS models, such as the maternal separation paradigm, the reported results have marked inconsistencies. The maternal separation model has several methodological pitfalls that could influence the reliability of its results. Here, we critically review 94 mice studies that addressed the effects of maternal separation on behavioural outcomes. We also discuss methodological issues related to the heterogeneity of separation protocols and the quality of reporting methods. Our findings indicate a lack of consistency in maternal separation effects: major studies of behavioural and biological phenotypes failed to find significant deleterious effects. Furthermore, we identified several specific variations in separation methodological procedures. These methodological variations could contribute to the inconsistency of maternal separation effects by producing different degrees of stress exposure in maternal separation-reared pups. These methodological problems, together with insufficient reporting, might lead to inaccurate and unreliable effect estimates in maternal separation studies.
Collapse
Affiliation(s)
- Saulo G Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Mateus L Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Lucas Araújo de Azeredo
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Laura G Roithmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Emerson S Hoffmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Heather Brenhouse
- Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Pediatrics and Children Healths, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015; 309:G927-41. [PMID: 26451004 PMCID: PMC4683303 DOI: 10.1152/ajpgi.00206.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023]
Abstract
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.
Collapse
Affiliation(s)
- Calvin S. Pohl
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| | - Julia E. Medland
- 3Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
27
|
Johnson RR, Maldonado Bouchard S, Prentice TW, Bridegam P, Rassu F, Young CR, Steelman AJ, Welsh TH, Welsh CJ, Meagher MW. Neonatal experience interacts with adult social stress to alter acute and chronic Theiler's virus infection. Brain Behav Immun 2014; 40:110-20. [PMID: 24632225 DOI: 10.1016/j.bbi.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/30/2022] Open
Abstract
Previous research has shown that neonatal handling has prolonged protective effects associated with stress resilience and aging, yet little is known about its effect on stress-induced modulation of infectious disease. We have previously demonstrated that social disruption stress exacerbates the acute and chronic phases of the disease when applied prior to Theiler's virus infection (PRE-SDR) whereas it attenuates disease severity when applied concurrently with infection (CON-SDR). Here, we asked whether neonatal handling would protect adult mice from the detrimental effects of PRE-SDR and attenuate the protective effects of CON-SDR on Theiler's virus infection. As expected, handling alone decreased IL-6 and corticosterone levels, protected the non-stressed adult mice from motor impairment throughout infection and reduced antibodies to myelin components (PLP, MBP) during the autoimmune phase of disease. In contrast, neonatal handling X PRE/CON-SDR elevated IL-6 and reduced corticosterone as well as increased motor impairment during the acute phase of the infection. Neonatal handling X PRE/CON-SDR continued to exacerbate motor impairment during the chronic phase, whereas only neonatal handling X PRE-SDR increased in antibodies to PLP, MOG, MBP and TMEV. Together, these results imply that while handling reduced the severity of later Theiler's virus infection in non-stressed mice, brief handling may not be protective when paired with later social stress.
Collapse
Affiliation(s)
- R R Johnson
- Advanced brain Monitoring, Inc, Carlsbad, CA 92008, United States
| | - S Maldonado Bouchard
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - T W Prentice
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - P Bridegam
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - F Rassu
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - C R Young
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - A J Steelman
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - T H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, United States
| | - C J Welsh
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States.
| |
Collapse
|
28
|
Loria AS, Ho DH, Pollock JS. A mechanistic look at the effects of adversity early in life on cardiovascular disease risk during adulthood. Acta Physiol (Oxf) 2014; 210:277-87. [PMID: 24330084 DOI: 10.1111/apha.12189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/23/2022]
Abstract
Early origins of adult disease may be defined as adversity or challenges during early life that alter physiological responses and prime the organism to chronic disease in adult life. Adverse childhood experiences or early life stress (ELS) may be considered a silent independent risk factor capable of predicting future cardiovascular disease risk. Maternal separation (MatSep) provides a suitable model to elucidate the underlying molecular mechanisms by which ELS increases the risk to develop cardiovascular disease in adulthood. The aim of this review is to describe the links between behavioural stress early in life and chronic cardiovascular disease risk in adulthood. We will discuss the following: (i) adult cardiovascular outcomes in humans subjected to ELS, (ii) MatSep as an animal model of ELS as well as the limitations and advantages of this model in rodents and (iii) possible ELS-induced mechanisms that predispose individuals to greater cardiovascular risk. Overall, exposure to a behavioural stressor early in life sensitizes the response to a second stressor later in life, thus unmasking an exaggerated cardiovascular dysfunction that may influence quality of life and life expectancy in adulthood.
Collapse
Affiliation(s)
- A. S. Loria
- Section of Experimental Medicine; Department of Medicine; Georgia Regents University; Augusta GA USA
| | - D. H. Ho
- Section of Experimental Medicine; Department of Medicine; Georgia Regents University; Augusta GA USA
| | - J. S. Pollock
- Section of Experimental Medicine; Department of Medicine; Georgia Regents University; Augusta GA USA
| |
Collapse
|
29
|
Krementsov DN, Teuscher C. Environmental factors acting during development to influence MS risk: insights from animal studies. Mult Scler 2013; 19:1684-9. [PMID: 24077054 DOI: 10.1177/1352458513506954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system with an increasing incidence in females. Epidemiological data strongly implicate environmental factors acting at the population level during gestation, childhood and adulthood in the increasing incidence of MS. Several such factors are implicated in disease risk, but their causality remains unproven, while other factors remain unknown. An understanding of the risk factors acting during development is particularly limited. Animal studies could potentially bridge the gap between observational epidemiology and clinical intervention, providing not only direct evidence of causality for a given environmental agent, but also an opportunity to dissect the underlying molecular mechanisms. Given a rodent's short gestational and developmental period, the effects of developmental exposure can also be readily addressed. Nonetheless, studies in this area so far are few. In this review, we summarize the insights gleaned from studies that test environmental influences in animal models of MS, with a particular focus on gestational and early life exposures.
Collapse
|
30
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
31
|
Own LS, Iqbal R, Patel PD. Maternal separation alters serotonergic and HPA axis gene expression independent of separation duration in c57bl/6 mice. Brain Res 2013; 1515:29-38. [DOI: 10.1016/j.brainres.2013.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/29/2022]
|
32
|
Avitsur R, Maayan R, Weizman A. Neonatal stress modulates sickness behavior: role for proinflammatory cytokines. J Neuroimmunol 2013; 257:59-66. [PMID: 23489747 DOI: 10.1016/j.jneuroim.2013.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/22/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
Neonatal stress increased the duration and augmented symptoms of sickness behavior induced by influenza virus infection or endotoxin challenge in mice. Since proinflammatory cytokines were implicated in sickness behavior, the present study sought to determine the effect of neonatal stress on cytokines-induced sickness behavior and on proinflammatory cytokine secretion. Data indicate that separation of mouse pups from the dams at an early age (maternal separation, MSP) increased the duration and augmented some of the symptoms of sickness behavior induced by proinflammatory cytokines. In addition, MSP partially suppressed cytokine and corticosterone secretion in response to endotoxin administration. These data may suggest that MSP increased sensitivity to the effects of proinflammatory cytokines on sickness behavior following an immune challenge.
Collapse
Affiliation(s)
- Ronit Avitsur
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Yaffo, Israel.
| | | | | |
Collapse
|
33
|
Rodent models of early environment effects on offspring development and susceptibility to neurological diseases in adulthood. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0034-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEvents early in life can program brain for a pattern of neuroendocrine and behavioral responses in later life. This mechanism is named “developmental phenotypic plasticity”. Experimental evidences from rodents show that early experiences influence long-term development of behavioral, neuroendocrine and cognitive functions. While some neonatal conditions lead to positive outcomes, offspring might also display neurological dysfunctions in adulthood in case of adverse conditions during the early development. Different factors have been suggested to mediate the effects of neonatal conditions on offspring development but their exact contribution as well as their interaction still needs to be clarified. Studies based on rodents have been developed to model the long-term effects of early environmental conditions on the developing brain. These studies highlight importance of maternal behavior in mediating the effects of early environmental conditions on the offspring. However, other studies suggest that aside from the level of maternal care, other factors (gender, neonatal glucocorticoid levels) contribute to the adjustment of offspring phenotype to early environmental cues. Altogether, rodents-based evidence suggests that developmental plasticity is a very complex phenomenon mediated by multiple factors that interact one to each other. Ultimately, the goal is to understand how early life events can lead to advantageous phenotype in adult life, or, on the contrary, can predispose individuals to psychopathologies such as depression or anxiety.
Collapse
|
34
|
Effects of early life stress on neuroendocrine and neurobehavior: mechanisms and implications. Pediatr Neonatol 2011; 52:122-9. [PMID: 21703552 DOI: 10.1016/j.pedneo.2011.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/30/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Evidence continues to mount that adverse experiences early in life have an impact on brain functions. Early life stress can program the development of the hypothalamic-pituitary-adrenal axis and cause alterations of neurochemistry and signaling pathways involved in regulating neuroplasticity, with resultant neurobehavioral changes. Early life experiences and genetic factors appear to interact in determining the individual vulnerability to mental health disorders. We reviewed the effects of early life stress on neuroendocrine regulation and the relevance to neurobehavioral development.
Collapse
|
35
|
Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 2011; 214:71-88. [PMID: 20886335 DOI: 10.1007/s00213-010-2010-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/28/2010] [Indexed: 12/13/2022]
Abstract
RATIONALE Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS. OBJECTIVE The objective of this review was to assess and compile the most relevant data on early life stress and alterations at all levels of the brain gut axis. RESULTS In this review, we describe the components of the brain-gut axis individually and how they are altered by maternal separation. The separated phenotype is characterised by alterations of the intestinal barrier function, altered balance in enteric microflora, exaggerated stress response and visceral hypersensitivity, which are all evident in IBS. CONCLUSION Thus, maternally separated animals are an excellent model of brain-gut axis dysfunction for the study of disorders such as IBS and for the development of novel therapeutic interventions.
Collapse
|
36
|
Avitsur R, Mays JW, Sheridan JF. Sex differences in the response to influenza virus infection: modulation by stress. Horm Behav 2011; 59:257-64. [PMID: 21167165 PMCID: PMC3040247 DOI: 10.1016/j.yhbeh.2010.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Influenza virus infection is a significant public health problem; however factors affecting the incidence and severity of disease have not been fully elucidated. The present study sought to examine the role of sex and stress in mediating susceptibility to an influenza viral infection in mice. Male and female mice underwent repeated cycles of restraint (RST) stress, followed by an influenza A/PR8 virus infection. Following these manipulations, levels of circulating corticosterone, lung proinflammatory cytokine gene expression and sickness behavior were examined. The data indicate sex differences in several aspects of the response to the A/PR8 virus infection. The kinetics of lung interleukin-1β mRNA expression were faster in infected males compared to females, while circulating corticosterone levels were elevated in infected females, but not in males. Anorexia and reduced saccharin consumption began earlier and symptoms were more pronounced in infected males than in females. In addition, RST modulated the response to the A/PR8 virus infection. Proinflammatory cytokine gene expression in response to infection was enhanced and sickness behavior was modulated by RST in both males and females. These data suggest that males mount more vigorous immune and behavioral responses to influenza viral infection compared to females, and stress exacerbates the response in both males and females. In conclusion, complex interactions between biological and behavioral factors are involved in mediating individual differences in health and disease. Additional studies may help uncover some of the factors contributing to the individual differences in susceptibility to influenza infection.
Collapse
Affiliation(s)
- Ronit Avitsur
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel.
| | | | | |
Collapse
|
37
|
Young EE, Sieve AN, Vichaya EG, Carcoba LM, Young CR, Ambrus A, Storts R, Welsh CJR, Meagher MW. Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J Neuroimmunol 2010; 220:79-89. [PMID: 20167380 PMCID: PMC2856483 DOI: 10.1016/j.jneuroim.2010.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 12/20/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of the disease. The present data suggest that RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate that RS during early TMEV infection increases CNS lesion formation during the late phase and suggest that the effects of RS are sex-dependent.
Collapse
MESH Headings
- Animals
- Axons/immunology
- Axons/pathology
- Axons/virology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/physiopathology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Chronic Disease
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis/immunology
- Encephalomyelitis/physiopathology
- Encephalomyelitis/virology
- Female
- Male
- Mice
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Severity of Illness Index
- Sex Characteristics
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
- Theilovirus/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/virology
Collapse
Affiliation(s)
- Erin E Young
- Department of Psychology, College of Liberal Arts, Texas A&M University College Station, TX 77843, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Dean DD, Storts R, Welsh, Jr. TH, Meagher MW. Effects of stress on the immune response to Theiler's virus--implications for virus-induced autoimmunity. Neuroimmunomodulation 2010; 17:169-72. [PMID: 20134194 PMCID: PMC2857642 DOI: 10.1159/000258715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Psychological stress is an important factor in susceptibility to many diseases. Our laboratory has been investigating the impact of stress on the susceptibility to Theiler's virus-induced demyelination (TVID), a mouse model of multiple sclerosis. Using immunodominant viral peptides specific for identification of either CD4(+) or CD8(+) T cells, stress reduced IFN-gamma-producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells in the CNS. Expression of mRNA for the Th1 transcription factor T-bet and the Th2 transcription factor GATA-3 were decreased in spleen cells isolated from stressed mice. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus indicated that stress decreased both type 1 and type 2 responses. The adverse effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone, indicating a major role for glucocorticoids. Global stress-induced immunosuppression resulted in higher levels of virus replication and dissemination. The higher viral load subsequently led to an earlier disease onset and more severe clinical and histological signs of demyelinating disease. Our results have important implications for understanding the pathogenesis of MS, and suggest that stressful events during early infection with an agent capable of inducing demyelination may result in immunosuppression and failure to eliminate the pathogen, which in turn may lead to the development of MS.
Collapse
Affiliation(s)
- C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- *Dr. C. Jane Welsh, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 (USA), Tel. +1 979 862 4974, Fax +1 979 847 8981, E-Mail
| | - Andrew J. Steelman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Wentao Mi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Dana D. Dean
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Ralph Storts
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Thomas H. Welsh, Jr.
- Department of Animal Science, College of Agriculture and Life Sciences, Tex., USA
| | - Mary W. Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, Tex., USA
| |
Collapse
|