1
|
Zhao Y, Li T, Jiang Z, Gai C, Yu S, Xin D, Li T, Liu D, Wang Z. The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury. Neural Regen Res 2024; 19:1084-1094. [PMID: 37862212 PMCID: PMC10749591 DOI: 10.4103/1673-5374.382860] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/05/2022] [Accepted: 07/11/2023] [Indexed: 10/22/2023] Open
Abstract
We previously showed that hydrogen sulfide (H2S) has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice. However, the precise mechanism underlying the role of H2S in this situation remains unclear. In this study, we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine, a H2S precursor, attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionine β synthase (a major H2S synthetase in the brain) in the prefrontal cortex. We also found that an miR-9-5p inhibitor blocked the expression of cystathionine β synthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia. Furthermore, miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury. L-cysteine decreased the expression of CXCL11, an miR-9-5p target gene, in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3, FSTL1, SOCS2 and SOCS5, while treatment with an miR-9-5p inhibitor reversed these changes. These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoring β-synthase expression, thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Yu Y, Cai Y, Zhou H. LncRNA SNHG15 regulates autophagy and prevents cerebral ischaemia-reperfusion injury through mediating miR-153-3p/ATG5 axis. J Cell Mol Med 2024; 28:e17956. [PMID: 37845831 PMCID: PMC10902582 DOI: 10.1111/jcmm.17956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/18/2023] Open
Abstract
Ischaemic stroke is a common cerebrovascular disease. Long non-coding RNA (lncRNA) of small nucleolar RNA host gene (SNHG15) has been supposedly performed a regulatory role in many diseases. Nonetheless, the function of SNHG15 in cerebral ischaemia-reperfusion injury has not been clarified. The OGD/R of Neuro2A cells simulated the ischaemic and reperfused states of the brain. Neuro2a cell line with stable transfection of plasmid with silent expression of SNHG15 was constructed. Neuro2a cell lines transfected with miR-153-3p mimic (miR-153-3p-mimics) and miR-153-3p inhibitor (miR-153-3p-inhibition) were constructed. Expression of SNHG15, mi R-200a, FOXO3 and ATG7 in mouse brain tissue and N2a cells was identified by qRT-PCR. Western blot (WB) analysis of mouse brain tissue and Neuro2a cells revealed the presence of the proteins ATG5, Cle-caspase-3, Bax, Bcl-2, LC3 II/I and P62 (WB). The representation and distribution of LC3B were observed by immunofluorescence. The death of cells was measured using a technique called flow cytometry (FACS). SNHG15 was highly expressed in cerebral ischaemia-reperfusion injury model. Down-regulation of SNHG15 lead to lower apoptosis rate and decreased autophagy. Dual luciferase assay and co-immunoprecipitation (CoIP) found lncRNA SNHG15/miR-153-3p/ATG5. Compared to cells transfected with NC suppression, cells transfected with miR-153-3p-inhibition had substantially greater overexpression of LC 3 II/I, ATG5, cle-Caspase-3, and Bax, as determined by a recovery experiment, the apoptosis rate was elevated, yet both P62 and Bcl-2 were significantly lower and LC3+ puncta per cells were significantly increased. Co-transfection of miR-153-3p-inhibition and sh-SNHG15 could reverse these results. LncRNA SNHG15 regulated autophagy and prevented cerebral ischaemia-reperfusion injury through mediating the miR-153-3p/ATG5 axis.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| | - Yunpeng Cai
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| | - Hang Zhou
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| |
Collapse
|
3
|
Gu H, Yan W, Yang J, Liu B, Zhao X, Wang H, Xu W, Wang C, Chen Y, Dong Q, Zhu Q, Xu Y, Zou Y. Discovery of Highly Selective PARP7 Inhibitors with a Novel Scaffold for Cancer Immunotherapy. J Med Chem 2024; 67:1932-1948. [PMID: 38059836 DOI: 10.1021/acs.jmedchem.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
PARP7 plays a crucial role in cancer immunity. The inhibition of PARP7 has shown potential in boosting the immune response against cancer, making it an attractive target for cancer immunotherapy. Herein, we employed a rigid constraint strategy (reduction in molecular flexibility) to design and synthesize a series of novel indazole-7-carboxamide derivatives based on the structure of RBN-2397. Among these derivatives, (S)-XY-05 was identified as the most promising PARP7 inhibitor (IC50: 4.5 nM). Additionally, (S)-XY-05 showed enhanced selectivity toward PARP7 and improved pharmacokinetic properties (oral bioavailability: 94.60%) compared with RBN-2397 (oral bioavailability: 25.67%). In the CT26 syngeneic mouse model, monotherapy with (S)-XY-05 displayed a strong antitumor effect (TGI: 83%) by activating T-cell-mediated immunity within the tumor microenvironment. Collectively, we confirmed that (S)-XY-05 has profound effects on tumor immunity, which paves the way for future studies of PARP7 inhibitors that could be utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxin Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jieping Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hongxia Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbo Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chenghao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuyi Dong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
5
|
Gai C, Xing X, Song Y, Zhao Y, Jiang Z, Cheng Y, Xiao Y, Wang Z. Up-Regulation of miR-9-5p Inhibits Hypoxia-Ischemia Brain Damage Through the DDIT4-Mediated Autophagy Pathways in Neonatal Mice. Drug Des Devel Ther 2023; 17:1175-1189. [PMID: 37113470 PMCID: PMC10128084 DOI: 10.2147/dddt.s393362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Hypoxia-ischemia (HI) remains the leading cause of cerebral palsy and long-term neurological sequelae in infants. Despite intensive research and many therapeutic approaches, there are limited neuroprotective strategies against HI insults. Herein, we reported that HI insult significantly down-regulated microRNA-9-5p (miR-9-5p) level in the ipsilateral cortex of neonatal mice. Methods The biological function and expression patterns of protein in the ischemic hemispheres were evaluated by qRT-PCR, Western Blotting analysis, Immunofluorescence and Immunohistochemistry. Open field test and Y-maze test were applied to detect locomotor activity and exploratory behavior and working memory. Results Overexpression of miR-9-5p effectively alleviated brain injury and improved neurological behaviors following HI insult, accompanying with suppressed neuroinflammation and apoptosis. MiR-9-5p directly bound to the 3' untranslated region of DNA damage-inducible transcript 4 (DDIT4) and negatively regulated its expression. Furthermore, miR-9-5p mimics treatment down-regulated light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and Beclin-1 expression and decreased LC3B accumulation in the ipsilateral cortex. Further analysis showed that DDIT4 knockdown conspicuously inhibited the HI-up-regulated LC3 II/ LC3 I ratio and Beclin-1 expression, associating with attenuated brain damage. Conclusion The study indicates that miR-9-5p-mediated HI injury is regulated by DDIT4-mediated autophagy pathway and up-regulation of miR-9-5p level may provide a potential therapeutic effect on HI brain damage.
Collapse
Affiliation(s)
- Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaohui Xing
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Liaocheng Neuroscience Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Correspondence: Yilei Xiao, Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China, Email
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
- Zhen Wang, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People’s Republic of China, Email
| |
Collapse
|