1
|
Alaqel SI, Imran M, Khan A, Nayeem N. Aging, vascular dysfunction, and the blood-brain barrier: unveiling the pathophysiology of stroke in older adults. Biogerontology 2025; 26:67. [PMID: 40044939 DOI: 10.1007/s10522-025-10209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The progressive decline of vascular integrity and blood-brain barrier (BBB) function is associated with aging, a major risk factor for stroke. This review describes the cellular and molecular changes in the brain microvasculature of the neurovascular unit (NVU) that contribute to the development of BBB dysfunction in aging, such as endothelial cell senescence, oxidative stress, and degradation of tight junction proteins. Stroke severity and recovery are exacerbated by BBB breakdown, leading to neuroinflammation, neurotoxicity, and cerebral oedema while identifying molecular mechanisms such as the NLRP3 inflammasome, matrix metalloproteinases (MMPs), and non-coding RNAs (e.g., miRNAs and circRNAs) that drive BBB disruption in aging and stroke. Real-time assessment of BBB permeability in stroke pathophysiology is made possible using advanced imaging techniques, such as dynamic contrast-enhanced MRI and positron emission tomography. Furthermore, biomarkers, including claudin-5, PDGFRβ, or albumin concentration, serve as markers of BBB integrity and vascular health. Restoration of BBB function and stroke recovery with emerging therapeutic strategies, including sirtuin modulators (SIRT1 and SIRT3 activators to enhance endothelial function and mitochondrial health), stem cell-derived extracellular vesicles (iPSC-sEVs for BBB repair and neuroprotection), NLRP3 inflammasome inhibitors (MCC950 to attenuate endothelial pyroptosis and inflammation), hydrogen-rich water therapy (to counteract oxidative stress-induced BBB damage), and neuropeptides such as cortistatin (to regulate neuroinflammation and BBB stability), is promising. This review explores the pathophysiological mechanisms of BBB dysfunction in aging and stroke, their relation to potential therapeutic targets, and novel approaches to improve vascular health and neuroprotection.
Collapse
Affiliation(s)
- Saleh I Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Naira Nayeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
2
|
Asmaz ED, Tan M, Genç AI, Teker HT, Ceylani T. Rejuvenating the gut: young plasma therapy improves cell proliferation, IGF-I and IGF-IR expression, and immune defense in aged male rats jejunum. Biogerontology 2025; 26:62. [PMID: 39969630 PMCID: PMC11839702 DOI: 10.1007/s10522-025-10204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
It is well known that aging affects many systems in the body. The digestive system is one of the systems most affected by aging. In our study, we examined the effects of young plasma treatment on cell proliferation, growth factors, immune defense and histological parameters in the jejunum of aged male rats. For this purpose, aged male Sprague Dawley rats (24 months, n = 7) were treated with pooled plasma (0.5 ml/day, intravenously for 30 days) collected from young (5 weeks, n = 51) rats. Aged rats that received young plasma treatment were grouped as the experimental group, while aged rats formed the control group. At the end of the experiment, the jejunums of the groups were collected and histological parameters such as villus height, crypt depth, total mucosal thickness and surface absorption areas were measured and compared. In addition, cell proliferation index and proliferation intensity in the crypt glands of the jejunum were evaluated with proliferating cell nuclear antigen and expressions of growth factors such as insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) expression and effects of immunoglobulin A (IgA), which plays a role in the defense of the digestive system against microorganisms, were examined. In the experimental group, an increase in histological parameters, IGF-R and IGF-IR expression, proliferation density, proliferation index and IgA expression density and IgA cell count were observed compared to the control group. These results suggest that young plasma treatment has a positive effect on the digestive system and may be a potential therapeutic for tissue regeneration.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Faculty of Medicine, Department of Histology and Embryology, Ankara Medipol University, Ankara, Turkey.
- Department of Electrical&Computer Engineering, Boston University, Biomedical Engineering Graduate Medical Sciences, Boston, MA, 02215, USA.
| | - Murat Tan
- Department of General Surgery, Istanbul Demiroglu Bilim University, Istanbul, Turkey
| | - Aysun Inan Genç
- Faculty of Science, Department of Biology, Kastamonu University, Kastamonu, Turkey
| | - Hikmet Taner Teker
- Faculty of Medicine, Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | - Taha Ceylani
- Department of Food Processing, Muş Alparslan University, Muş, Turkey.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey.
| |
Collapse
|
3
|
Asmaz ED, Ceylani T, Genc Aİ, Sertkaya ZT, Teker HT. Plasma therapy: a novel intervention to improve age-induced decline in deudenal cell proliferation in female rat model. Biogerontology 2025; 26:57. [PMID: 39920489 PMCID: PMC11805874 DOI: 10.1007/s10522-025-10197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Aging is associated with a disruptive decline in gastrointestinal health leading to decreased duodenal cell proliferation ultimately affecting the digestive and absorptive capacity of intestines in all species. This study investigates the novel application of blood plasma therapy to enhance duodenal cell proliferation associated with aging. In the presented study, the effects of middle aged plasma therapy on the aged rat duodenum were investigated. For this purpose, using a randomized controlled design, Female Wistar rats (aged 12-15 months) (n:7) were treated with heterologus pooled plasma (0.5 mL per day for 30 days, infused intravenously into the tail vein) collected from middle aged (6 months old, n:28) rats during all stages of the estrous cycle. The groups were divided into three as the Experimental group (aged 12-15 months) receiving middle aged plasma, the control group (aged 12-15 months) not receiving treatment, and the middle aged rat (6 months) as the positive control group. At the end of the experiment, each group's duodenum were collected, fixed, and analyzed using histological techniques for morphometric parameters. Additionally cell proliferation density and proliferation index were determined by proliferating cell nuclear antigen (PCNA). The finding of the study suggests that plasma therapy significantly improves cell proliferation, villus height (µm), crypt depth (µm), total mucosal thickness (µm), the ratio of villus height to crypt depth (µm), and surface absorption area (mm2) in the experimental group compared to control. Likewise, we determined that middle aged plasma application supports cell proliferation. However, further research is warranted to explore the underlying mechanisms and potential clinical applications of this innovative approach.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey.
- Department of Biomedical Engineering Graduate Medical Sciences, Boston University, Boston, MA, 02215, USA.
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Aysun İnan Genc
- Department of Biology, Kastamonu University, Kastamonu, Turkey
| | - Zeynep Tuğçe Sertkaya
- Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey.
| |
Collapse
|
4
|
Asmaz ED, Teker HT, Sertkaya ZT, Ceylani T, Genç Aİ. Effect of middle-age plasma therapy on ileum morphology, immune defense (IgA) and cell proliferation (Ki-67) of female aged rats. Histochem Cell Biol 2024; 163:17. [PMID: 39688692 DOI: 10.1007/s00418-024-02344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
ABSTARCT Blood plasma therapy, a new treatment method to eliminate the damage and deterioration caused by aging in many organ systems, has attracted increasing attention. The digestive tract, which cooperates with many different systems, has strong effects on our health. In the present study, the effects of plasma therapy on the ileum of elderly rats were investigated. Wistar rats (n = 7; 12-15 months old) were given pooled plasma collected from middle-age rats (6 months, n =28) (for 30 days, 0.3 ml daily, intravenously into the tail vein). At the end of the experiment, villus height, crypt depth, total mucosal thickness and surface absorption area were evaluated. In addition, the effects of IgA, which plays a role in the digestive system's defense against microorganisms, were examined. Both the cell proliferation intensity and proliferation index were evaluated in crypt cells. An increase was determined in all morphological parameters in the experimental group. Similarly, plasma application decreased IgA expression and numbers in the experimental groups. Contrarily, cell proliferation parameters showed a significant increase in the experimental groups' crypt cells. Therefore, we found that the treatment supports the digestive system in terms of both nutrient utilization and absorption-related parameters and has a protective effect on intestinal immune system parameters.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Ankara Medipol University, Ankara, Turkey.
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | | | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Aysun İnan Genç
- Department of Biology, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
5
|
Tokgoz G, Kirboga KK, Ozel F, Yucepur S, Ardahanli I, Gurbanov R. Spectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19. Talanta 2024; 279:126652. [PMID: 39106646 DOI: 10.1016/j.talanta.2024.126652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
This study explores the molecular alterations and disease progression in COVID-19 patients using ATR-FTIR spectroscopy combined with spectrochemical and explainable artificial intelligence (XAI) approaches. Blood serum samples from intubated patients (IC), those receiving hospital services (SC), and recovered patients (PC) were analyzed to identify potential spectrochemical serum biomarkers. Spectrochemical parameters such as lipid, protein, nucleic acid concentrations, and IgG glycosylation were quantified, revealing significant alterations indicative of disease severity. Notably, increased lipid content, altered protein concentrations, and enhanced protein phosphorylation were observed in IC patients compared to SC and PC groups. The serum AGR (Albumin/Globulin Ratio) index demonstrated a distinct shift among patient groups, suggesting its potential as a rapid biochemical marker for COVID-19 severity. Additionally, alterations in IgG glycosylation and glucose concentrations were associated with disease severity. Spectral analysis highlighted specific bands indicative of nucleic acid concentrations, with notable changes observed in IC patients. XAI techniques further elucidated the importance of various spectral features in predicting disease severity across patient categories, emphasizing the heterogeneity of COVID-19's impact. Overall, this comprehensive approach provides insights into the molecular mechanisms underlying COVID-19 pathogenesis and offers a transparent and interpretable prediction algorithm to aid decision-making and patient management.
Collapse
Affiliation(s)
- Gorkem Tokgoz
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey
| | - K Kubra Kirboga
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey
| | - Faik Ozel
- Department of Internal Medicine, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, 11100, Turkey
| | - Serkan Yucepur
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, 11100, Turkey
| | - Isa Ardahanli
- Department of Cardiology, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, 11100, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, 11100, Turkey.
| |
Collapse
|
6
|
Baba B, Ceylani T, Gurbanov R, Acikgoz E, Keskin S, Allahverdi H, Samgane G, Tombuloglu H, Teker HT. Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics. Arch Gerontol Geriatr 2024; 125:105517. [PMID: 38851091 DOI: 10.1016/j.archger.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1β), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Eda Acikgoz
- Department of Neuroscience, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University Ankara, Turkey.
| |
Collapse
|
7
|
Allahverdi H. Exploring the therapeutic potential of plasma from intermittent fasting and untreated rats on aging-induced liver damage. J Cell Mol Med 2024; 28:e18456. [PMID: 38923278 PMCID: PMC11199341 DOI: 10.1111/jcmm.18456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
This research aims to investigate the effects of plasma from 12-month-old intermittently fasting rats (IFpls) and untreated rats (Npls) on the liver biomolecules and histological changes in 24-month-old male Sprague-Dawley rats. Fasting rats underwent an 18-h daily fasting period and a 6-h feeding window for 35 days. The plasma was administered bi-daily, and blood samples were examined for specific liver biomolecules. Fourier transform infrared (FTIR) spectroscopy and linear discriminant analysis (LDA) was used to identify molecular profiles. Liver sections were stained for histopathological evaluation, and the expression levels of Notch signalling pathway components were assessed. Distinct molecular profiles were identified across liver biomolecules, lipids, proteins and nucleic acids with high accuracy. Notably, IFpls was found to protect against hepatic instability, microvesicular steatosis and liver fibrosis by decreasing lymphatic infiltration density and Notch pathway expression levels. Both treatments reduced protein oxidation and carbonylation, with Npls showing a pronounced decrease in protein oxidation. Furthermore, Npls increased protein conformation and glycogen/phosphate content, while IFpls increased glucose/protein content. Both IFpls and Npls induce substantial and unique alterations in liver biomolecules. IFpls offers a protective effect on various liver conditions, while Npls exhibits promising results in reducing protein oxidation and altering biomolecule content. These findings offer valuable insights for future research and potential therapeutic approaches.
Collapse
Affiliation(s)
- Hüseyin Allahverdi
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
| |
Collapse
|
8
|
Teker HT, Ceylani T, Keskin S, Samgane G, Allahverdi H, Acikgoz E, Gurbanov R. Supplementing probiotics during intermittent fasting proves more effective in restoring ileum and colon tissues in aged rats. J Cell Mol Med 2024; 28:e18203. [PMID: 38445809 PMCID: PMC10915827 DOI: 10.1111/jcmm.18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to explore the impact of SCD Probiotics supplementation on biomolecule profiles and histopathology of ileum and colon tissues during a 30-day intermittent fasting (IF) program. Male Sprague-Dawley rats, aged 24 months, underwent 18-h daily fasting and received 3 mL (1 × 108 CFU) of SCD Probiotics. The differences in biomolecule profiles were determined using FTIR Spectroscopy and two machine learning techniques, Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), which showed significant differences with high accuracy rates. Spectrochemical bands indicating alterations in lipid, protein and nucleic acid profiles in both tissues. The most notable changes were observed in the group subjected to both IF and SCD Probiotics, particularly in the colon. Both interventions, individually and in combination, decreased protein carbonylation levels. SCD Probiotics exerted a more substantial impact on membrane dynamics than IF alone. Additionally, both IF and SCD Probiotics were found to have protective effects on intestinal structure and stability by reducing mast cell density and levels of TNF-α and NF-κB expression in ileum and colon tissues, thus potentially mitigating age-related intestinal damage and inflammation. Furthermore, our results illustrated that while IF and SCD Probiotics individually instigate unique changes in ileum and colon tissues, their combined application yielded more substantial benefits. This study provides evidence for the synergistic potential of IF and SCD Probiotics in combating age-related intestinal alterations.
Collapse
Affiliation(s)
| | - Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan UniversityMuşTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department Biotechnology, Institute of Graduate EducationBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
- Central Research LaboratoryBilecik Seyh Edebali UniversityBilecikTurkey
| |
Collapse
|
9
|
Teker HT, Ceylani T, Keskin S, Samgane G, Baba B, Acıkgoz E, Gurbanov R. Reduced liver damage and fibrosis with combined SCD Probiotics and intermittent fasting in aged rat. J Cell Mol Med 2024; 28:e18014. [PMID: 37897241 PMCID: PMC10805504 DOI: 10.1111/jcmm.18014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
This study aimed to examine the impact of SCD Probiotics supplementation on liver biomolecule content and histological changes during a 30-day intermittent fasting (IF) program in 24-month-old male Sprague-Dawley rats. Rats underwent 18-h daily fasting and received 1 × 108 CFU of SCD Probiotics daily. Liver tissue biomolecules were analysed using FTIR Spectroscopy, LDA, and SVM techniques, while histopathological evaluations used Haematoxylin and eosin and Masson trichrome-stained tissues. Blood samples were collected for biochemical analysis. Gross alterations in the quantity of biomolecules were observed with individual or combined treatments. LDA and SVM analyses demonstrated a high accuracy in differentiating control and treated groups. The combination treatments led to the most significant reduction in cholesterol ester (1740 cm-1 ) and improved protein phosphorylation (A1239 /A2955 and A1080 /A1545 ) and carbonylation (A1740 /A1545 ). Individually, IF and SCD Probiotics were more effective in enhancing membrane dynamics (Bw2922 /Bw2955 ). In treated groups, histological evaluations showed decreased hepatocyte degeneration, lymphocyticinfiltration, steatosis and fibrosis. Serum ALP, LDH and albumin levels significantly increased in the SCD Probiotics and combined treatment groups. This study offers valuable insights into the potential mechanisms behind the beneficial effects of IF and SCD Probiotics on liver biomolecule content, contributing to the development of personalized nutrition and health strategies.
Collapse
Affiliation(s)
- Hikmet Taner Teker
- Department of Medical Biology and GeneticsAnkara Medipol UniversityAnkaraTurkey
| | - Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan UniversityMuşTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Burcu Baba
- Department of Medical BiochemistryYüksek İhtisas UniversityAnkaraTurkey
| | - Eda Acıkgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Şeyh Edebali UniversityBilecikTurkey
| |
Collapse
|
10
|
Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 2023; 27:2804-2816. [PMID: 37610839 PMCID: PMC10494294 DOI: 10.1111/jcmm.17926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague-Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan University MuşMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan University MuşMuşTurkey
| | - Hikmet Taner Teker
- Department of Molecular BiologyAnkara Medipol University AnkaraAnkaraTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department BiotechnologyInstitute of Graduate Education, Bilecik Şeyh Edebali University BilecikBilecikTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali University BilecikBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Seyh Edebali University BilecikBilecikTurkey
| |
Collapse
|