1
|
Schwartz NE, Schmill MP, Cadney MD, Castro AA, Hillis DA, McNamara MP, Rashid JO, Lampman W, DeLaCruz DF, Tran BD, Trutalli NL, Garland T. Maternal exercise opportunity before, during, and after pregnancy alters maternal care behavior and offspring development and survival, but has few effects on offspring physical activity or body composition. Physiol Behav 2025; 291:114752. [PMID: 39549866 DOI: 10.1016/j.physbeh.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Early-life experiences, especially during critical periods of development and growth, can have long-lasting effects on adult phenotypes. Parents are a crucial part of the offspring early-life environment, particularly in mammals (e.g., via pregnancy), and parental behaviors (e.g., maternal exercise) can modify the early-life environment experienced by offspring. Such changes might be beneficial or detrimental, depending on how they affect offspring development and growth or interact with other key parental behaviors (e.g., nursing). We used mice from a long-term artificial selection experiment for high voluntary wheel-running behavior to determine whether maternal exercise opportunity affected (1) maternal physical activity, (2) maternal care behavior, or (3) offspring physical activity and body composition. Eighty prospective dams (40 from 4 selectively bred High Runner [HR] lines and 40 from 4 non-selected Control [CON] lines) were housed with continuous wheel access starting two weeks prior to breeding and ending 10 days postpartum, after which dams were housed without wheels until offspring weaning (21 days postpartum). An additional 100 dams (50 HR, 50 CON) were housed without wheels. Prospective dams from HR lines ran more revolutions/day (mainly by running faster) than those from CON lines when individually housed and in the days leading up to, but not after, birth. During postpartum days 1-5, HR and CON dams with wheels tended to exhibit less maternal behavior than those without (PWheel = 0.0672). During post-partum days 6-10, HR dams with wheels continued to exhibit less maternal behavior than those without, whereas CON dams with wheels exhibited more than those without (PLinetype*Wheel = 0.0218). The proportion of dams giving birth did not differ among groups. However, CON dams with wheels were less likely to have litter death between birth and weaning than those without wheels, whereas the opposite was true for HR dams (PLinetype*Wheel = 0.0447). Both HR and CON dams with wheels had litters with a higher proportion of females at weaning than those without wheels (PWheel = 0.0129). Maternal wheel access had few statistically significant effects on offspring, but may have resulted in developmental delays (e.g., delayed eye opening and decreased lean mass at weaning and sexual maturity). Additionally, maternal wheel access and sex may have interacted to affect wheel-running distance (PSex*Wheel = 0.0683) and duration (PSex*Wheel = 0.0926); female offspring from dams with wheels ran fewer revolutions per day, by running fewer minutes per day, than from dams without wheels, whereas males ran more. However, maternal exercise had no statistically significant effects on offspring food consumption (mass-adjusted), home-cage activity, open-field behavior, the reproductive characteristics of offspring, their adult body composition, nor relative organ masses; nor did maternal wheel access have statistically significant effects on grand-offspring food consumption, body composition or voluntary exercise behavior. Overall, our results provide some support for maternal exercise opportunity altering maternal care behavior. Altered maternal care could explain the observed trends in offspring survival, development, and voluntary exercise behavior. However, these effects did not have apparent long-lasting impacts on offspring or grand-offspring body composition or reproductive characteristics.
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA.
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Jaanam O Rashid
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - William Lampman
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Dorothea F DeLaCruz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Bao D Tran
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Natalie L Trutalli
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Thompson Z, Fonseca IAT, Acosta W, Idarraga L, Garland T. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice. Physiol Behav 2024; 282:114582. [PMID: 38750805 DOI: 10.1016/j.physbeh.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA; Present Address: Department of Biology, Utah Valley University, Orem, UT, USA
| | - Ivana A T Fonseca
- Department of Physical Education, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Wendy Acosta
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Laidy Idarraga
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
4
|
Carrilho M, Monarca RI, Aparício G, Mathias MDL, Tapisso JT, von Merten S. Physiological and behavioural adjustment of a wild rodent to laboratory conditions. Physiol Behav 2024; 273:114385. [PMID: 37866641 DOI: 10.1016/j.physbeh.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Wild animals are brought to captivity for different reasons, for example to be kept in zoos and rehabilitation centres, but also for basic research. Such animals usually undergo a process of adjustment to captive conditions. While this adjustment occurs on the behavioural and the physiological level, those are usually studied separately. The aim of this study was to assess both the physiological and behavioural responses of wild wood mice, Apodemus sylvaticus, while adjusting to laboratory conditions. Over the course of four weeks, we measured in wild-caught mice brought to the laboratory faecal corticosterone metabolites and body mass as physiological parameters, stereotypic behaviour and nest-quality, as welfare-linked behavioural parameters, and four personality measures as additional behavioural parameters. The results of our study indicate that mice exhibited an adjustment in both behaviour and physiology over time in the laboratory. While the hormonal stress response decreased significantly, body mass and the proportion of stereotypic behaviours showed a tendency to increase over time. The slight increase of stereotypic behaviours, although not statistically significant, suggests the development of repetitive and non-functional behaviours as a response to laboratory conditions. However, we suggest that those behaviours might have been used by animals as a coping strategy to decrease the physiological stress response. Other behavioural parameters measured, such as boldness and nestbuilding behaviour were stable over time. The information obtained in the present study hints at a complex interplay between behavioural and physiological adjustments of wild animals to laboratory conditions, which should be considered when intending to use wild animals in experimental research.
Collapse
Affiliation(s)
- Maílis Carrilho
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal.
| | - Rita I Monarca
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Guilherme Aparício
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Maria da Luz Mathias
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Joaquim T Tapisso
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal
| | - Sophie von Merten
- CESAM - Centre for Environmental and Marine Studies and Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Lisbon 1749-016, Portugal; Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Josefson CC, Hood WR. Understanding Patterns of Life History Trait Covariation in an Untapped Resource, the Lab Mouse. Physiol Biochem Zool 2023; 96:321-331. [PMID: 37713715 DOI: 10.1086/725435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractThrough artificial selection and inbreeding, strains of laboratory mice have been developed that vary in the expression of a single or suite of desired traits valuable to biomedical research. In addition to the selected trait(s), these strains also display variation in pelage color, body size, physiology, and life history. This article exploits the broad phenotypic variation across lab mouse strains to evaluate the relationships between life history and metabolism. Life history variation tends to exist along a fast-slow continuum. There has been considerable interest in understanding the ecological and evolutionary factors underlying life history variation and the physiological and metabolic processes that support them. Yet it remains unclear how these key traits scale across hierarchical levels, as ambiguous empirical support has been garnered at the intraspecific level. Within-species investigations have been thwarted by methodological constraints and environmental factors that obscure the genetic architecture underlying the hypothesized functional integration of life history and metabolic traits. In this analysis, we used the publicly available Mouse Phenome Database by the Jackson Laboratory to investigate the relationships among life history traits (e.g., body size, reproduction, and life span) and metabolic traits (e.g., daily energy expenditure and insulin-like growth factor 1 concentration). Our findings revealed significant variation in reproductive characteristics across strains of mice as well as relationships among life history and metabolic traits. We found evidence of variation along the fast-slow life history continuum, though the direction of some relationships among these traits deviated from interspecific predictions laid out in previous literature. Furthermore, our results suggest that the strength of these relationships are strongest earlier in life.
Collapse
|
6
|
The fast and the curious III: speed, endurance, activity, and exploration in mice. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
DePasquale C, Franklin K, Jia Z, Jhaveri K, Buderman FE. The effects of exploratory behavior on physical activity in a common animal model of human disease, zebrafish ( Danio rerio). Front Behav Neurosci 2022; 16:1020837. [PMID: 36425283 PMCID: PMC9679429 DOI: 10.3389/fnbeh.2022.1020837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Zebrafish (Danio rerio) are widely accepted as a multidisciplinary vertebrate model for neurobehavioral and clinical studies, and more recently have become established as a model for exercise physiology and behavior. Individual differences in activity level (e.g., exploration) have been characterized in zebrafish, however, how different levels of exploration correspond to differences in motivation to engage in swimming behavior has not yet been explored. We screened individual zebrafish in two tests of exploration: the open field and novel tank diving tests. The fish were then exposed to a tank in which they could choose to enter a compartment with a flow of water (as a means of testing voluntary motivation to exercise). After a 2-day habituation period, behavioral observations were conducted. We used correlative analyses to investigate the robustness of the different exploration tests. Due to the complexity of dependent behavioral variables, we used machine learning to determine the personality variables that were best at predicting swimming behavior. Our results show that contrary to our predictions, the correlation between novel tank diving test variables and open field test variables was relatively weak. Novel tank diving variables were more correlated with themselves than open field variables were to each other. Males exhibited stronger relationships between behavioral variables than did females. In terms of swimming behavior, fish that spent more time in the swimming zone spent more time actively swimming, however, swimming behavior was inconsistent across the time of the study. All relationships between swimming variables and exploration tests were relatively weak, though novel tank diving test variables had stronger correlations. Machine learning showed that three novel tank diving variables (entries top/bottom, movement rate, average top entry duration) and one open field variable (proportion of time spent frozen) were the best predictors of swimming behavior, demonstrating that the novel tank diving test is a powerful tool to investigate exploration. Increased knowledge about how individual differences in exploration may play a role in swimming behavior in zebrafish is fundamental to their utility as a model of exercise physiology and behavior.
Collapse
Affiliation(s)
- Cairsty DePasquale
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kristina Franklin
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Zhaohan Jia
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kavya Jhaveri
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Frances E. Buderman
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Sex- and Neuropsychiatric-Dependent Circadian Alterations in Daily Voluntary Physical Activity Engagement and Patterns in Aged 3xTg-AD Mice. Int J Mol Sci 2022; 23:ijms232213671. [PMID: 36430150 PMCID: PMC9696337 DOI: 10.3390/ijms232213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) patients suffer from circadian rhythm alterations affecting their daily physical activity patterns with less willingness to perform a voluntary exercise. In preclinical studies, there is no clarity on whether animal models of AD can replicate these impairments. Here, we provide a proof of concept of the performance and behavioral effects of four weeks of voluntary wheel running (VWR) in a group of 14-month-old male and female 3xTg-AD mice at advanced stages of AD and the daily variance (behavioral circadian rhythmicity) of VWR associated with sex and their neuropsychiatric-like phenotype. Higher levels of horizontal exploration in the open field (OF) test were found in mice submitted to exercise. A linear mixed effect model showed significant sex-dependent differences in the VWR activity performed on the first night of follow-up, with high-NIBI males running less than high-NIBI females. Thus, an influence of NPS-like symptoms on the circadian patterns of VWR may account for such differences. In addition, males remained more active than females during diurnal periods. We hypothesize that this increment in energy expenditure during resting periods may be related to hyperactive behavior, similar to that observed in humans' exacerbated agitation or sundowning behavior. These findings support the usage of the 3xTg-AD mouse as a reliable model for studying circadian rhythm alterations in AD and, at the translational level, the importance of tailored and individualized physical activity programs in clinical settings.
Collapse
|
9
|
Demartini C, Greco R, Francavilla M, Zanaboni AM, Tassorelli C. Modelling migraine-related features in the nitroglycerin animal model: trigeminal hyperalgesia is associated with affective status and motor behavior. Physiol Behav 2022; 256:113956. [PMID: 36055415 DOI: 10.1016/j.physbeh.2022.113956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent attacks of pain and other associated symptoms. Emotional-affective aspects are important components of pain, but so far they have been little explored in animal models of migraine. In this study, we aimed to explore the correlation between trigeminal hyperalgesia and affective status or behavioral components in a migraine-specific animal model. Male Sprague-Dawley rats were treated with nitroglycerin (10 mg/kg, i.p.) or its vehicle. Four hours later, anxiety, motor/exploratory behavior and grooming (a nociception index) were evaluated with the open field test. Rats were then exposed to formalin in the orofacial region to evaluate trigeminal hyperalgesia. The data analysis shows an inverse correlation between trigeminal hyperalgesia and motor or exploratory behavior, and a positive association with anxiety-like behavior or self-grooming. These findings further expand on the translational value of the migraine-specific model based on nitroglycerin administration and prompt additional parameters that can be investigated to explore migraine disease in its complexity.
Collapse
Affiliation(s)
- Chiara Demartini
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
10
|
Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behav Processes 2022; 199:104650. [PMID: 35504410 DOI: 10.1016/j.beproc.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
11
|
Booher WC, Hall LA, Thomas AL, Merhroff EA, Reyes Martínez GJ, Scanlon KE, Lowry CA, Ehringer MA. Anxiety-related defensive behavioral responses in mice selectively bred for High and Low Activity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12730. [PMID: 33786989 PMCID: PMC10846611 DOI: 10.1111/gbb.12730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8-20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light-dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.
Collapse
Affiliation(s)
- Winona C. Booher
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| | - Lucy A. Hall
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Aimee L. Thomas
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Erika A. Merhroff
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | | | | | - Christopher A. Lowry
- Department of Integrative Physiology, Center for
Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder,
Boulder, CO 80309, USA
- Departments of Psychiatry, Neurology, and Physical
Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus,
Aurora, CO 80045, USA
- Rocky Mountain Mental Illness Research Education and
Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center
(RMRVAMC), Aurora, Colorado, 80045, USA
- Military and Veteran Microbiome: Consortium for Research
and Education (MVM-CoRE), Denver, CO 80220, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide
Universities Network (WUN), West New York, NJ 07093, USA
| | - Marissa A. Ehringer
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| |
Collapse
|
12
|
Urbánková G, Riegert J, Mladěnková N, Kolářová P, Eliáš Z, Sedláček F. Behavioural plasticity of motor personality traits in the common vole under three-day continual observation in a test box. Behav Processes 2021; 188:104418. [PMID: 33971250 DOI: 10.1016/j.beproc.2021.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
In animals, behavioural personality traits have been well-documented in a wide array of species. However, these traits, different between individuals, are not completely stable in individuals. They show behavioural plasticity like many other phenotypic traits. This plasticity is able to overcome some weak aspects of personality trait behavioural strategy. In the present study, we examined the relationship between motor personality traits and behavioural plasticity in the common vole (Microtus arvalis) using a PhenoTyper (PT) box (Noldus). During a three-day test, four behavioural motor activity parameters were monitored in 47 voles: distance moved, (loco)motion duration, motion change frequency, sprint duration. Consistency repeatability (RC) of the parameters from the PT test was very high, with all values ≥ 0.91. To select the best linear mixed-effect models (LMMs), several predictors (test day, sex, body weight) were tested. Only test day had a significant effect on the dependent variables and other predictors did not improve the LMMs. Further, we found significant effects of random intercepts (motor personality traits) and slopes (behavioural plasticity), as well as significant negative correlations between them for all behavioural parameters. Our results indicate that motor personality traits were connected with behavioural plasticity. Moreover, we revealed a significant positive correlation between the random slopes of (loco)motion duration and motion change frequency. This relationship could indicate some central plasticity of motor personality traits. In conclusion, negative correlations between the motor personality traits and the behavioural plasticity demonstrate expression of convergent tendency from both opposite trait values. This corresponds with different ideas on ability to compensate personality effects or to prepare for potential future conditions. In the laboratory, plasticity of personality traits take place whenever an animal is placed e. g. in a breeding box for the first time or is left for a long time in an experimental apparatus.
Collapse
Affiliation(s)
| | - Jan Riegert
- University of South Bohemia in České Budějovice, Czech Republic
| | | | - Petra Kolářová
- University of South Bohemia in České Budějovice, Czech Republic
| | - Zdeněk Eliáš
- University of South Bohemia in České Budějovice, Czech Republic
| | | |
Collapse
|
13
|
Boratyński Z, Szyrmer M, Koteja P. The metabolic performance predicts home range size of bank voles: a support for the behavioral-bioenergetics theory. Oecologia 2020; 193:547-556. [PMID: 32638120 DOI: 10.1007/s00442-020-04704-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
The pace-of-life syndrome describes covariation between life-history, behavioral and physiological traits; while, the emerging behavioral-bioenergetics theory proposes mechanistic links between those traits in a spatial-ecological context. However, little is known about the association between the limits to metabolic rate and spatial performance (i.e., mobility, home range size) in free-living individuals. Here we show, for the first time at the intra-specific level, that mobility traits increased with the aerobic exercise capacity ([Formula: see text]O2max) in a wild rodent, the bank vole (Myodes glareolus): [Formula: see text]O2max affected directly the movement intensity, which in turn affected home ranges. The results show that evolution of high [Formula: see text]O2max could be driven by selection for spatial performance traits, and corroborate one of the key assumptions of the behavioral-bioenergetics theory. However, the minimum maintenance metabolism, measured as the basal metabolic rate (BMR), was not correlated with movement intensity, and the direction of the BMR-home range correlation tended to change with age of the voles. The latter result indicates that testing the theory will be particularly challenging.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland. .,CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal.
| | - Monika Szyrmer
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
14
|
Wiersielis KR, Adams S, Yasrebi A, Conde K, Roepke TA. Maternal exposure to organophosphate flame retardants alters locomotor and anxiety-like behavior in male and female adult offspring. Horm Behav 2020; 122:104759. [PMID: 32320692 PMCID: PMC8530209 DOI: 10.1016/j.yhbeh.2020.104759] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 11/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals found in our environment that interrupt typical endocrine function. Some flame retardants (FRs) are EDCs as shown in their interaction with steroid and nuclear receptors. Humans are consistently exposed to flame retardants as they are used in everyday items such as plastics, clothing, toys, and electronics. Polybrominated diphenyl ethers were used as the major FR until 2004, when they were replaced by organophosphate flame retardants (OPFRs). Previous research in rodent models utilizing a commercial flame retardant mixture containing OPFRs reported alterations in anxiety-like behavior in the elevated plus maze (EPM) for rodents perinatally exposed to OPFRs. In the present study we utilize wild-type mice maternally exposed (gestational day 7 to postnatal day 14) to either an OPFR mixture of tris(1,3-dichloro-2-propyl), triphenyl phosphate, and tricresyl phosphate or a sesame seed oil vehicle. These mice were evaluated for anxiety-like behavior in adulthood on the open field test (OFT) and the light/dark box (LDB) as well as the EPM. Outcomes from the OFT and LDB indicate that males and females maternally exposed to OPFRs exhibit altered locomotor activity. Results of the EPM were sex-specific as we did not observe an effect in females; however, effects in males differed depending on exposure condition. Males maternally exposed to OPFRs exhibited an anxiolytic-like phenotype in contrast to their vehicle counterparts. This effect in perinatally OPFR-exposed males was not due to alterations in locomotor activity. Our research illustrates that there are sex- and exposure-dependent effects of perinatal OPFR exposure on adult locomotor and anxiety-like behaviors in a mouse model.
Collapse
Affiliation(s)
- K R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - S Adams
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - A Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - K Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - T A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Mouro FM, Köfalvi A, André LA, Baqi Y, Müller CE, Ribeiro JA, Sebastião AM. Memory deficits induced by chronic cannabinoid exposure are prevented by adenosine A2AR receptor antagonism. Neuropharmacology 2019; 155:10-21. [DOI: 10.1016/j.neuropharm.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 05/03/2019] [Indexed: 11/24/2022]
|
16
|
Jaromin E, Sadowska ET, Koteja P. Is Experimental Evolution of an Increased Aerobic Exercise Performance in Bank Voles Mediated by Endocannabinoid Signaling Pathway? Front Physiol 2019; 10:640. [PMID: 31191344 PMCID: PMC6546880 DOI: 10.3389/fphys.2019.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
The level of physical activity achieved in a given situation depends on both physiological abilities and behavioral characteristics (motivation). We used a unique animal model to test a hypothesis that evolution of an increased aerobic exercise performance can be facilitated by evolution of motivation to undertake physical activity, mediated by brain endocannabinoid system. Bank voles (Myodes glareolus) from "aerobic" A lines selected for 22 generations for high swim-induced aerobic metabolism (VO2swim) achieved 65% higher "voluntary maximum" VO2swim than voles from unselected, "control" C lines. In C lines, VO2swim was 24% lower than the maximum forced-running aerobic metabolism (VO2run), while in A lines VO2swim and VO2run were practically the same. Thus, the selection changed both the aerobic capacity and motivation to exercise at the top performance level. We applied a pharmacological treatment manipulation to test a hypothesis that the endocannabinoid signaling pathway 1) affects the voles performance in the aerobic exercise trials, and 2) has been modified in the selection process. Administration of the CB1 receptor antagonist (Rimonabant) did not affect the level of metabolism, but administration of the endocannabinoid reuptake inhibitor (AM404) decreased VO2swim both in A and C lines (4%, p = 0.03) and tended to decrease VO2run (2%, p = 0.07). The significant effect of AM404 suggests the involvement of endocannabinoids in signaling pathways controlling the motivation to be active. However, the response to AM404 did not differ between A and C lines (interaction effect, p ≥ 0.29). Thus, the results did not provide a support to the hypothesis that modifications of endocannabinoid signaling have played a role in the evolution of increased aerobic exercise performance in our experimental evolution model system. SUMMARY STATEMENT The results corroborated involvement of endocannabinoids in the regulation of physical activity, but did not support the hypothesis that modification of endocannabinoid signaling played a role in the evolution of increased aerobic exercise performance in our experimental evolution model.
Collapse
Affiliation(s)
- Ewa Jaromin
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
17
|
Kay JC, Claghorn GC, Thompson Z, Hampton TG, Garland T. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiol Behav 2018; 199:322-332. [PMID: 30508549 DOI: 10.1016/j.physbeh.2018.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35406, USA
| | - Gerald C Claghorn
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular & Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Dewan I, Garland T, Hiramatsu L, Careau V. I Smell a Mouse: Indirect Genetic Effects on Voluntary Wheel-Running Distance, Duration and Speed. Behav Genet 2018; 49:49-59. [PMID: 30324246 DOI: 10.1007/s10519-018-9930-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Abstract
Indirect genetic effects (IGEs; the heritable influence of one organism on a conspecific) can affect the evolutionary dynamics of complex traits, including behavior. Voluntary wheel running is an important model system in quantitative genetic studies of behavior, but the possibility of IGEs on wheel running and its components (time spent running and average running speed) has not been examined. Here, we analyze a dataset from a replicated selection experiment on wheel running (11,420 control and 26,575 selected mice measured over 78 generations) in which the standard measurement protocol allowed for the possibility of IGEs occurring through odors because mice were provided with clean cages attached to a clean wheel or a wheel previously occupied by another mouse for 6 days. Overall, mice ran less on previously occupied wheels than on clean wheels, and they ran significantly less when following a male than a female. Significant interactions indicated that the reduction in running was more pronounced for females than males and for mice from selected lines than control mice. Pedigree-based "animal model" analyses revealed significant IGEs for running distance (the trait under selection), with effect sizes considerably higher for the initial/exploratory phase (i.e., first two of six test days). Our results demonstrate that IGEs can occur in mice interacting through scent only, possibly because they attempt to avoid conspecifics.
Collapse
Affiliation(s)
- Ian Dewan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada. .,Department of Biology, Carleton University, Ottawa, ON, Canada.
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.,Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Mouro FM, Ribeiro JA, Sebastião AM, Dawson N. Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. J Neurochem 2018; 147:71-83. [PMID: 29989183 PMCID: PMC6220860 DOI: 10.1111/jnc.14549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through 14 C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.
Collapse
Affiliation(s)
- Francisco M. Mouro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Joaquim A. Ribeiro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Ana M. Sebastião
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Neil Dawson
- Division of Biomedical and Life SciencesUniversity of LancasterLancashireUK
| |
Collapse
|
20
|
Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 2018; 124:306-312. [PMID: 29113509 DOI: 10.1080/13813455.2017.1398262] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT We have previously shown that an antidepressant-like effect of probiotics in rats was associated with a higher plasma level of the microbial tryptophan metabolite indole-3-propionic acid (IPA). OBJECTIVE We therefore wanted to study the isolated effect of IPA on behaviour and glucose metabolism in rats. METHODS Male Sprague-Dawley rats were fed control or IPA-enriched diet for six weeks (n = 12 per group) and assessed in the elevated plus maze, open field and forced swim test. Blood glucose, metabolic hormones and the white blood cell (WBC) composition were analysed. RESULTS IPA (mean intake 27.3 mg/kg/day) significantly lowered fasting blood glucose level by 0.42 mM (95% CI 0.11-0.73). Similarly, fasting plasma insulin levels and the homeostatic model assessment (HOMA) index of insulin resistance were reduced, whereas plasma metabolic hormones, behaviour and WBC composition remained unaffected by IPA. CONCLUSIONS Our findings highlight IPA as a promising candidate for treatment of metabolic disorders associated with insulin resistance.
Collapse
Affiliation(s)
- Anders Abildgaard
- a Translational Neuropsychiatry Unit , Aarhus University , Risskov , Denmark
- b Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus , Denmark
| | - Betina Elfving
- a Translational Neuropsychiatry Unit , Aarhus University , Risskov , Denmark
| | - Marianne Hokland
- c Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Gregers Wegener
- a Translational Neuropsychiatry Unit , Aarhus University , Risskov , Denmark
- d Center of Excellence for Pharmaceutical Sciences , North-West University (Potchefstroom Campus) , Potchefstroom , South Africa
| | - Sten Lund
- e Department of Medical Endocrinology (MEA) , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
21
|
Maiti U, Sadowska ET, ChrzĄścik KM, Koteja P. Experimental evolution of personality traits: open-field exploration in bank voles from a multidirectional selection experiment. Curr Zool 2018; 65:375-384. [PMID: 31413710 PMCID: PMC6688576 DOI: 10.1093/cz/zoy068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/21/2017] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Evolution of complex physiological adaptations could be driven by natural selection acting on behavioral traits. Consequently, animal personality traits and their correlation with physiological traits have become an engaging research area. Here, we applied a unique experimental evolution model-lines of bank voles selected for (A) high exercise-induced aerobic metabolism, (H) ability to cope with low-quality herbivorous diet, and (P) intensity of predatory behavior, that is, traits shaping evolutionary path and diversity of mammals-and asked how the selection affected the voles' personality traits, assessed in an open field test. The A- and P-line voles were more active, whereas the H-line voles were less active, compared those from unselected control lines (C). H-line voles moved slower but on more meandering trajectories, which indicated a more thorough exploration, whereas the A- and P-line voles moved faster and on straighter trajectories. A-line voles showed also an increased escape propensity, whereas P-line voles tended to be bolder. The remarkable correlated responses to the selection indicate a common genetic underlying mechanism of behavioral and physiological traits, and support the paradigm of evolutionary physiology built around the concept of correlated evolution of behavior and physiology.
Collapse
Affiliation(s)
- Uttaran Maiti
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Katarzyna M ChrzĄścik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
22
|
A comparison of two types of running wheel in terms of mouse preference, health, and welfare. Physiol Behav 2018; 191:82-90. [DOI: 10.1016/j.physbeh.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
23
|
Rosenfeld CS. Sex-dependent differences in voluntary physical activity. J Neurosci Res 2017; 95:279-290. [PMID: 27870424 DOI: 10.1002/jnr.23896] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Bond Life Sciences Center University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
24
|
Ge X, Ciol MA, Pettan-Brewer C, Goh J, Rabinovitch P, Ladiges W. Self-motivated and stress-response performance assays in mice are age-dependent. Exp Gerontol 2017; 91:1-4. [PMID: 28189701 PMCID: PMC6118215 DOI: 10.1016/j.exger.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
Chronic health conditions of the elderly lead to limitations in physical activity with disability, anxiety, and increased need for medical care and assisted living conditions. Physical performance tests are used to screen for pending loss of mobility and can serve as endpoints to monitor the effectiveness of intervention measures. Since limited mobility is associated with the physical and mental health of a person, evaluation of this in preclinical aging studies in mice will provide a translational approach for testing new intervention strategies. We assessed physiological parameters in 4, 12, 20 and 28month old C57BL/6 and CB6F1 male mice using a rotating rod, a free running wheel, and a photo beam activity field, designed to determine changes in coordinated walking ability, self-motivated running distance, and anxiety response to a novel environment, respectively. Older mice showed decreased coordinated walking times and decreased running distances, predictive of physical performance ability and motivation in the elderly. Changes in both lateral and vertical movements were observed in a novel cage environment suggesting different levels of anxiety. Because the genetic background of the two mouse strains influenced test results in an age-dependent manner, it is imperative to recognize that diverse genetic backgrounds in mice may yield different data in preclinical studies and would need to be interpreted individually for translational applications.
Collapse
Affiliation(s)
- Xuan Ge
- University of Washington, Department of Comparative Medicine, Seattle, WA, USA.
| | - Marcia A Ciol
- University of Washington, Department of Rehabilitation Medicine, Seattle, WA, USA
| | | | - Jorming Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | | | - Warren Ladiges
- University of Washington, Department of Comparative Medicine, Seattle, WA, USA; University of Washington, Department of Pathology, Seattle, WA, USA
| |
Collapse
|
25
|
Kanda LL, Abdulhay A, Erickson C. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus). Behav Processes 2017; 138:82-90. [PMID: 28249731 DOI: 10.1016/j.beproc.2017.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
Abstract
Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels.
Collapse
Affiliation(s)
- L Leann Kanda
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA.
| | - Amir Abdulhay
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Caitlin Erickson
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| |
Collapse
|
26
|
Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB 1 receptor activation. Neuropharmacology 2017; 117:316-327. [PMID: 28235548 DOI: 10.1016/j.neuropharm.2017.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/administration & dosage
- Animals
- Benzoxazines/pharmacology
- Calcium Channel Blockers/pharmacology
- Cannabinoid Receptor Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/prevention & control
- Memory, Episodic
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Purines/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Christa E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
27
|
Kvedaras M, Minderis P, Fokin A, Ratkevicius A, Venckunas T, Lionikas A. Forced Running Endurance Is Influenced by Gene(s) on Mouse Chromosome 10. Front Physiol 2017; 8:9. [PMID: 28167917 PMCID: PMC5253375 DOI: 10.3389/fphys.2017.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
Phenotypic diversity between laboratory mouse strains provides a model for studying the underlying genetic mechanisms. The A/J strain performs poorly in various endurance exercise models. The aim of the study was to test if endurance capacity and contractility of the fast- and slow-twitch muscles are affected by the genes on mouse chromosome 10. The C57BL/6J (B6) strain and C57BL/6J-Chr 10A/J/NaJ (B6.A10) consomic strain which carries the A/J chromosome 10 on a B6 strain background were compared. The B6.A10 mice compared to B6 were larger in body weight (p < 0.02): 27.2 ± 1.9 vs. 23.8 ± 2.7 and 23.4 ± 1.9 vs. 22.9 ± 2.3 g, for males and females, respectively, and in male soleus weight (p < 0.02): 9.7 ± 0.4 vs. 8.6 ± 0.9 mg. In the forced running test the B6.A10 mice completed only 64% of the B6 covered distance (p < 0.0001). However, there was no difference in voluntary wheel running (p = 0.6) or in fatigability of isolated soleus (p = 0.24) or extensor digitorum longus (EDL, p = 0.7) muscles. We conclude that chromosome 10 of the A/J strain contributes to reduced endurance performance. We also discuss physiological mechanisms and methodological aspects relevant to interpretation of these findings.
Collapse
Affiliation(s)
- Mindaugas Kvedaras
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Petras Minderis
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Andrej Fokin
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Aivaras Ratkevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen Aberdeen, UK
| |
Collapse
|
28
|
Datta S, Samanta D, Sinha P, Chakrabarti N. Gender features and estrous cycle variations of nocturnal behavior of mice after a single exposure to light at night. Physiol Behav 2016; 164:113-22. [DOI: 10.1016/j.physbeh.2016.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
|
29
|
Careau V, Wolak ME, Carter PA, Garland T. Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype. Proc Biol Sci 2016; 282:rspb.2015.1119. [PMID: 26582016 DOI: 10.1098/rspb.2015.1119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change.
Collapse
Affiliation(s)
- Vincent Careau
- Canada Research Chair in Functional Ecology, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Wolak
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Patrick A Carter
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA, USA
| |
Collapse
|
30
|
Guidotti S, Meyer N, Przybyt E, Scheurink AJW, Harmsen MC, Garland T, van Dijk G. Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet. Physiol Behav 2016; 157:246-57. [PMID: 26850290 DOI: 10.1016/j.physbeh.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Female mice from independently bred lines previously selected over 50 generations for increased voluntary wheel-running behavior (S1, S2) resist high energy (HE) diet-induced obesity (DIO) at adulthood, even without actual access to running wheels, as opposed to randomly bred controls (CON). We investigated whether adult S mice without wheels remain DIO-resistant when exposed - via the mother - to the HE diet during their perinatal stage (from 2 weeks prior to conception until weaning on post-natal day 21). While S1 and S2 females subjected to HE diet either perinatally or from weaning onwards (post-weaning) resisted increased adiposity at adulthood (as opposed to CON females), they lost this resistance when challenged with HE diet during these periods combined over one single cycle of breeding. When allowed one-week access to wheels (at week 6-8 and at 10 months), however, tendency for increased wheel-running behavior of S mice was unaltered. Thus, the trait for increased wheel-running behavior remained intact following combined perinatal and post-weaning HE exposure, but apparently this did not block HE-induced weight gain. At weaning, perinatal HE diet increased adiposity in all lines, but this was only associated with hyperleptinemia in S lines irrespective of gender. Because leptin has multiple developmental effects at adolescence, we argue that a trait for increased physical activity may advance maturation in times of plenty. This would be adaptive in nature where episodes of increased nutrient availability should be exploited maximally. Associated disturbances in glucose homeostasis and related co-morbidities at adulthood are probably pleiotropic side effects.
Collapse
Affiliation(s)
- Stefano Guidotti
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands; Center for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands.
| | - Neele Meyer
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands.
| | - Ewa Przybyt
- Department of Pathology and Medical Biology, University of Groningen, The Netherlands.
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands.
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, The Netherlands.
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA, USA.
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands; Center for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands.
| |
Collapse
|
31
|
Matsumura K, Sasaki K, Miyatake T. Correlated responses in death-feigning behavior, activity, and brain biogenic amine expression in red flour beetle Tribolium castaneum strains selected for walking distance. J ETHOL 2015; 34:97-105. [PMID: 27829699 PMCID: PMC5080323 DOI: 10.1007/s10164-015-0452-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/14/2015] [Indexed: 11/05/2022]
Abstract
Dispersal ability may influence antipredator and mating strategies. A previous study showed a trade-off between predation avoidance and mating success in strains of the red flour beetle Tribolium castaneum selected for walking distance
. Specifically, beetles derived from strains selected for longer walking distance suffered higher predation pressure and had higher male mating success than their counterparts derived from strains selected for shorter walking distance. In the study reported here, we compared the locomotor activity, biogenic amine expression in the brain, and death-feigning behavior of the red flour beetle strains selected for walking distance. The results indicated that individuals genetically predisposed to longer walking distance had higher locomotor activity and lower intensity of death-feigning behavior than those genetically predisposed to shorter walking distance. However, no significant differences were found in the expression of biogenic amines in the brain among strains selected for walking distance, although the level of dopamine in the brain differed from that of the strains divergently selected for duration of death-feigning behavior. The relationships between walking speed, activity, death-feigning behavior, and brain biogenic amines in T. castaneum are discussed.
Collapse
Affiliation(s)
- Kentarou Matsumura
- grid.261356.50000000113024472Laboratory of Evolutionary Ecology, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama City, Okayama Japan
| | - Ken Sasaki
- grid.412905.b0000000097459416Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
| | - Takahisa Miyatake
- grid.261356.50000000113024472Laboratory of Evolutionary Ecology, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama City, Okayama Japan
| |
Collapse
|
32
|
Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment. Physiol Behav 2015; 149:86-94. [PMID: 26025787 DOI: 10.1016/j.physbeh.2015.05.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/16/2023]
Abstract
We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models.
Collapse
|
33
|
Grabovskaya SV, Salyha YT. Do Results of the Open Field Test Depend on the Arena Shape? NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9458-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
O'Neal SL, Lee JW, Zheng W, Cannon JR. Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 2014; 44:303-13. [PMID: 25117542 DOI: 10.1016/j.neuro.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential trace element, but excess exposure leads to accumulation in biological tissues, including the brain. Chronically high Mn levels in the brain are neurotoxic and can result in a progressive, irreversible neurological disorder known as manganism. Manganism has signs and symptoms similar to, but distinguishable from idiopathic Parkinson's disease, which include both psychological and motor disturbances. Evidence suggests that Mn exposure impacts neurotransmitter levels in the brain. However, it remains unclear if subacute, low-level Mn exposure resulted in alterations in neurotransmitter systems with concomitant behavioral deficits. The current study used high performance liquid chromatography to quantify neurotransmitter levels in rat striatum (STR), substantia nigra (SN), and hippocampus (HP). Subacute Mn exposure via i.p. injection of 15mg Mn/kg as MnCl2 caused significantly increased dopamine (DA) levels in the STR. The enhancement was accompanied by significantly elevated levels of the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the STR. In addition, levels of HVA were significantly increased in the SN and HP. These data indicate that subacute, low-level Mn exposure disrupts multiple neurotransmitter systems in the rat brain which may be responsible, in part, for observed locomotor deficits.
Collapse
Affiliation(s)
- Stefanie L O'Neal
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jang-Won Lee
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Wincott CM, Abera S, Vunck SA, Tirko N, Choi Y, Titcombe RF, Antoine SO, Tukey DS, DeVito LM, Hofmann F, Hoeffer CA, Ziff EB. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits. Neurobiol Learn Mem 2014; 114:32-9. [PMID: 24752151 DOI: 10.1016/j.nlm.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
Abstract
Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.
Collapse
Affiliation(s)
- Charlotte M Wincott
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States.
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Sarah A Vunck
- The Ohio State University, Departments of Psychology and Neuroscience, Columbus, OH 43210, United States
| | - Natasha Tirko
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Yoon Choi
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Roseann F Titcombe
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Shannon O Antoine
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - David S Tukey
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Loren M DeVito
- Center for Memory and Brain, Boston University, Boston, MA 02215, United States
| | - Franz Hofmann
- Technical University of Munich, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Charles A Hoeffer
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States; Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, United States
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
36
|
Justice JN, Carter CS, Beck HJ, Gioscia-Ryan RA, McQueen M, Enoka RM, Seals DR. Battery of behavioral tests in mice that models age-associated changes in human motor function. AGE (DORDRECHT, NETHERLANDS) 2014; 36:583-92. [PMID: 24122289 PMCID: PMC4039275 DOI: 10.1007/s11357-013-9589-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/18/2013] [Indexed: 05/13/2023]
Abstract
Motor function in humans can be characterized with tests of locomotion, strength, balance, and endurance. The aim of our project was to establish an analogous test battery to assess motor function in mice. Male C57BL/6 mice were studied at 3 (n = 87), 20 (n = 48) and 26 (n = 43) months of age. Tests assessed locomotion, strength, balance/coordination, and endurance capacity in mice. Motor function was reduced in the older groups of mice for the locomotion, strength, and endurance subdomains (p < 0.001). As indicated with a summary score, motor function declined by 7.4 % from 3 to 20 months and by 13.5 % from 20 to 26 months. Based on comparison with previously published data in humans, the magnitude and relative time course of changes were similar in mice and humans in each subdomain except balance/coordination. Power calculations confirmed that the age-associated differences depicted by several of the individual tests and domain summary scores would be sufficient to assess the efficacy of interventions aimed at prevention or treatment of motor dysfunction with aging. The current study describes a mouse model that characterizes age-associated changes in clinically relevant domains of motor function and indicates that the preclinical model can be used to test strategies to attenuate age-associated declines in motor function.
Collapse
Affiliation(s)
- Jamie N. Justice
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Hannah J. Beck
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| | - Rachel A. Gioscia-Ryan
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| | - Matthew McQueen
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| | - Roger M. Enoka
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| | - Douglas R. Seals
- />Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, 1725 Pleasant Street, Boulder, CO 80309-0354 USA
| |
Collapse
|
37
|
Kostrzewa E, Kas MJ. The use of mouse models to unravel genetic architecture of physical activity: a review. GENES BRAIN AND BEHAVIOR 2013; 13:87-103. [DOI: 10.1111/gbb.12091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 10/01/2013] [Indexed: 12/26/2022]
Affiliation(s)
- E. Kostrzewa
- Department of Translational Neuroscience, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. J. Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
38
|
A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice. Genetics 2013; 195:1385-95. [PMID: 24056412 DOI: 10.1534/genetics.113.154476] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.
Collapse
|
39
|
Careau V, Wolak ME, Carter PA, Garland T. LIMITS TO BEHAVIORAL EVOLUTION: THE QUANTITATIVE GENETICS OF A COMPLEX TRAIT UNDER DIRECTIONAL SELECTION. Evolution 2013; 67:3102-19. [DOI: 10.1111/evo.12200] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Careau
- Department of Biology; University of California; Riverside California 92521
| | - Matthew E. Wolak
- Department of Biology; University of California; Riverside California 92521
| | - Patrick A. Carter
- School of Biological Sciences; Washington State University; Pullman Washington 99164
| | - Theodore Garland
- Department of Biology; University of California; Riverside California 92521
| |
Collapse
|
40
|
Waters RP, Pringle RB, Forster GL, Renner KJ, Malisch JL, Garland T, Swallow JG. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice. Brain Res 2013; 1508:9-22. [PMID: 23352668 DOI: 10.1016/j.brainres.2013.01.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023]
Abstract
Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders.
Collapse
|
41
|
Careau V, Garland T. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 2012; 85:543-71. [PMID: 23099454 DOI: 10.1086/666970] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The study of phenotypic evolution should be an integrative endeavor that combines different approaches and crosses disciplinary and phylogenetic boundaries to consider complex traits and organisms that historically have been studied in isolation from each other. Analyses of individual variation within populations can act to bridge studies focused at the levels of morphology, physiology, biochemistry, organismal performance, behavior, and life history. For example, the study of individual variation recently facilitated the integration of behavior into the concept of a pace-of-life syndrome and effectively linked the field of energetics with research on animal personality. Here, we illustrate how studies on the pace-of-life syndrome and the energetics of personality can be integrated within a physiology-performance-behavior-fitness paradigm that includes consideration of ecological context. We first introduce key concepts and definitions and then review the rapidly expanding literature on the links between energy metabolism and personality traits commonly studied in nonhuman animals (activity, exploration, boldness, aggressiveness, sociability). We highlight some empirical literature involving mammals and squamates that demonstrates how emerging fields can develop in rather disparate ways because of historical accidents and/or particularities of different kinds of organisms. We then briefly discuss potentially interesting avenues for future conceptual and empirical research in relation to motivation, intraindividual variation, and mechanisms underlying trait correlations. The integration of performance traits within the pace-of-life-syndrome concept has the potential to fill a logical gap between the context dependency of selection and how energetics and personality are expected to interrelate. Studies of how performance abilities and/or aspects of Darwinian fitness relate to both metabolic rate and personality traits are particularly lacking.
Collapse
Affiliation(s)
- Vincent Careau
- Department of Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|