1
|
Ishikawa T, Matsuda M, Ishikawa H, Toyomura J, Ohyama A, Sakamoto N, Zaboronok A, Ishikawa E. Establishment of a novel benign meningioma cell line spontaneously immortalized under hypoxic conditions. Hum Cell 2024; 38:22. [PMID: 39612090 DOI: 10.1007/s13577-024-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Meningiomas are the most frequent brain tumors, typically benign and curable by surgery. However, some patients experience repeated recurrences from residual tumors. To address such cases, the development of novel therapeutic options is crucial. For this purpose, the availability of cell lines that possess the characteristics of benign meningiomas is essential. Here, we established a benign meningioma cell line under 3% O2 hypoxic conditions without the induction of immortalization genes. This cell line, named TKB-MEN2, has been stably grown for over two years with more than 20 passages. There were no hotspot telomerase reverse transcriptase (TERT) promoter mutations or cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) homozygous deletions, which are genetic features typical of malignant meningiomas. Cultured under hypoxic conditions, this cell line showed fewer characteristics of cellular senescence, such as morphological changes, IL-6 secretion, and lower senescence-associated b-galactosidase activity, compared to the same cell line cultured under 20% O2 conditions. This immortalized non-transgenic cell line appears to reflect the characteristics of a genuine benign meningioma, potentially allowing the identification of new therapeutic targets and the development of novel therapies for benign meningiomas.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Graduate School of Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan.
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Akihiro Ohyama
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-8575, Japan
| |
Collapse
|
2
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
3
|
Otero-Albiol D, Santos-Pereira JM, Lucena-Cacace A, Clemente-González C, Muñoz-Galvan S, Yoshida Y, Carnero A. Hypoxia-induced immortalization of primary cells depends on Tfcp2L1 expression. Cell Death Dis 2024; 15:177. [PMID: 38418821 PMCID: PMC10902313 DOI: 10.1038/s41419-024-06567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Cellular senescence is a stress response mechanism that induces proliferative arrest. Hypoxia can bypass senescence and extend the lifespan of primary cells, mainly by decreasing oxidative damage. However, how hypoxia promotes these effects prior to malignant transformation is unknown. Here we observed that the lifespan of mouse embryonic fibroblasts (MEFs) is increased when they are cultured in hypoxia by reducing the expression of p16INK4a, p15INK4b and p21Cip1. We found that proliferating MEFs in hypoxia overexpress Tfcp2l1, which is a main regulator of pluripotency and self-renewal in embryonic stem cells, as well as stemness genes including Oct3/4, Sox2 and Nanog. Tfcp2l1 expression is lost during culture in normoxia, and its expression in hypoxia is regulated by Hif1α. Consistently, its overexpression in hypoxic levels increases the lifespan of MEFs and promotes the overexpression of stemness genes. ATAC-seq and Chip-seq experiments showed that Tfcp2l1 regulates genes that control proliferation and stemness such as Sox2, Sox9, Jarid2 and Ezh2. Additionally, Tfcp2l1 can replicate the hypoxic effect of increasing cellular reprogramming. Altogether, our data suggest that the activation of Tfcp2l1 by hypoxia contributes to immortalization prior to malignant transformation, facilitating tumorigenesis and dedifferentiation by regulating Sox2, Sox9, and Jarid2.
Collapse
Affiliation(s)
- D Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - A Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - C Clemente-González
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - S Muñoz-Galvan
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Y Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - A Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Do senescence markers correlate in vitro and in situ within individual human donors? Aging (Albany NY) 2019; 10:278-289. [PMID: 29500330 PMCID: PMC5842854 DOI: 10.18632/aging.101389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
Little is known on how well senescence markers in vitro and in situ correlate within individual donors. We studied correlations between the same and different in vitro markers. Furthermore, we tested correlations between in vitro markers with in situ p16INK4a positivity. From 100 donors (20-91 years), cultured dermal fibroblasts were assessed for reactive oxygen species (ROS), telomere-associated foci (TAF), p16INK4a and senescence-associated β-gal (SAβ-gal), with/ without 0.6 µM rotenone for 3 days (short-term). In fibroblasts from 40 donors, telomere shortening, ROS and SAβ-gal were additionally assessed, with/ without 20 nM rotenone for 7 weeks (long-term). In skin from 52 donors, the number of p16INK4a positive dermal cells was assessed in situ. More than half of the correlations of the same senescence markers in vitro between duplicate experiments and between short-term versus long-term experiments were significant. Half of the different senescence marker correlations were significant within the short-term and within the long-term experiments. The different senescence markers in vitro were not significantly correlated intra-individually with in situ p16INK4a positivity.
In conclusion, the same and different senescence markers are frequently correlated significantly within and between in vitro experiments, but in vitro senescence markers are not correlated with p16INK4a positivity in situ.
Collapse
|
6
|
Maddalena LA, Selim SM, Fonseca J, Messner H, McGowan S, Stuart JA. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem Biophys Res Commun 2017; 493:246-251. [PMID: 28899780 DOI: 10.1016/j.bbrc.2017.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture.
Collapse
Affiliation(s)
- Lucas A Maddalena
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada
| | - Shehab M Selim
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada
| | - Joao Fonseca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada
| | - Holt Messner
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada
| | - Shannon McGowan
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 Canada.
| |
Collapse
|
7
|
Jagannathan L, Jose CC, Arita A, Kluz T, Sun H, Zhang X, Yao Y, Kartashov AV, Barski A, Costa M, Cuddapah S. Nuclear Factor κB1/RelA Mediates Inflammation in Human Lung Epithelial Cells at Atmospheric Oxygen Levels. J Cell Physiol 2015; 231:1611-20. [PMID: 26588041 DOI: 10.1002/jcp.25262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
Oxygen levels range from 2% to 9% in vivo. Atmospheric O2 levels (21%) are known to induce cell proliferation defects and cellular senescence in primary cell cultures. However, the mechanistic basis of the deleterious effects of higher O2 levels is not fully understood. On the other hand, immortalized cells including cancer cell lines, which evade cellular senescence are normally cultured at 21% O2 and the effects of higher O2 on these cells are understudied. Here, we addressed this problem by culturing immortalized human bronchial epithelial (BEAS-2B) cells at ambient atmospheric, 21% O2 and lower, 10% O2. Our results show increased inflammatory response at 21% O2 but not at 10% O2. We found higher RelA binding at the NF-κB1/RelA target gene promoters as well as upregulation of several pro-inflammatory cytokines in cells cultured at 21% O2. RelA knockdown prevented the upregulation of the pro-inflammatory cytokines at 21% O2, suggesting NF-κB1/RelA as a major mediator of inflammatory response in cells cultured at 21% O2. Interestingly, unlike the 21% O2 cultured cells, exposure of 10% O2 cultured cells to H2O2 did not elicit inflammatory response, suggesting increased ability to tolerate oxidative stress in cells cultured at lower O2 levels.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Adriana Arita
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yixin Yao
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Andrey V Kartashov
- Division of Allergy and Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Artem Barski
- Division of Allergy and Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
8
|
Boccardi V, Razdan N, Kaplunov J, Mundra JJ, Kimura M, Aviv A, Herbig U. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells. Aging Cell 2015; 14:372-81. [PMID: 25684230 PMCID: PMC4406666 DOI: 10.1111/acel.12289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 11/29/2022] Open
Abstract
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Geriatric Medicine and Metabolic Diseases Second University of Naples Naples Italy
| | - Neetu Razdan
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Jessica Kaplunov
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Jyoti J. Mundra
- Department of Biochemistry and Molecular Biology Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Masayuki Kimura
- Center of Human Development and Aging Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Abraham Aviv
- Center of Human Development and Aging Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Utz Herbig
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
- New Jersey Medical School‐Cancer Center Rutgers Biomedical and Health Sciences Newark NJ USA
| |
Collapse
|
9
|
Wound Management in the Presence of Peripheral Arterial Disease. TOPICS IN GERIATRIC REHABILITATION 2013. [DOI: 10.1097/tgr.0b013e31828b1b5b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Davila J, Chanda S, Ang CE, Südhof TC, Wernig M. Acute reduction in oxygen tension enhances the induction of neurons from human fibroblasts. J Neurosci Methods 2013; 216:104-9. [PMID: 23562599 DOI: 10.1016/j.jneumeth.2013.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/09/2023]
Abstract
We and others have reported the successful conversion of human fibroblasts into functional induced neuronal (iN) cells; however the reprogramming efficiencies were very low. Robust reprogramming methods must be developed before iN cells can be used for translational applications such as disease modeling or transplantation-based therapies. Here, we describe a novel approach in which we significantly enhance iN cell conversion efficiency of human fibroblast cells by reprogramming under hypoxic conditions (5% O₂). Fibroblasts were derived under high (21%) or low (5%) oxygen conditions and reprogrammed into iN cells using a combination of the four transcription factors BRN2, ASCL1, MYT1L and NEUROD1. An increase in Map2 immunostaining was only observed when fibroblasts experienced an acute drop in O₂ tension upon infection. Interestingly, cells derived and reprogrammed under hypoxic conditions did not produce more iN cells. Approximately 100% of patched cells fired action potentials in low O₂ conditions compared to 50% under high O₂ growth conditions, confirming the beneficial aspect of reprogramming under low O₂. Further characterization showed no significant difference in the intrinsic properties of iN cells reprogrammed in either condition. Surprisingly, the acute drop in oxygen tension did not affect cell proliferation or cell survival and was not synergistic with the blockade of GSK3β and Smad-mediated pathways. Our results showed that lowering the O₂ tension at the initiation of reprogramming is a simple and efficient strategy to enhance the production of iN cells which will facilitate their use for basic discovery and regenerative medicine.
Collapse
Affiliation(s)
- Jonathan Davila
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Leonore A Herzenberg
- Genetics Department, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
12
|
Utilidad del ácido docosahexaenoico en el tratamiento de la infertilidad masculina. Rev Int Androl 2011. [DOI: 10.1016/s1698-031x(11)70031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Macieira-Coelho A. Cell division and aging of the organism. Biogerontology 2011; 12:503-15. [PMID: 21732041 DOI: 10.1007/s10522-011-9346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
The capacity to regenerate cell compartments through cell proliferation is an important characteristic of many developed metazoan tissues. Pre- and post-natal development proceeds through the modifications occurring during cell division. Experiments with cultivated cells showed that cell proliferation originates changes in cell functions and coordinations that contribute to aging and senescence. The implications of the finite cell proliferation to aging of the organism is not the accumulation of cells at the end of their life cycle, but rather the drift in cell function created by cell division. Comparative gerontology shows that the regulation of the length of telomeres has no implications for aging. On the other hand there are interspecies differences in regard to the somatic cell division potential that seem to be related with the "plasticity" of the genome and with longevity, which should be viewed independently of the aging phenomenon. Telomeres may play a role in this plasticity through the regulation of chromosome recombination, and via the latter also in development.
Collapse
|
14
|
Toussaint O, Weemaels G, Debacq-Chainiaux F, Scharffetter-Kochanek K, Wlaschek M. Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology. J Cell Physiol 2011; 226:315-21. [PMID: 20857403 DOI: 10.1002/jcp.22416] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In life sciences, modelling of the in vivo conditions using in vitro models is an important tool to generate knowledge. Although aerobic organisms including mammals depend on accurate oxygen tension, mimicking physiological conditions in cell culture experiments is not very common. Due to the need for simple technical and experimental design, the requirement for simulating the in vivo oxygen tension parameters has been neglected over long time. Fortunately, due to increasing knowledge in recent years the attention has shifted towards this scientific demand. In this short review, we summarize data substantiating the necessity to adequately mimic physiological oxygen tension using cell culture models in life science research.
Collapse
Affiliation(s)
- Olivier Toussaint
- University of Namur/FUNDP, Research Unit on Cellular Biology (URBC), Namur, Belgium
| | | | | | | | | |
Collapse
|
15
|
Betts DH, Kalionis B. Viable iPSC mice: a step closer to therapeutic applications in humans? Mol Hum Reprod 2009; 16:57-62. [DOI: 10.1093/molehr/gap101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Sills ES, Alper MM, Walsh AP. Ovarian reserve screening in infertility: Practical applications and theoretical directions for research. Eur J Obstet Gynecol Reprod Biol 2009; 146:30-6. [DOI: 10.1016/j.ejogrb.2009.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/25/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
|
17
|
Hwang ES, Yoon G, Kang HT. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 2009; 66:2503-24. [PMID: 19421842 PMCID: PMC11115533 DOI: 10.1007/s00018-009-0034-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 01/10/2023]
Abstract
Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Republic of Korea.
| | | | | |
Collapse
|
18
|
Cancers and the concept of cell senescence. Biogerontology 2009; 11:211-27. [DOI: 10.1007/s10522-009-9241-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 02/04/2023]
|
19
|
Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV, Mukherjee G, Rangarajan A. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One 2009; 4:e5329. [PMID: 19390630 PMCID: PMC2669709 DOI: 10.1371/journal.pone.0005329] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/25/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Meera Saxena
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Anurag N. Paranjape
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Visalakshi Krishnan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Rajashekhar Giraddi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - M. Vijaya Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Geetashree Mukherjee
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Moldaver MV, Yegorov YE. Sparse plating increases the heterogeneity of proliferative potential of fibroblasts. Mech Ageing Dev 2009; 130:337-42. [PMID: 19428452 DOI: 10.1016/j.mad.2009.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/27/2009] [Accepted: 02/03/2009] [Indexed: 12/30/2022]
Abstract
High heterogeneity of proliferative potential in the cultures of diploid human fibroblasts was reported in many studies. It was generally believed that the heterogeneity of proliferative potential of human fibroblasts reflects the unevenness of their senescence. However we show here that immortalized (telomerized) human fibroblasts obey the same rule. Up to 50% of these cells rapidly ceased to proliferate when plated at low density in contrast to usual conditions of mass culture where at least 98% of these cells keep on proliferating. Initially, we proposed that the appearance of non-dividing or slow-dividing cells in low-density cell culture experiments could be caused by cell damage due to the experimental setup. Indeed, lowering of oxygen level and addition of conditioned medium improved colony formation, but there were a large number of non-proliferating cells (13-20%). When we sparsely plated cells on a feeder layer of cells of certain density, the portion of non-proliferating cells decreased to 2%, i.e. became the same as in mass culture. Thus, the heterogeneity of proliferative potential is partially a result of the adverse effect of low cell density.
Collapse
Affiliation(s)
- Marianna V Moldaver
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119991, Russia
| | | |
Collapse
|
21
|
Abstract
The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O(2) in the perioperative period reduces the incidence of postoperative infections. Correction of wound pO(2) may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO(2) favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising.
Collapse
Affiliation(s)
- Chandan K Sen
- The Comprehensive Wound Center, Department of Surgery and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
22
|
Panyukhin NV, Vishnyakova KS, Yegorov YE. Effect of partial oxygen pressure on survival, proliferation, and differentiation of mouse bone marrow mesenchymal stem cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2008. [DOI: 10.1134/s1990747808040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Abstract
Developmental arrest is one of the mechanisms responsible for the elevated levels of embryo demise during the first week of in vitro development. Approximately 10-15% of IVF embryos permanently arrest in mitosis at the 2- to 4-cell cleavage stage showing no indication of apoptosis. Reactive oxygen species (ROS) are implicated in this process and must be controlled in order to optimize embryo production. A stress sensor that can provide a key understanding of permanent cell cycle arrest and link ROS with cellular signaling pathway(s) is p66Shc, an adaptor protein for apoptotic-response to oxidative stress. Deletion of the p66Shc gene in mice results in extended lifespan, which is linked to their enhanced resistance to oxidative stress and reduced levels of apoptosis. p66Shc has been shown to generate mitochondrial H(2)O(2) to trigger apoptosis, but may also serve as an integration point for many signaling pathways that affect mitochondrial function. We have detected elevated levels of p66Shc and ROS within arrested embryos and believe that p66Shc plays a central role in regulating permanent embryo arrest. In this paper, we review the cellular and molecular aspects of permanent embryo arrest and speculate on the mechanism(s) and etiology of this method of embryo demise.
Collapse
Affiliation(s)
- D H Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
24
|
Favetta LA, Madan P, Mastromonaco GF, St John EJ, King WA, Betts DH. The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC DEVELOPMENTAL BIOLOGY 2007; 7:132. [PMID: 18047664 PMCID: PMC2220003 DOI: 10.1186/1471-213x-7-132] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Excessive developmental failure occurs during the first week of in vitro embryo development due to elevated levels of cell death and arrest. We hypothesize that permanently arrested embryos enter a stress-induced "senescence-like" state that is dependent on the oxidative stress-adaptor and lifespan determinant protein p66Shc. The aim of this study was to selectively diminish p66Shc gene expression in bovine oocytes and embryos using post-transcriptional gene silencing by RNA-mediated interference to study the effects of p66Shc knockdown on in vitro fertilized bovine embryos. RESULTS Approximately 12,000-24,000 short hairpin (sh)RNAi molecules specific for p66Shc were microinjected into bovine germinal vesicle stage oocytes or zygotes. Experiments were comprised of a control group undergoing IVF alone and two groups microinjected with and without p66Shc shRNAi molecules prior to IVF. The amount of p66Shc mRNA quantified by Real Time PCR was significantly (P < 0.001) lowered upon p66Shc shRNAi microinjection. This reduction was selective for p66Shc mRNA, as both histone H2a and p53 mRNA levels were not altered. The relative signal strength of p66Shc immuno-fluorescence revealed a significant reduction in the number of pixels for p66Shc shRNAi microinjected groups compared to controls (P < 0.05). A significant decrease (P < 0.001) in the incidence of arrested embryos upon p66Shc shRNAi microinjection was detected compared to IVF and microinjected controls along with significant reductions (P < 0.001) in both cleavage divisions and blastocyst development. No significant differences in p66Shc mRNA levels (P = 0.314) were observed among the three groups at the blastocyst stage. CONCLUSION These results show that p66Shc is involved in the regulation of embryo development specifically in mediating early cleavage arrest and facilitating development to the blastocyst stage for in vitro produced bovine embryos.
Collapse
Affiliation(s)
- Laura A Favetta
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|