1
|
Mołoń M, Małek G, Bzducha-Wróbel A, Kula-Maximenko M, Mołoń A, Galiniak S, Skrzypiec K, Zebrowski J. Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast. Biogerontology 2025; 26:54. [PMID: 39907841 DOI: 10.1007/s10522-025-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Aging is a multifactorial process that significantly impairs organismal function. Yeast is one of the model organisms used in aging research. Our understanding of the impact of the cell wall on aging remains elusive. Yeast cell wall is a complex and dynamic structure that plays a crucial role in the growth, survival, and aging of Saccharomyces cerevisiae. In this study, we demonstrated for the first time that the deletion of genes involved in cell wall biogenesis leads to significant impact on aging. In this study, we analysed five deletion mutants: crh2Δ, cwp1Δ, flo11Δ, gas1Δ and hsp12Δ. We showed a correlation between Raman spectroscopy signatures assigned to proteins, nucleic acids and RNA and replicative aging. Using Raman spectroscopy, we also revealed that a lack GAS1 gene results in significant changes in the biochemical composition of the cells that may increase sensitivity to environmental stressors. Our data unequivocally indicate that employing yeast as a model in aging research is appropriate, as long as the factors under analysis are not implicated in cell wall biogenesis.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland.
| | - Gabriela Małek
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Ul. Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Agnieszka Mołoń
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Sabina Galiniak
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 5, 20-031, Lublin, Poland
| | - Jacek Zebrowski
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| |
Collapse
|
2
|
Stępień K, Enkhbaatar T, Kula-Maximenko M, Jurczyk Ł, Skoneczna A, Mołoń M. Restricting the level of the proteins essential for the regulation of the initiation step of replication extends the chronological lifespan and reproductive potential in budding yeast. Biogerontology 2024; 25:859-881. [PMID: 38844751 PMCID: PMC11374879 DOI: 10.1007/s10522-024-10113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024]
Abstract
Aging is defined as a progressive decline in physiological integrity, leading to impaired biological function, including fertility, and rising vulnerability to death. Disorders of DNA replication often lead to replication stress and are identified as factors influencing the aging rate. In this study, we aimed to reveal how the cells that lost strict control of the formation of crucial for replication initiation a pre-initiation complex impact the cells' physiology and aging. As strains with the lower pre-IC control (lowPICC) we used, Saccharomyces cerevisiae heterozygous strains having only one functional copy of genes, encoding essential replication proteins such as Cdc6, Dbf4, Sld3, Sld7, Sld2, and Mcm10. The lowPICC strains exhibited a significant reduction in the respective genes' mRNA levels, causing cell cycle aberrations and doubling time extensions. Additionally, the reduced expression of the lowPICC genes led to an aberrant DNA damage response, affected cellular and mitochondrial DNA content, extended the lifespan of post-mitotic cells, and increased the yeast's reproductive potential. Importantly, we also demonstrated a strong negative correlation between the content of cellular macromolecules (RNA, proteins, lipids, polysaccharides) and aging. The data presented here will likely contribute to the future development of therapies for treating various human diseases.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601, Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601, Rzeszów, Poland.
| |
Collapse
|
3
|
Guo Q, Li J, Wang MR, Zhao M, Zhang G, Tang S, Xiong LB, Gao B, Wang FQ, Wei DZ. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme. Metab Eng 2024; 85:46-60. [PMID: 39019249 DOI: 10.1016/j.ymben.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.
Collapse
Affiliation(s)
- Qidi Guo
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacun Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming-Rui Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gege Zhang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Tang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang-Bin Xiong
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
5
|
Chuene LT, Ndlovu T, Rossouw D, Naidoo-Blassoples RK, Bauer FF. Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Res 2024; 24:foae028. [PMID: 39270658 PMCID: PMC11421375 DOI: 10.1093/femsyr/foae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.
Collapse
Affiliation(s)
- Lesiba Tyrone Chuene
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Thulile Ndlovu
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Debra Rossouw
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | | | - Florian Franz Bauer
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| |
Collapse
|
6
|
Enkhbaatar T, Skoneczny M, Stępień K, Mołoń M, Skoneczna A. Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging (Albany NY) 2023; 15:9965-9983. [PMID: 37815879 PMCID: PMC10599738 DOI: 10.18632/aging.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Aging is inevitable and affects all cell types, thus yeast cells are often used as a model in aging studies. There are two approaches to studying aging in yeast: replicative aging, which describes the proliferative potential of cells, and chronological aging, which is used for studying post-mitotic cells. While analyzing the chronological lifespan (CLS) of diploid Saccharomyces cerevisiae cells, we discovered a remarkable phenomenon: ploidy reduction during aging progression. To uncover the mechanism behind this unusual process we used yeast strains undergoing a CLS assay, looking for various aging parameters. Cell mortality, regrowth ability, autophagy induction and cellular DNA content measurements indicated that during the CLS assay, dying cells lost their DNA, and only diploids survived. We demonstrated that autophagy was responsible for the gradual loss of DNA. The nucleophagy marker activation at the start of the CLS experiment correlated with the significant drop in cell viability. The activation of piecemeal microautophagy of nucleus (PMN) markers appeared to accompany the chronological aging process until the end. Our findings emphasize the significance of maintaining at least one intact copy of the genome for the survival of post-mitotic diploid cells. During chronological aging, cellular components, including DNA, are exposed to increasing stress, leading to DNA damage and fragmentation in aging cells. We propose that PMN-dependent clearance of damaged DNA from the nucleus helps prevent genome rearrangements. However, as long as one copy of the genome can be rebuilt, cells can still survive.
Collapse
Affiliation(s)
- Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, Rzeszów 35-959, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów 35-601, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
7
|
Hou X, Wang J, Mei Y, Ge L, Qian J, Huang Y, Yang M, Li H, Wang Y, Yan Z, Peng D, Zhang J, Zhao N. Antibiofilm mechanism of dielectric barrier discharge cold plasma against Pichia manshurica. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, Herrera-Dominguez L, Kaur Aulakh S, Szyrwiel L, Yu JSL, Zelezniak A, Demichev V, Mülleder M, Papp B, Alam MT, Ralser M. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 2023; 186:63-79.e21. [PMID: 36608659 DOI: 10.1016/j.cell.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.
Collapse
Affiliation(s)
- Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Pauline Trebulle
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - StJohn Townsend
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Anja Freiwald
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin M Heineike
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Quantitative Gene Expression Research Group, MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK; Quantitative Gene Expression Research Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW2 2AZ, UK
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lucía Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lukasz Szyrwiel
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksej Zelezniak
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al-Ain, United Arab Emirates
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
9
|
Kalebina TS, Kulakovskaya EV, Rekstina VV, Trilisenko LV, Ziganshin RH, Marmiy NV, Esipov DS, Kulakovskaya TV. Effect of Deletions of the Genes Encoding Pho3p and Bgl2p on Polyphosphate Level, Stress Adaptation, and Attachments of These Proteins to Saccharomyces cerevisiae Cell Wall. BIOCHEMISTRY (MOSCOW) 2023; 88:152-161. [PMID: 37068877 DOI: 10.1134/s0006297923010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inorganic polyphosphates (polyP), according to literature data, are involved in the regulatory processes of molecular complex of the Saccharomyces cerevisiae cell wall (CW). The aim of the work was to reveal relationship between polyP, acid phosphatase Pho3p, and the major CW protein, glucanosyltransglycosylase Bgl2p, which is the main glucan-remodelling enzyme with amyloid properties. It has been shown that the yeast cells with deletion of the PHO3 gene contain more high molecular alkali-soluble polyP and are also more resistant to exposure to alkali and manganese ions compared to the wild type strain. This suggests that Pho3p is responsible for hydrolysis of the high molecular polyP on the surface of yeast cells, and these polyP belong to the stress resistance factors. The S. cerevisiae strain with deletion of the BGL2 gene is similar to the Δpho3 strain both in the level of high molecular alkali-soluble polyP and in the increased resistance to alkali and manganese. Comparative analysis of the CW proteins demonstrated correlation between the extractability of the acid phosphatase and Bgl2p, and also revealed a change in the mode of Bgl2p attachment to the CW of the strain lacking Pho3p. It has been suggested that Bgl2p and Pho3p are able to form a metabolon or its parts that connects biogenesis of the main structural polymer of the CW, glucan, and catabolism of an important regulatory polymer, polyphosphates.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Ekaterina V Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila V Trilisenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Natalia V Marmiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitriy S Esipov
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Tatiana V Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| |
Collapse
|
10
|
Loor A, Wang D, Bossier P, Nevejan N. β-1,3-Glucan/chitin unmasking in the Saccharomyces cerevisiae mutant, Δmnn9, promotes immune response and resistance of the Pacific oyster (Crassostrea gigas) to Vibrio coralliilyticus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:470-479. [PMID: 36115606 DOI: 10.1016/j.fsi.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Yeast cells can play a crucial role in immune activation in fish and shellfish predominantly due to the cell wall component β-1,3-glucan, providing protection against bacterial or viral infections. However, the immunostimulatory capacity of dietary yeast cells remains poorly studied in bivalves. To understand the role of yeast cell wall components (mannan, β-glucan and chitin) as immune activators, this study characterized the surface carbohydrate exposure of the wild-type baker's yeast Saccharomyces cerevisiae (WT) and its Δmnn9 mutant, which presents a defective mannan structure, and compared these profiles with that of β-glucan particles, using fluorescein isothiocyanate (FITC)-labeled lectin binding analysis. Then, a first trial evaluated the immunological response in Crassostrea gigas juveniles after being fed for 24 h with an algae-based diet (100A) and its 50% substituted version (based on dry weight) with WT (50A50WT) and Δmnn9 (50A50Y), and the posterior resistance of the juveniles against Vibrio coralliilyticus infection (trial 1). The mRNA expression was measured for β-glucan-binding protein (CgβGBP), Toll-like receptor 4 (CgTLR4), C-type lectin receptor 3 (CgCLec-3), myeloid differentiation factor 88 (CgMyD88), nuclear factor-kappa B (CgNFκB), lysozyme (CgLys), interleukin 17-5 (CgIL17-5), and superoxide dismutase (CgSOD), in oysters, before and 24 h after the bacterial inoculation. A second trial tested the effect of incorporating Δmnn9 into the 100A diet for 24 h at different substitution levels: 0, 5, 10, 25, and 50% (100A, 95A5Y, 90A10Y, 75A25Y, and 50A50Y), followed by the bacterial challenge with V. coralliilyticus (trial 2). Our findings showed that the outer cell wall surface of WT is largely composed of mannan, while Δmnn9 presents high exposure of β-glucan and chitin, exhibiting similar FITC-lectin binding profiles (fluorescence intensity) to β-glucan particles. A significantly higher survival after the bacterial challenge was observed in oysters fed on 50A50Y compared to those fed 50A50WT and 100A in trial 1. This better performance of 50A50Y was supported by significantly higher gene expressions of CgLys, CgSOD, CgMyD88, and CgβGBP compared to 100A, and CgSOD and CgNFκB in relation to those fed on 50A50WT, prior to the bacterial inoculation. Furthermore, improved survival was observed in oysters fed 50A50Y compared to those offered lower Δmnn9 levels and 100A in trial 2. The superior performance of Δmnn9-fed oysters is mostly associated with the elevated presence of unmasked β-glucans on Δmnn9 cell wall surface, facilitating their interactions with oyster hemocytes. Further studies are needed to evaluate administration dose and frequency of Δmnn9 to develop strategies for long-term feeding.
Collapse
Affiliation(s)
- Alfredo Loor
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Dongdong Wang
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Eigenfeld M, Kerpes R, Whitehead I, Becker T. Autofluorescence prediction model for fluorescence unmixing and age determination. Biotechnol J 2022; 17:e2200091. [DOI: 10.1002/biot.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Eigenfeld
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Roland Kerpes
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Iain Whitehead
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Thomas Becker
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| |
Collapse
|
12
|
Fang Y, Xiao H. The Aspartic Protease Yps3p and Cell Wall Glucanase Scw10p Are Novel Determinants That Enhance the Secretion of the Antitumor Triterpenoid GA-HLDOA in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2917-2926. [PMID: 35969118 DOI: 10.1021/acssynbio.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efficient bioproduction of triterpenoids is gaining increasing interest because of their significant biological applications; however, the secretion and bioproduction of triterpenoids are hindered by untapped genetic determinants. In our previous study, we observed that different engineered Saccharomyces cerevisiae strains exhibit different abilities for secreting the antitumor triterpenoid ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA). In the present study, we performed comparative proteomics analyses of the engineered strains and identified two genes, encoding an aspartic protease, YPS3, and a cell wall glucanase, SCW10, as the most effective determinants that enhance the secretion of GA-HLDOA. Compared with this control strain, strain BJ5464-r demonstrated an overexpression of YPS3 and SCW10 resulting in 3.9-fold and 4.7-fold higher secretion of GA-HLDOA, respectively, and these increases were accompanied by an increase in cell permeability. Moreover, compared with the YPS3-overexpressing strain, the SCW10-overexpressing strain had a thinner outer mannan layer. Our findings offer valuable insights into designing microbial cell factories for the efficient secretion of triterpenoids.
Collapse
Affiliation(s)
- Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| |
Collapse
|
13
|
Xiao M, Chen N, He C, Shi S, Lu Q, Lv S. Generation of Yeast Protoplasts by Lytic Actions of Iron Oxide Magnetic Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Niuniu Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Qinfu Lu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Shanshan Lv
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
14
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
15
|
Perrine-Walker F, Payne J. Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue. Braz J Microbiol 2021; 52:1077-1086. [PMID: 33948877 DOI: 10.1007/s42770-021-00515-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023] Open
Abstract
Fungal cell walls are composed of polysaccharide scaffold that changes in response to environment. The structure and biosynthesis of the wall are unique to fungi, with plant and mammalian immune systems evolved to recognize wall components. Additionally, the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. Understanding changes in the cell wall are important for fundamental understanding of cell wall dynamics and for drug development. Here we describe a screening technique to monitor the gross morphological changes of two key cell wall polysaccharides of chitin and β-1,3-glucan combined with polymerase chain reaction (PCR) genotyping. Changes in chitin and β-1,3-glucan were detected microscopically by using the dyes calcofluor white and aniline blue. Combining PCR and fluorescence microscopy, as a quick and easy screening technique, confirmed both the phenotype and genotype of the wild-type, h chitin synthase mutants (chs1Δ and chs3Δ) and one β-1,3-glucan synthase mutant fks2Δ from Saccharomyces cerevisiae knockout library. This combined screening method highlighted that the fks1Δ strain obtained commercially was in fact not FKS1 deletion strain, and instead had both wild-type genotype and phenotype. A new β-1,3-glucan synthase knockout fks1::URA3 strain was created. Fluorescence microscopy confirmed its phenotype revealing that the chitin and the new β-1,3-glucan profiles were elevated in the mother cells and in the emerging buds respectively in the fks1Δ cell walls. This combination of PCR with fluorescence microscopy is a quick and easy screening method to determine and verify morphological changes in the S. cerevisiae cell wall.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 2015, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Life Earth and Environmental Sciences Building (F22), Sydney, NSW, 2006, Australia.
| | - Jennifer Payne
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.,Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
16
|
Shah AA, Liu B, Tang Z, Wang W, Yang W, Hu Q, Liu Y, Zhang N, Liu K. Hydrogen sulfide treatment at the late growth stage of Saccharomyces cerevisiae extends chronological lifespan. Aging (Albany NY) 2021; 13:9859-9873. [PMID: 33744847 PMCID: PMC8064171 DOI: 10.18632/aging.202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Previous studies demonstrated that lifelong treatment with a slow H2S releasing donor extends yeast chronological lifespan (CLS), but it is not clear when the action of H2S benefits to CLS during yeast growth. Here, we show that short H2S treatments by using NaHS as a fast H2S releasing donor at 96 hours after inoculation extended yeast CLS while NaHS treatments earlier than 72 hours after inoculation failed to do so. To reveal the mechanism, we analyzed the transcriptome of yeast cells with or without the early and late NaHS treatments. We found that both treatments had similar effects on pathways related to CLS regulation. Follow-up qPCR and ROS analyses suggest that altered expression of some antioxidant genes by the early NaHS treatments were not stable enough to benefit CLS. Moreover, transcriptome data also indicated that some genes were regulated differently by the early and late H2S treatment. Specifically, we found that the expression of YPK2, a human SGK2 homolog and also a key regulator of the yeast cell wall synthesis, was significantly altered by the late NaHS treatment but not altered by the early NaHS treatment. Finally, the key role of YPK2 in CLS regulation by H2S is revealed by CLS data showing that the late NaHS treatment did not enhance the CLS of a ypk2 knockout mutant. This study sheds light on the molecular mechanism of CLS extension induced by H2S, and for the first time addresses the importance of H2S treatment timing for lifespan extension.
Collapse
Affiliation(s)
- Arman Ali Shah
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Binghua Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhihuai Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Nianhui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
17
|
Hong S, Huh WK. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100258. [PMID: 33837734 PMCID: PMC7948926 DOI: 10.1016/j.jbc.2021.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae, replicative life span (RLS) is primarily affected by the stability of ribosomal DNA (rDNA). The stability of the highly repetitive rDNA array is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2. Recently, the loss of Smi1, a protein of unknown molecular function that has been proposed to be involved in cell wall synthesis, has been demonstrated to extend RLS in S. cerevisiae, but the mechanism by which Smi1 regulates RLS has not been elucidated. In this study, we determined that the loss of Smi1 extends RLS in a Sir2-dependent manner. We observed that the smi1Δ mutation enhances transcriptional silencing at the rDNA locus and promotes rDNA stability. In the absence of Smi1, the stress-responsive transcription factor Msn2 translocates from the cytoplasm to the nucleus, and nuclear-accumulated Msn2 stimulates the expression of nicotinamidase Pnc1, which serves as an activator of Sir2. In addition, we observed that the MAP kinase Hog1 is activated in smi1Δ cells and that the activation of Hog1 induces the translocation of Msn2 into the nucleus. Taken together, our findings suggest that the loss of Smi1 leads to the nuclear accumulation of Msn2 and stimulates the expression of Pnc1, thereby enhancing Sir2-mediated rDNA stability and extending RLS in S. cerevisiae.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Omura F, Takagi M, Kodama Y. Compromised chitin synthesis in lager yeast affects its Congo red resistance and release of mannoproteins from the cells. FEMS Microbiol Lett 2020; 367:5974272. [PMID: 33175116 DOI: 10.1093/femsle/fnaa181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/08/2020] [Indexed: 11/14/2022] Open
Abstract
A mutant lager strain resistant to the cell wall-perturbing agent Congo red (CR) was isolated and the genetic alterations underlying CR resistance were investigated by whole genome sequencing. The parental lager strain was found to contain three distinct Saccharomyces cerevisiae (Sc)-type CHS6 (CHitin Synthase-related 6) alleles, two of which have one or two nonsense mutations in the open reading frame, leaving only one functional allele, whereas the functional allele was missing in the isolated CR-resistant strain. On the other hand, the Saccharomyces eubayanus-type CHS6 alleles shared by both the parental and mutant strains appeared to contribute poorly to chitin synthase-activating function. Therefore, the CR resistance of the mutant strain was attributable to the overall compromised activity of CHS6 gene products. The CR-resistant mutant cells exhibited less chitin production on the cell surface and smaller amounts of mannoprotein release into the medium. All these traits, in addition to the CR resistance, were complemented by the functional ScCHS6 gene. It is of great interest whether the frequent nonsense mutations found in ScCHS6 open reading frame in lager yeast strains are a consequence of the domestication process of lager yeast.
Collapse
Affiliation(s)
- Fumihiko Omura
- Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Motoshige Takagi
- Suntory System Technology Ltd., 2-1-5 Doujima, Kita-ku, Osaka-shi, Osaka 530-8204, Japan
| | - Yukiko Kodama
- Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
19
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
20
|
Changes in cell wall structure and protein set in Candida maltosa grown on hexadecane. Folia Microbiol (Praha) 2020; 66:247-253. [PMID: 33247329 DOI: 10.1007/s12223-020-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The yeast Candida maltosa is a model organism for studying adaptive changes in the structure and function of the cell wall when consuming water-insoluble nutrient sources. The cells of C. maltosa that utilize hydrocarbons contain supramolecular structures, so-called "canals" in the cell wall. Differences in protein profiles of culture liquids and cell wall extracts of C. maltosa grown on glucose and hexadecane were analyzed. Three proteins specific of cells grown on hexadecane were revealed using mass spectrometry: glycosyl hydrolase EPD2 in the culture liquid; a protein belonging to the cytochrome C family in the 0.5 mol/L NaCl extract; and PPIA_CANAL protein known as chaperone, in the 0.1% SDS extract. The possible role of these proteins in cell wall structures responsible for adaptation to hexadecane utilization is discussed.
Collapse
|
21
|
Awad D, Brueck T. Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal Bioanal Chem 2020; 412:449-462. [PMID: 31797019 PMCID: PMC6992551 DOI: 10.1007/s00216-019-02254-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 11/03/2022]
Abstract
In the last decades, microbial oils have been extensively investigated as a renewable platform for biofuel and oleochemical production. Offering a potent alternative to plant-based oils, oleaginous microorganisms have been the target of ongoing metabolic engineering aimed at increasing growth and lipid yields, in addition to specialty fatty acids. Discovery proteomics is an attractive tool for elucidating lipogenesis and identifying metabolic bottlenecks, feedback regulation, and competing biosynthetic pathways. One prominent microbial oil producer is Cutaneotrichosporon oleaginosus, due to its broad feedstock catabolism and high lipid yield. However, this yeast has a recalcitrant cell wall and high cell lipid content, which complicates efficient and unbiased protein extraction for downstream proteomic analysis. Optimization efforts of protein sample preparation from C. oleaginosus in the present study encompasses the comparison of 8 lysis methods, 13 extraction buffers, and 17 purification methods with respect to protein abundance, proteome coverage, applicability, and physiochemical properties (pI, MW, hydrophobicity in addition to COG, and GO analysis). The optimized protocol presented in this work entails a one-step extraction method utilizing an optimal lysis method (liquid homogenization), which is augmented with a superior extraction buffer (50 mM Tris, 8/2 M Urea/Thiourea, and 1% C7BzO), followed by either of 2 advantageous purification methods (hexane/ethanol or TCA/acetone), depending on subsequent applications and target studies. This work presents a significant step forward towards implementation of efficient C. oleaginosus proteome mining for the identification of potential targets for genetic optimization of this yeast to improve lipogenesis and production of specialty lipids. Graphical abstract.
Collapse
Affiliation(s)
- Dania Awad
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Thomas Brueck
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
22
|
Hu J, Dong Y, Wang W, Zhang W, Lou H, Chen Q. Deletion of Atg22 gene contributes to reduce programmed cell death induced by acetic acid stress in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:298. [PMID: 31890026 PMCID: PMC6933646 DOI: 10.1186/s13068-019-1638-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Programmed cell death (PCD) induced by acetic acid, the main by-product released during cellulosic hydrolysis, cast a cloud over lignocellulosic biofuel fermented by Saccharomyces cerevisiae and became a burning problem. Atg22p, an ignored integral membrane protein located in vacuole belongs to autophagy-related genes family; prior study recently reported that it is required for autophagic degradation and efflux of amino acids from vacuole to cytoplasm. It may alleviate the intracellular starvation of nutrition caused by Ac and increase cell tolerance. Therefore, we investigate the role of atg22 in cell death process induced by Ac in which attempt is made to discover new perspectives for better understanding of the mechanisms behind tolerance and more robust industrial strain construction. RESULTS In this study, we compared cell growth, physiological changes in the absence and presence of Atg22p under Ac exposure conditions. It is observed that disruption and overexpression of Atg22p delays and enhances acetic acid-induced PCD, respectively. The deletion of Atg22p in S. cerevisiae maintains cell wall integrity, and protects cytomembrane integrity, fluidity and permeability upon Ac stress by changing cytomembrane phospholipids, sterols and fatty acids. More interestingly, atg22 deletion increases intracellular amino acids to aid yeast cells for tackling amino acid starvation and intracellular acidification. Further, atg22 deletion upregulates series of stress response genes expression such as heat shock protein family, cell wall integrity and autophagy. CONCLUSIONS The findings show that Atg22p possessed the new function related to cell resistance to Ac. This may help us have a deeper understanding of PCD induced by Ac and provide a new strategy to improve Ac resistance in designing industrial yeast strains for bioethanol production during lignocellulosic biofuel fermentation.
Collapse
Affiliation(s)
- Jingjin Hu
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Yachen Dong
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Wei Wang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wei Zhang
- Department of Cardiovascular & Metabolic Sciences, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Hanghang Lou
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qihe Chen
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
23
|
|
24
|
Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 2018; 7:34081. [PMID: 30274593 PMCID: PMC6168286 DOI: 10.7554/elife.34081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Monica Della Rosa
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Dorottya Horkai
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Field
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
25
|
Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, Sun J. Cell wall polysaccharides: before and after autolysis of brewer's yeast. World J Microbiol Biotechnol 2018; 34:137. [PMID: 30128783 DOI: 10.1007/s11274-018-2508-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Brewer's yeast is used in production of beer since millennia, and it is receiving increased attention because of its distinct fermentation ability and other biological properties. During fermentation, autolysis occurs naturally at the end of growth cycle of yeast. Yeast cell wall provides yeast with osmotic integrity and holds the cell shape upon the cell wall stresses. The cell wall of yeast consists of β-glucans, chitin, mannoproteins, and proteins that cross linked with glycans and a glycolipid anchor. The variation in composition and amount of cell wall polysaccharides during autolysis in response to cell wall stress, laying significant impacts on the autolysis ability of yeast, either benefiting or destroying the flavor of final products. On the other hand, polysaccharides from yeast cell wall show outstanding health effects and are recommended to be used in functional foods. This article reviews the influence of cell wall polysaccharides on yeast autolysis, covering cell wall structure changings during autolysis, and functions and possible applications of cell wall components derived from yeast autolysis.
Collapse
Affiliation(s)
- Jinjing Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Mengqi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Feiyun Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chengtuo Niu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China.
| | - Jinyuan Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
26
|
Molon M, Panek A, Molestak E, Skoneczny M, Tchorzewski M, Wnuk M. Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity? Cell Cycle 2018; 17:1173-1187. [PMID: 29895191 DOI: 10.1080/15384101.2018.1464846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although a lot of effort has been put into the search for factors responsible for aging in yeast mother cells, our knowledge of cellular changes in daughter cells originating from old mothers is still very limited. It has been shown that an old mother is not able to compensate for all negative changes within its cell and therefore transfers them to the bud. In this paper, we show for the first time that daughter cells of an old mother have a reset lifespan expressed in units of time despite drastic reduction of their budding lifespan, which suggests that a single yeast cell has a fixed programmed longevity regardless of the time point at which it was originated. Moreover, in our study we found that longevity parameters are not correlated with the rDNA level, DNA damage, chromosome structure or aging parameters (budding lifespan and total lifespan).
Collapse
Affiliation(s)
- Mateusz Molon
- a Department of Biochemistry and Cell Biology , University of Rzeszow , Rzeszow , Poland
| | - Anita Panek
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| | - Eliza Molestak
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Marek Skoneczny
- d Department of Genetics , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Marek Tchorzewski
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Maciej Wnuk
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| |
Collapse
|