1
|
Thangameeran SIM, Tsai ST, Liew HK, Pang CY. Examining Transcriptomic Alterations in Rat Models of Intracerebral Hemorrhage and Severe Intracerebral Hemorrhage. Biomolecules 2024; 14:678. [PMID: 38927081 PMCID: PMC11202056 DOI: 10.3390/biom14060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, revealing distinct principal component segments of normal rats compared to ICH and severe ICH rats. We employed heatmaps and volcano plots to identify differentially expressed genes and utilized bar plots and KEGG pathway analysis to elucidate the molecular pathways involved. We identified a multitude of differentially expressed genes in both the ICH and severe ICH models. Our results revealed 5679 common genes among the normal, ICH, and severe ICH groups in the upregulated genes group, and 1196 common genes in the downregulated genes, respectively. A volcano plot comparing these groups further highlighted common genes, including PDPN, TIMP1, SERPINE1, TUBB6, and CD44. These findings underscore the complex interplay of genes involved in inflammation, oxidative stress, and neuronal damage. Furthermore, pathway enrichment analysis uncovered key signaling pathways, including the TNF signaling pathway, protein processing in the endoplasmic reticulum, MAPK signaling pathway, and Fc gamma R-mediated phagocytosis, implicated in the pathogenesis of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (S.I.M.T.); (S.-T.T.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (S.I.M.T.); (S.-T.T.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
3
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Rozov SM, Permyakova NV, Sidorchuk YV, Deineko EV. Optimization of Genome Knock-In Method: Search for the Most Efficient Genome Regions for Transgene Expression in Plants. Int J Mol Sci 2022; 23:ijms23084416. [PMID: 35457234 PMCID: PMC9027324 DOI: 10.3390/ijms23084416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Plant expression systems are currently regarded as promising alternative platforms for the production of recombinant proteins, including the proteins for biopharmaceutical purposes. However, the accumulation level of a target protein in plant expression systems is still rather low compared with the other existing systems, namely, mammalian, yeast, and E. coli cells. To solve this problem, numerous methods and approaches have been designed and developed. At the same time, the random nature of the distribution of transgenes over the genome can lead to gene silencing, variability in the accumulation of recombinant protein, and also to various insertional mutations. The current research study considered inserting target genes into pre-selected regions of the plant genome (genomic “safe harbors”) using the CRISPR/Cas system. Regions of genes expressed constitutively and at a high transcriptional level in plant cells (housekeeping genes) that are of interest as attractive targets for the delivery of target genes were characterized. The results of the first attempts to deliver target genes to the regions of housekeeping genes are discussed. The approach of “euchromatization” of the transgene integration region using the modified dCas9 associated with transcription factors is considered. A number of the specific features in the spatial chromatin organization allowing individual genes to efficiently transcribe are discussed.
Collapse
|
5
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
6
|
Sousa AO, Camillo LR, Assis ETCM, Lima NS, Silva GO, Kirch RP, Silva DC, Ferraz A, Pasquali G, Costa MGC. EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. PLANTA 2020; 252:45. [PMID: 32880001 DOI: 10.1007/s00425-020-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/27/2020] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION EgPHI-1 is a member of PHI-1/EXO/EXL protein family. Its overexpression in tobacco resulted in changes in biomass partitioning, xylem fiber length, secondary cell wall thickening and composition, and lignification. Here, we report the functional characterization of a PHOSPHATE-INDUCED PROTEIN 1 homologue showing differential expression in xylem cells from Eucalyptus species of contrasting phenotypes for wood quality and growth traits. Our results indicated that this gene is a member of the PHI-1/EXO/EXL family. Analysis of the promoter cis-acting regulatory elements and expression responses to different treatments revealed that the Eucalyptus globulus PHI-1 (EgPHI-1) is transcriptionally regulated by auxin, cytokinin, wounding and drought. EgPHI-1 overexpression in transgenic tobacco changed the partitioning of biomass, favoring its allocation to shoots in detriment of roots. The stem of the transgenic plants showed longer xylem fibers and reduced cellulose content, while the leaf xylem had enhanced secondary cell wall thickness. UV microspectrophotometry of individual cell wall layers of fibers and vessels has shown that the transgenic plants exhibit differences in the lignification of S2 layer in both cell types. Taken together, the results suggest that EgPHI-1 mediates the elongation of secondary xylem fibers, secondary cell wall thickening and composition, and lignification, making it an attractive target for biotechnological applications in forestry and biofuel crops.
Collapse
Affiliation(s)
- Aurizangela O Sousa
- Centro Multidisciplinar do Campus de Luís Eduardo Magalhães, Universidade Federal do Oeste da Bahia, Luís Eduardo Magalhães, Bahia, 47850-000, Brazil
| | - Luciana R Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Elza Thaynara C M Assis
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Nathália S Lima
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Genilson O Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Rochele P Kirch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Delmira C Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo- USP, Lorena, São Paulo, 12602-810, Brazil
| | - Giancarlo Pasquali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Marcio G C Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil.
| |
Collapse
|
7
|
Lup SD, Tian X, Xu J, Pérez-Pérez JM. Wound signaling of regenerative cell reprogramming. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:178-187. [PMID: 27457994 DOI: 10.1016/j.plantsci.2016.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 05/08/2023]
Abstract
Plants are sessile organisms that must deal with various threats resulting in tissue damage, such as herbivore feeding, and physical wounding by wind, snow or crushing by animals. During wound healing, phytohormone crosstalk orchestrates cellular regeneration through the establishment of tissue-specific asymmetries. In turn, hormone-regulated transcription factors and their downstream targets coordinate cellular responses, including dedifferentiation, cell cycle reactivation and vascular regeneration. By comparing different examples of wound-induced tissue regeneration in the model plant Arabidopsis thaliana, a number of key regulators of developmental plasticity of plant cells have been identified. We present the relevance of these findings and of the dynamic establishment of differential auxin gradients for cell reprogramming after wounding.
Collapse
Affiliation(s)
- Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Alicante, Spain
| | - Xin Tian
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Xu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | |
Collapse
|
8
|
Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, Ezura H, Imamura J, Sugimoto K. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. JOURNAL OF PLANT RESEARCH 2015; 128:389-97. [PMID: 25810222 DOI: 10.1007/s10265-015-0714-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/17/2015] [Indexed: 05/20/2023]
Abstract
Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana. Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus, activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Curr Biol 2011; 21:508-14. [DOI: 10.1016/j.cub.2011.02.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023]
|
10
|
Zhou C, Yin Y, Dam P, Xu Y. Identification of novel proteins involved in plant cell-wall synthesis based on protein-protein interaction data. J Proteome Res 2010; 9:5025-37. [PMID: 20687615 DOI: 10.1021/pr100249c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The plant cell wall is mainly composed of polysaccharides, representing the richest source of biomass for future biofuel production. Currently, the majority of the cell-wall synthesis-related (CWSR) proteins are unknown even for model plant Arabidopsis thaliana. We report a computational framework for predicting CWSR proteins based on protein-protein interaction (PPI) data and known CWSR proteins. We predict a protein to be a CWSR protein if it interacts with known CWSR proteins (seeds) with high statistical significance. Using this technique, we predicted 100 candidate CWSR proteins in Arabidopsis thaliana, 8 of which were experimentally confirmed by previous reports. Forty-two candidates have either independent supporting evidence or strong functional relevance to cell-wall synthesis and, hence, are considered as the most reliable predictions. For 33 of the predicted CWSR proteins, we have predicted their detailed functional roles in CWS, based on analyses of their domain architectures, phylogeny, and current functional annotation in conjunction with a literature search. We present the constructed PPIs covering all the known and predicted CWSR proteins at http://csbl.bmb.uga.edu/∼zhouchan/CellWallProtein/. The 42 most reliable candidates provide useful targets to experimentalists for further investigation, and the PPI data constructed in this work provides new information for cell-wall research.
Collapse
Affiliation(s)
- Chan Zhou
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
11
|
Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 2009; 106:653-7. [PMID: 19124770 DOI: 10.1073/pnas.0811861106] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicitor activity, we tested representatives from three different elicitor classes on the time course of defense-related phytohormone production, including ethylene (E), jasmonic acid (JA), and salicylic acid, in a range of plant species spanning angiosperm diversity. All families examined responded to at least one elicitor class with significant increases in E and JA production within 1 to 2 h after treatment, yet elicitation activity among species was highly idiosyncratic. The fatty-acid amino acid conjugate volicitin exhibited the widest range of phytohormone and volatile inducing activity, which spanned maize (Zea mays), soybean (Glycine max), and eggplant (Solanum melongena). In contrast, the activity of inceptin-related peptides, originally described in cowpea (Vigna unguiculata), was limited even within the Fabaceae. Similarly, caeliferin A16:0, a disulfooxy fatty acid from grasshoppers, was the only elicitor with demonstrable activity in Arabidopsis thaliana. Although precise mechanisms remain unknown, the unpredictable nature of elicitor activity between plant species supports the existence of specific receptor-ligand interactions mediating recognition. Despite the lack of an ideal plant model for studying the action of numerous elicitors, E and JA exist as highly conserved and readily quantifiable markers for future discoveries in this field.
Collapse
|