1
|
Ratsoma FM, Mokoena NZ, Santana QC, Wingfield BD, Steenkamp ET, Motaung TE. Characterization of the Fusarium circinatum biofilm environmental response role. J Basic Microbiol 2024; 64:e2300536. [PMID: 38314962 DOI: 10.1002/jobm.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
The capacity to form biofilms is a common trait among many microorganisms present on Earth. In this study, we demonstrate for the first time that the fatal pine pitch canker agent, Fusarium circinatum, can lead a biofilm-like lifestyle with aggregated hyphal bundles wrapped in extracellular matrix (ECM). Our research shows F. circinatum's ability to adapt to environmental changes by assuming a biofilm-like lifestyle. This was demonstrated by varying metabolic activities exhibited by the biofilms in response to factors like temperature and pH. Further analysis revealed that while planktonic cells produced small amounts of ECM per unit of the biomass, heat- and azole-exposed biofilms produced significantly more ECM than nonexposed biofilms, further demonstrating the adaptability of F. circinatum to changing environments. The increased synthesis of ECM triggered by these abiotic factors highlights the link between ECM production in biofilm and resistance to abiotic stress. This suggests that ECM-mediated response may be one of the key survival strategies of F. circinatum biofilms in response to changing environments. Interestingly, azole exposure also led to biofilms that were resistant to DNase, which typically uncouples biofilms by penetrating the biofilm and degrading its extracellular DNA; we propose that DNases were likely hindered from reaching target cells by the ECM barricade. The interplay between antifungal treatment and DNase enzyme suggests a complex relationship between eDNA, ECM, and antifungal agents in F. circinatum biofilms. Therefore, our results show how a phytopathogen's sessile (biofilm) lifestyle could influence its response to the surrounding environment.
Collapse
Affiliation(s)
- Francinah M Ratsoma
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nthabiseng Z Mokoena
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Agricultural Research Council (ARC) Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Thabiso E Motaung
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Uesaka K, Inaba K, Nishioka N, Kojima S, Homma M, Ihara K. Deciphering the genomes of motility-deficient mutants of Vibrio alginolyticus 138-2. PeerJ 2024; 12:e17126. [PMID: 38515459 PMCID: PMC10956519 DOI: 10.7717/peerj.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The motility of Vibrio species plays a pivotal role in their survival and adaptation to diverse environments and is intricately associated with pathogenicity in both humans and aquatic animals. Numerous mutant strains of Vibrio alginolyticus have been generated using UV or EMS mutagenesis to probe flagellar motility using molecular genetic approaches. Identifying these mutations promises to yield valuable insights into motility at the protein structural physiology level. In this study, we determined the complete genomic structure of 4 reference specimens of laboratory V. alginolyticus strains: a precursor strain, V. alginolyticus 138-2, two strains showing defects in the lateral flagellum (VIO5 and YM4), and one strain showing defects in the polar flagellum (YM19). Subsequently, we meticulously ascertained the specific mutation sites within the 18 motility-deficient strains related to the polar flagellum (they fall into three categories: flagellar-deficient, multi-flagellar, and chemotaxis-deficient strains) by whole genome sequencing and mapping to the complete genome of parental strains VIO5 or YM4. The mutant strains had an average of 20.6 (±12.7) mutations, most of which were randomly distributed throughout the genome. However, at least two or more different mutations in six flagellar-related genes were detected in 18 mutants specifically selected as chemotaxis-deficient mutants. Genomic analysis using a large number of mutant strains is a very effective tool to comprehensively identify genes associated with specific phenotypes using forward genetics.
Collapse
Affiliation(s)
- Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Keita Inaba
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Noriko Nishioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Maekawa Y, Matsui K, Okamoto K, Shimasaki T, Ohtsuka H, Tani M, Ihara K, Aiba H. Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe. Mol Genet Genomics 2024; 299:20. [PMID: 38424265 DOI: 10.1007/s00438-024-02107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.
Collapse
Affiliation(s)
- Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kotaro Matsui
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keisuke Okamoto
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
4
|
Rosales AB, Causserand C, Coetsier C, Formosa-Dague C. Probing the reduction of adhesion forces between biofilms and anti-biofouling filtration membrane surfaces using FluidFM technology. Colloids Surf B Biointerfaces 2024; 234:113701. [PMID: 38101142 DOI: 10.1016/j.colsurfb.2023.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biofouling is a persistent problem in many sectors (healthcare, medicine, marine, and membrane filtration processes). To control the biofouling of surfaces, it is essential to overcome or reduce the adhesion forces between biofilms and surfaces. To access and understand the molecular basis of these interactions, atomic force microscopy (AFM) is a well-suited technology that can measure adhesion forces at the piconewton level. However, AFM-based existing methods only probe interactions between individual cells and surfaces, which is not representative of realistic conditions given that bacteria mainly exist in biofilms. We develop here an original method using FluidFM, a combination of AFM and microfluidics, to probe the adhesion forces between biofilms and filtration membranes modified with an anti-biofouling agent, vanillin. This strategy involves i) growing bacterial biofilms on micrometer-sized polystyrene beads, ii) aspirating these biofilm beads at the aperture of microfluidic cantilevers and iii) using them as probes in force spectroscopy experiments. The results obtained first showed that COOH-functionalized polystyrene beads are more suitable for bacterial growth, and that biofilms obtained after 3 h of incubation could be used with FluidFM. Then, biofilm-scale force spectroscopy experiments showed a significant decrease in adhesion forces, adhesion work, and adhesion events after membrane modification, demonstrating the potential of vanillin-coated membranes to reduce biofouling. In addition, the comparison between results at the individual cell and biofilm scales highlighted the complexity of polymeric matrix unbinding and/or unfolding in the biofilm, showing that individual cells behave differently from biofilms. Overall, this method could have implications in the fields of materials science, chemical engineering, health, and the environment.
Collapse
Affiliation(s)
- Abigail Burato Rosales
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Clémence Coetsier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France.
| | - Cécile Formosa-Dague
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31400 Toulouse, France; Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France.
| |
Collapse
|
5
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
7
|
Yamada M, Kawamura M, Yamada T. Preparation of bioplastic consisting of salmon milt DNA. Sci Rep 2022; 12:7423. [PMID: 35523933 PMCID: PMC9076882 DOI: 10.1038/s41598-022-11482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
The microplastic that pollutes the ocean is a serious problem around the world. The bioplastic consisting of biopolymers which is degraded in nature, is one of the strategies to solve this problem. Although the bioplastics consisting of protein, polysaccharide, polylactic acid, etc., have been reported, which consist of DNA, one of the most important materials in the genetic process, have not been reported to the best of our knowledge. In addition, a large amount of DNA-containing materials, such as salmon milts, is discarded as industrial waste around the world. Therefore, we demonstrated the preparation of a bioplastic consisting of salmon milt DNA. The DNA plastic was prepared by the immersion of a DNA pellet in a formaldehyde (HCHO) solution and heating. As a result, the water-stable DNA plastics were obtained at the HCHO concentration of 20% or more. Particularly, the DNA plastic with a 25% HCHO treatment showed water-insoluble, thermally stable, and highly mechanical properties. These are due to the formation of a three-dimensional network via the crosslinking reaction between the DNA chains. In addition, since DNA in plastic possesses the double-stranded structure, these plastics effectively accumulated the DNA intercalator, such as ethidium bromide. Furthermore, the DNA plastics indicated a biodegradable property in a nuclease-containing aqueous solution and the biodegradable stability was able to be controlled by the HCHO concentration. Therefore, salmon milt DNA has shown the potential to be a biodegradable plastic.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita-ku, Okayama, 700-0005, Japan.
| | - Midori Kawamura
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
8
|
James JL, Umapathy A, Srinivasan S, Barker CN, Brooks A, Hearn J, Chhana A, Williams E, Sheppard H, McGlashan SR. The Chondrogenic Potential of First-Trimester and Term Placental Mesenchymal Stem/Stromal Cells. Cartilage 2021; 13:544S-558S. [PMID: 34521248 PMCID: PMC8804733 DOI: 10.1177/19476035211044822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Mesenchymal stem/stromal cells (MSCs) are a well-established cell source for cartilage engineering, but challenges remain as differentiation often results in chondrocyte hypertrophy. Chondrogenic potential also varies with MSC source and donor age. We assessed the chondrogenic potential of first-trimester and term placental MSCs and compared their response to commonly used bone marrow MSCs (BM-MSCs). DESIGN MSCs were isolated from first-trimester and term placentae. BM-MSCs were commercially obtained. Chondrogenesis was induced by micromass culture in commercial chondrogenic media for 7, 14, or 21 days. Pellets were assessed for glycosaminoglycan (GAG) content, and types I, II, and X collagen. Gene expression was profiled using Qiagen RT2 human MSC arrays. RESULTS At day 0, first-trimester and term MSCs expression levels of many chondrogenic genes to BM-MSC after 21 days of culture. Only first trimester MSCs showed significant changes in chondrogenic gene expression during induction compared to day 0 undifferentiated MSCs (greater BMP4, KAT2B, and reduced GDF6 expression). Additionally, first-trimester MSCs showed significantly greater expression of ABCB1 (at days 14 and 21) and BMP4 (at days 7, 14, 21) compared with term MSCs. Both first-trimester and term pellets showed increased GAG content over time and term MSCs had significantly GAG greater compared with BM-MSCs at days 7 and 14. Type II collagen was present in all pellets but unlike BM-MSCs, type I collagen was not observed in first-trimester or term MSC pellets. CONCLUSIONS These data highlight differences in BM-MSC and placental MSC chondrogenesis and demonstrate that placental MSCs may be an alternative cell source.
Collapse
Affiliation(s)
- Joanna L. James
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Anandita Umapathy
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Sonia Srinivasan
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Claire N. Barker
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand
| | - Anna Brooks
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - James Hearn
- Molecular Medicine and Pathology, The
University of Auckland, Auckland, New Zealand
| | - Ashika Chhana
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand
| | - Eloise Williams
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Hilary Sheppard
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Sue R. McGlashan
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand,Sue R. McGlashan, Department of Anatomy and
Medical Imaging, School of Medical Sciences, The University of Auckland, Faculty
of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 1142, New
Zealand.
| |
Collapse
|
9
|
Bjornson M, Pimprikar P, Nürnberger T, Zipfel C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. NATURE PLANTS 2021; 7:579-586. [PMID: 33723429 PMCID: PMC7610817 DOI: 10.1038/s41477-021-00874-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.
Collapse
Affiliation(s)
- Marta Bjornson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Priya Pimprikar
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Bjornson M, Kajala K, Zipfel C, Ding P. Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue. Bio Protoc 2020; 10:e3799. [PMID: 33659453 DOI: 10.21769/bioprotoc.3799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Transcriptome analysis can provide clues to biological processes affected in different genetic backgrounds or/and under various conditions. The price of RNA sequencing (RNA-seq) has decreased enough so that medium- to large-scale transcriptome analyses in a range of conditions are feasible. However, the price and variety of options for library preparation of RNA-seq can still be daunting to those who would like to use RNA-seq for their first time or for a single experiment. Among the criteria for selecting a library preparation protocol are the method of RNA isolation, nucleotide fragmentation to obtain desired size range, and library indexing to pool sequencing samples for multiplexing. Here, we present a high-quality and a high-throughput option for preparing libraries from polyadenylated mRNA for transcriptome analysis. Both high-quality and high-throughput protocol options include steps of mRNA enrichment through magnetic bead-enabled precipitation of the poly-A tail, cDNA synthesis, and then fragmentation and adapter addition simultaneously through Tn5-mediated 'tagmentation'. All steps of the protocols have been validated with Arabidopsis thaliana leaf and seedling tissues and streamlined to work together, with minimal cost in money and time, thus intended to provide a beginner-friendly start-to-finish RNA-seq library preparation for transcriptome analysis.
Collapse
Affiliation(s)
- Marta Bjornson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom.,Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom.,Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
11
|
Smith LD, Willard MC, Smith JP, Cunningham BT. Development of a Linker-Mediated Immunoassay Using Chemically Transitioned Nanosensors. Anal Chem 2020; 92:3627-3635. [DOI: 10.1021/acs.analchem.9b04518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucas D. Smith
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Michael C. Willard
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Jordan P. Smith
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Totoiu CA, Phillips JM, Reese AT, Majumdar S, Girguis PR, Raston CL, Weiss GA. Vortex fluidics-mediated DNA rescue from formalin-fixed museum specimens. PLoS One 2020; 15:e0225807. [PMID: 31999723 PMCID: PMC6992170 DOI: 10.1371/journal.pone.0225807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
DNA from formalin-preserved tissue could unlock a vast repository of genetic information stored in museums worldwide. However, formaldehyde crosslinks proteins and DNA, and prevents ready amplification and DNA sequencing. Formaldehyde acylation also fragments the DNA. Treatment with proteinase K proteolyzes crosslinked proteins to rescue the DNA, though the process is quite slow. To reduce processing time and improve rescue efficiency, we applied the mechanical energy of a vortex fluidic device (VFD) to drive the catalytic activity of proteinase K and recover DNA from American lobster tissue (Homarus americanus) fixed in 3.7% formalin for >1-year. A scan of VFD rotational speeds identified the optimal rotational speed for recovery of PCR-amplifiable DNA and while 500+ base pairs were sequenced, shorter read lengths were more consistently obtained. This VFD-based method also effectively recovered DNA from formalin-preserved samples. The results provide a roadmap for exploring DNA from millions of historical and even extinct species.
Collapse
Affiliation(s)
- Christian A. Totoiu
- Department of Chemistry, University of California, Irvine, California, United States of America
| | - Jessica M. Phillips
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Aspen T. Reese
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, California, United States of America
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Gregory A. Weiss
- Department of Chemistry, University of California, Irvine, California, United States of America
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California, Irvine, California, United States of America
| |
Collapse
|
13
|
Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G. How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells. Front Microbiol 2020; 10:3056. [PMID: 32010107 PMCID: PMC6978704 DOI: 10.3389/fmicb.2019.03056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Halobacterium salinarum R1 is an extremely halophilic archaeon capable of adhesion and forming biofilms, allowing it to adjust to a range of growth conditions. We have recently shown that living in biofilms facilitates its survival under Cu2+ and Ni2+ stress, with specific rearrangements of the biofilm architecture observed following exposition. In this study, quantitative analyses were performed by SWATH mass spectrometry to determine the respective proteomes of planktonic and biofilm cells after exposition to Cu2+ and Ni2+.Quantitative data for 1180 proteins were obtained, corresponding to 46% of the predicted proteome. In planktonic cells, 234 of 1180 proteins showed significant abundance changes after metal ion treatment, of which 47% occurred in Cu2+ and Ni2+ treated samples. In biofilms, significant changes were detected for 52 proteins. Only three proteins changed under both conditions, suggesting metal-specific stress responses in biofilms. Deletion strains were generated to assess the potential role of selected target genes. Strongest effects were observed for ΔOE5245F and ΔOE2816F strains which exhibited increased and decreased biofilm mass after Ni2+ exposure, respectively. Moreover, EPS obviously plays a crucial role in H. salinarum metal ion resistance. Further efforts are required to elucidate the molecular basis and interplay of additional resistance mechanisms.
Collapse
Affiliation(s)
- Sabrina Völkel
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nathalie Benker
- Atmospheric Aerosol, Institute of Applied Geosciences, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Losensky
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
14
|
Zhou YF, Li L, Tao MT, Sun J, Liao XP, Liu YH, Xiong YQ. Linezolid and Rifampicin Combination to Combat cfr-Positive Multidrug-Resistant MRSA in Murine Models of Bacteremia and Skin and Skin Structure Infection. Front Microbiol 2020; 10:3080. [PMID: 31993042 PMCID: PMC6971047 DOI: 10.3389/fmicb.2019.03080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023] Open
Abstract
Linezolid resistance mediated by the cfr gene in MRSA represents a global concern. We investigated relevant phenotype differences between cfr-positive and -negative MRSA that contribute to pathogenesis, and the efficacy of linezolid-based combination therapies in murine models of bacteremia and skin and skin structure infection (SSSI). As a group, cfr-positive MRSA exhibited significantly reduced susceptibilities to the host defense peptides tPMPs, human neutrophil peptide-1 (hNP-1), and cathelicidin LL-37 (P < 0.01). In addition, increased binding to fibronectin (FN) and endothelial cells paralleled robust biofilm formation in cfr-positive vs. -negative MRSA. In vitro phenotypes of cfr-positive MRSA translated into poor outcomes of linezolid monotherapy in vivo in murine bacteremia and SSSI models. Importantly, rifampicin showed synergistic activity as a combinatorial partner with linezolid, and the EC50 of linezolid decreased 6-fold in the presence of rifampicin. Furthermore, this combination therapy displayed efficacy against cfr-positive MRSA at clinically relevant doses. Altogether, these data suggest that the use of linezolid in combination with rifampicin poses a viable therapeutic alternative for bacteremia and SSSI caused by cfr-positive multidrug resistant MRSA.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Meng-Ting Tao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Q Xiong
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
15
|
Serrage HJ, Joanisse S, Cooper PR, Palin W, Hadis M, Darch O, Philp A, Milward MR. Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number. JOURNAL OF BIOPHOTONICS 2019; 12:e201800411. [PMID: 30701682 PMCID: PMC7065641 DOI: 10.1002/jbio.201800411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Photobiomodulation (PBM) is the application of light to promote tissue healing. Current indications suggest PBM induces its beneficial effects in vivo through upregulation of mitochondrial activity. However, how mitochondrial content influences such PBM responses have yet to be evaluated. Hence, the current study assessed the biological response of cells to PBM with varying mitochondrial contents. METHODS DNA was isolated from myoblasts and myotubes (differentiated myoblasts), and mitochondrial DNA (mtDNA) was amplified and quantified using a microplate assay. Cells were seeded in 96-wellplates, incubated overnight and subsequently irradiated using a light-emitting diode array (400, 450, 525, 660, 740, 810, 830 and white light, 24 mW/cm2 , 30-240 seconds, 0.72-5.76J/cm2 ). The effects of PBM on markers of mitochondrial activity including reactive-oxygen-species and real-time mitochondrial respiration (Seahorse XFe96) assays were assessed 8 hours post-irradiation. Datasets were analysed using general linear model followed by one-way analysis of variance (and post hoc-Tukey tests); P = 0.05). RESULTS Myotubes exhibited mtDNA levels 86% greater than myoblasts (P < 0.001). Irradiation of myotubes at 400, 450 or 810 nm induced 53%, 29% and 47% increases (relative to non-irradiated control) in maximal respiratory rates, respectively (P < 0.001). Conversely, irradiation of myoblasts at 400 or 450 nm had no significant effect on maximal respiratory rates. CONCLUSION This study suggests that mitochondrial content may influence cellular responses to PBM and as such explain the variability of PBM responses seen in the literature.
Collapse
Affiliation(s)
- Hannah J. Serrage
- School of DentistryCollege of Medical and Dental Sciences, Institute of Clinical Sciences, University of BirminghamBirminghamUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- Philips ResearchEindhovenThe Netherlands
| | - Sophie Joanisse
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Paul R. Cooper
- School of DentistryCollege of Medical and Dental Sciences, Institute of Clinical Sciences, University of BirminghamBirminghamUK
| | - William Palin
- School of DentistryCollege of Medical and Dental Sciences, Institute of Clinical Sciences, University of BirminghamBirminghamUK
| | - Mohammed Hadis
- School of DentistryCollege of Medical and Dental Sciences, Institute of Clinical Sciences, University of BirminghamBirminghamUK
| | - Owen Darch
- Philips ResearchEindhovenThe Netherlands
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | - Mike R. Milward
- School of DentistryCollege of Medical and Dental Sciences, Institute of Clinical Sciences, University of BirminghamBirminghamUK
| |
Collapse
|
16
|
Slepchenko KG, Corbin KL, Nunemaker CS. Comparing methods to normalize insulin secretion shows the process may not be needed. J Endocrinol 2019; 241:JOE-18-0542.R2. [PMID: 30870813 PMCID: PMC6983291 DOI: 10.1530/joe-18-0542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/14/2019] [Indexed: 01/06/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) is a well-accepted method to investigate the physiological and pathophysiological function of islets. However, there is little consensus about which method is best for normalizing and presenting GSIS data. In this study, we evaluated the sufficiency of islet area, total protein, total DNA, and total insulin content as parameters to normalize GSIS data. First, we tested if there is a linear correlation between each parameter and the number of islets (10, 20, 30, and 40 islets). Islet area, total protein, and insulin content produced excellent linear correlations with islet number (R2 >0.9 for each) from the same islet material. Insulin secretion in 11mM glucose also correlated reasonably well for islet area (R2=0.69), protein (R2=0.49), and insulin content (R2=0.58). DNA content was difficult to reliably measure and was excluded from additional comparisons. We next measured GSIS for 18 replicates of 20 islets each, measuring 3mM and 11mM glucose to calculate the stimulation index and to compare each normalization parameter. Using these similar islet masses for each replicate, none of the parameters produced linear correlations with GSIS (R2<0.05), suggesting that inherent differences in GSIS dominate small differences in islet mass. We conclude that when comparing GSIS for islets of reasonably similar size (<50% variance), normalization does not improve the representation of GSIS data. Normalization may be beneficial when substantial differences in islet mass are involved. In such situations, we suggest that using islet cross-sectional area is superior to other commonly used techniques for normalizing GSIS data.
Collapse
Affiliation(s)
- Kira G. Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Kathryn L. Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| |
Collapse
|
17
|
Kim M, Jeon J, Kim J. Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm. Sci Rep 2018; 8:13313. [PMID: 30190485 PMCID: PMC6127218 DOI: 10.1038/s41598-018-31275-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans is a component of oral plaque biofilm that accumulates on the surface of teeth. The biofilm consists of extracellular components including extracellular DNA (eDNA). This study was conducted to investigate the factors that may affect the eDNA levels of S. mutans in biofilms. For the study, S. mutans UA159 biofilms were formed for 52 h on hydroxyapatite (HA) discs in 0% (w/v) sucrose +0% glucose, 0.5% sucrose, 1% sucrose, 0.5% glucose, 1% glucose, or 0.5% sucrose +0.5% glucose. Acidogenicity of S. mutans in the biofilms was measured after biofilm formation (22 h) up to 52 h. eDNA was collected after 52 h biofilm formation and measured using DNA binding fluorescent dye, SYBR Green I. Biofilms cultured in 0.5% sucrose or glucose had more eDNA and colony forming units (CFUs) and less exopolysaccharides (EPSs) than the biofilms cultured in 1% sucrose or glucose at 52 h, respectively. The biofilms formed in 0% sucrose +0% glucose maintained pH around 7, while the biofilms grown in 0.5% sucrose had more acidogenicity than those grown in 1% sucrose, and the same pattern was shown in glucose. In conclusion, the results of this study show that the number of S. mutans in biofilms affects the concentrations of eDNA as well as the acidogenicity of S. mutans in the biofilms. In addition, the thickness of EPS is irrelevant to eDNA aggregation within biofilms.
Collapse
Affiliation(s)
- Miah Kim
- Department of Conservative Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegon Kim
- Department of Pediatric Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea.
| |
Collapse
|
18
|
Ramadass B, Rani BS, Pugazhendhi S, John K, Ramakrishna BS. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population. Indian J Med Res 2017; 145:237-246. [PMID: 28639601 PMCID: PMC5501057 DOI: 10.4103/ijmr.ijmr_639_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & OBJECTIVES The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. METHODS Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. RESULTS Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. INTERPRETATION & CONCLUSIONS Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.
Collapse
Affiliation(s)
- Balamurugan Ramadass
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - B. Sandya Rani
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - K.R. John
- Department of Community Health, Christian Medical College, Vellore, Chennai, India
- Institute of Gastroenterology, SRM Institutes for Medical Science, Chennai, India
| | - Balakrishnan S. Ramakrishna
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
- Institute of Gastroenterology, SRM Institutes for Medical Science, Chennai, India
| |
Collapse
|
19
|
de Souza AH, Santos LRB, Roma LP, Bensellam M, Carpinelli AR, Jonas JC. NADPH oxidase-2 does not contribute to β-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice. Mol Cell Endocrinol 2017; 439:354-362. [PMID: 27664519 DOI: 10.1016/j.mce.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional β-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on β-cell stimulus-secretion coupling events and on β-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and β-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with β-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of β-cell survival and function.
Collapse
Affiliation(s)
- Arnaldo H de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laila R B Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Leticia P Roma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mohammed Bensellam
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Angelo R Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium.
| |
Collapse
|
20
|
Abstract
Yeasts and filamentous fungi both exist as single cells and hyphal forms, two morphologies used by most fungal organisms to create a complex multilayered biofilm structure. In this chapter we describe the most widely used assays for the determination of biofilm production and assessment of susceptibility of biofilms to antifungal agents or host phagocytes as various methods, the most frequent of which are staining, confocal laser scanning microscopy, quantification of extracellular DNA and protein associated with extracellular matrix and XTT metabolic reduction assay. Pathway-focused biofilm gene expression profiling is assessed by real-time reverse transcriptase polymerase chain reaction.
Collapse
Affiliation(s)
- Maria Simitsopoulou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration Hospital, Konstantinoupoleos 49, 546 42, Thessaloniki, Greece
| | - Athanasios Chatzimoschou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration Hospital, Konstantinoupoleos 49, 546 42, Thessaloniki, Greece
| | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration Hospital, Konstantinoupoleos 49, 546 42, Thessaloniki, Greece.
| |
Collapse
|
21
|
Roma LP, Duprez J, Jonas JC. Glucokinase activation is beneficial or toxic to cultured rat pancreatic islets depending on the prevailing glucose concentration. Am J Physiol Endocrinol Metab 2015; 309:E632-9. [PMID: 26264555 DOI: 10.1152/ajpendo.00154.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022]
Abstract
In rat pancreatic islets, β-cell gene expression, survival, and subsequent acute glucose stimulation of insulin secretion (GSIS) are optimally preserved by prolonged culture at 10 mM glucose (G10) and markedly altered by culture at G5 or G30. Here, we tested whether pharmacological glucokinase (GK) activation prevents these alterations during culture or improves GSIS after culture. Rat pancreatic islets were cultured 1-7 days at G5, G10, or G30 with or without 3 μM of the GK activator Ro 28-0450 (Ro). After culture, β-cell apoptosis and islet gene mRNA levels were measured, and the acute glucose-induced increase in NAD(P)H autofluorescence, intracellular calcium concentration, and insulin secretion were tested in the absence or presence of Ro. Prolonged culture of rat islets at G5 or G30 instead of G10 triggered β-cell apoptosis and reduced their glucose responsiveness. Addition of Ro during culture differently affected β-cell survival and glucose responsiveness depending on the glucose concentration during culture: it was beneficial to β-cell survival and function at G5, detrimental at G10, and ineffective at G30. In contrast, acute GK activation with Ro increased the glucose sensitivity of islets cultured at G10 but failed at restoring β-cell glucose responsiveness after culture at G5 or G30. We conclude that pharmacological GK activation prevents the alteration of β-cell survival and function by long-term culture at G5 but mimics glucotoxicity when added to G10. The complex effects of glucose on the β-cell phenotype result from changes in glucose metabolism and not from an effect of glucose per se.
Collapse
Affiliation(s)
- Leticia P Roma
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium; and
| | - Jessica Duprez
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium; and
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium; and Fonds de la recherche scientifique-FNRS, Brussels, Belgium
| |
Collapse
|
22
|
Costa D, Mercier A, Gravouil K, Lesobre J, Delafont V, Bousseau A, Verdon J, Imbert C. Pyrosequencing analysis of bacterial diversity in dental unit waterlines. WATER RESEARCH 2015; 81:223-231. [PMID: 26072020 DOI: 10.1016/j.watres.2015.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
Some infections cases due to exposure to output water from dental unit waterlines (DUWL) have been reported in the literature. However, this type of healthcare-associated risk has remained unclear and up until now the overall bacterial composition of DUWL has been poorly documented. In this study, 454 high-throughput pyrosequencing was used to investigate the bacterial community in seven dental offices (N = 7) and to identify potential bacterial pathogenic sequences. Dental unit waters (DUW) were collected from the tap water supplying units (Incoming Water; IW) to the output exposure point of the turbine handpiece (Output water; OW) following a stagnation period (OWS), and immediately after the last patient of the sampling day (OWA). A high bacterial diversity was revealed in DUW with 394 operational taxonomic units detected at the genus level. In addition to the inter-unit variability observed, results showed increased total bacterial cell concentration and shifts in bacterial community composition and abundance at the genus level, mainly within the Gamma- and Alpha-Proteobacteria class, as water circulated in the dental unit (DU). Results showed that 96.7%, 96.8% and 97.4% of the total sequences from IW, OWS and OWA respectively were common to the 3 defined water groups, thereby highlighting a common core microbiome. Results also suggested that stagnation and DU maintenance practices were critical to composition of the bacterial community. The presence of potentially pathogenic genera was detected, including Pseudomonas and Legionella spp. Emerging and opportunistic pathogenic genera such as Mycobacterium, Propionibacterium and Stenotrophomonas were likewise recovered in DUW. For the first time, an exhaustive evaluation of the bacterial communities present in DUW was performed taking into account the circulation of water within the DU. This study highlights an ignored diversity of the DUWL bacterial community. Our findings also contribute to a better appreciation of the potential infectious risk associated with dental care and suggest the importance of better managing microbial quality in DUW.
Collapse
Affiliation(s)
- Damien Costa
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France; Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France.
| | - Anne Mercier
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Kevin Gravouil
- Laboratoire coopératif Thanaplast(SP)-Carbios Bioplastics, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Jérôme Lesobre
- Université Blaise Pascal, UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, 24 avenue des Landais, Aubière, France
| | - Vincent Delafont
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Anne Bousseau
- Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France
| | - Julien Verdon
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Christine Imbert
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France; Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France
| |
Collapse
|
23
|
Abstract
TILLING is a method to find mutations in a gene of interest by scanning amplicons from a mutagenized population for sequence changes, commonly a single nucleotide. In the past 5 years, mutation detection by sequencing has become increasingly popular. This chapter details the experimental flow for TILLING-by-Sequencing, highlighting the critical steps involved in tridimensional pooling of genomic DNA templates, preparation of libraries for high-throughput sequencing, and bioinformatic processing of the sequence data.
Collapse
Affiliation(s)
- Helen Tsai
- Department of Plant Biology and Genome Center, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
24
|
Saggese T, Redey P, McGlashan SR. Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1976-85. [PMID: 25476137 DOI: 10.1007/s00586-014-3697-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE The ratio of notochordal (NC) cells to mature nucleus pulposus (MNP) cells in the nucleus pulposus varies with species, age and health. Studies suggest that loss of NC cells is a key component of intervertebral disc degeneration. However, few studies have examined the phenotypes of these two cell populations. Therefore, this study aimed to isolate NC and MNP cells from the same intervertebral disc and study phenotypic differences in extracellular matrix production and cell morphology in 3D culture over 7 days. METHODS Sequential mechanical dissociation and enzymatic digestion were used to isolate NC cell clusters and single MNP cells from bovine caudal discs. Cells were cultured in alginate beads and subsequently analysed for viability, cytokeratin-8 expression, GAG production and extracellular matrix gene expression. RESULTS Mechanical dissociation allowed NC cells to be extracted as intact cell clusters. NC cells represented 8% of the NP cell population and expressed both cytokeratin-8 and vimentin. MNP cells expressed vimentin, only. Both cells types were viable for 7 days. In addition to morphological differences, NC cells produced up to 30 times more total proteoglycan than MNP cells. NC cells had significantly higher aggrecan and brachyury expression. CONCLUSIONS NC and MNP cells can be isolated from the same bovine disc and maintain their distinct phenotypes in 3D culture.
Collapse
Affiliation(s)
- Taryn Saggese
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1021, New Zealand
| | | | | |
Collapse
|
25
|
Rajendran R, Sherry L, Lappin DF, Nile CJ, Smith K, Williams C, Munro CA, Ramage G. Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiol 2014; 14:303. [PMID: 25476750 PMCID: PMC4262977 DOI: 10.1186/s12866-014-0303-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Biofilm formation by Candida albicans has shown to be highly variable and is directly associated with pathogenicity and poor clinical outcomes in patients at risk. The aim of this study was to test the hypotheses that the extracellular DNA release by C. albicans is strain dependent and is associated with biofilm heterogeneity. Results Initially, biofilm formed by C. albicans high biofilm formers (HBF) or low biofilm formers (LBF) were treated with DNase to find whether eDNA play a role in their biofilm formation. Digestion of biofilm eDNA significantly reduced the HBF biofilm biomass by five fold compared to untreated controls. In addition, quantification of eDNA over the period of biofilm formation by SYBR green assay demonstrate a significantly higher level of 2 to 6 fold in HBF compared to LBF. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase genes, a marker of autolysis, were upregulated in 24 h biofilm formation by HBF compared to LBF, indicating autolysis pathway possibly involved in causing variation. The biofilm biomass and eDNA release by single (∆cht2, ∆cht3) and double knockout (∆cht2/∆cht3) chitinase mutants were significantly less compared to their parental strain CA14, confirming the role of chitinases in eDNA release and biofilm formation. Correlation analysis found a positive correlation between chitinases and HWP1, suggesting eDNA may release during the hyphal growth. Finally, we showed a combinational treatment of biofilms with DNase or chitinase inhibitor (acetazolamide) plus amphotericin B significantly improved antifungal susceptibility by 2 to 8 fold. Conclusions Collectively, these data show that eDNA release by C. albicans clinical isolates is variable and is associated with differential biofilm formation. Digestion of biofilm eDNA by DNase may provide a novel therapeutic strategies to destabilise biofilm growth and improves antifungal sensitivity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0303-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Leighann Sherry
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - David F Lappin
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Chris J Nile
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Karen Smith
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley, UK.
| | - Craig Williams
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley, UK.
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|
26
|
Hindra, Huang T, Yang D, Rudolf JD, Xie P, Xie G, Teng Q, Lohman J, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Shen B. Strain prioritization for natural product discovery by a high-throughput real-time PCR method. JOURNAL OF NATURAL PRODUCTS 2014; 77:2296-2303. [PMID: 25238028 PMCID: PMC4208669 DOI: 10.1021/np5006168] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 08/31/2023]
Abstract
Natural products offer unmatched chemical and structural diversity compared to other small-molecule libraries, but traditional natural product discovery programs are not sustainable, demanding too much time, effort, and resources. Here we report a strain prioritization method for natural product discovery. Central to the method is the application of real-time PCR, targeting genes characteristic to the biosynthetic machinery of natural products with distinct scaffolds in a high-throughput format. The practicality and effectiveness of the method were showcased by prioritizing 1911 actinomycete strains for diterpenoid discovery. A total of 488 potential diterpenoid producers were identified, among which six were confirmed as platensimycin and platencin dual producers and one as a viguiepinol and oxaloterpin producer. While the method as described is most appropriate to prioritize strains for discovering specific natural products, variations of this method should be applicable to the discovery of other classes of natural products. Applications of genome sequencing and genome mining to the high-priority strains could essentially eliminate the chance elements from traditional discovery programs and fundamentally change how natural products are discovered.
Collapse
Affiliation(s)
- Hindra
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Tingting Huang
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Pengfei Xie
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Guangbo Xie
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Qihui Teng
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeremy
R. Lohman
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiangcheng Zhu
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
| | - Yong Huang
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Li-Xing Zhao
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yi Jiang
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yanwen Duan
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
| | - Ben Shen
- Department of Chemistry, Department of Molecular Therapeutics, and Natural Products Library
Initiative, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
27
|
Dubé MP, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013. [PMID: 23188214 DOI: 10.1007/s00122-012-2020-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
Collapse
Affiliation(s)
- Marie-Pier Dubé
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, G1V 2J3, Canada
| | | | | | | | | |
Collapse
|
28
|
Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. EUKARYOTIC CELL 2013; 12:420-9. [PMID: 23314962 DOI: 10.1128/ec.00287-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 < 12 < 24 < 48 h). Random amplification of polymorphic DNA (RAPD) PCR showed that eDNA was identical to genomic DNA. Biofilm architectural integrity was destabilized by DNase treatment. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase, a marker of autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy.
Collapse
|
29
|
Duprez J, Roma LP, Close AF, Jonas JC. Protective antioxidant and antiapoptotic effects of ZnCl2 in rat pancreatic islets cultured in low and high glucose concentrations. PLoS One 2012; 7:e46831. [PMID: 23056475 PMCID: PMC3463538 DOI: 10.1371/journal.pone.0046831] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/05/2012] [Indexed: 01/09/2023] Open
Abstract
Aim/Hypothesis Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl2, a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations. Methods Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive β-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing “redox sensitive GFP” targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA. Results As observed for Mt1a mRNA levels, β-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50–100 µM ZnCl2 to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late β-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions. Conclusion ZnCl2 reduces mitochondrial oxidative stress and improves rat β-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.
Collapse
Affiliation(s)
- Jessica Duprez
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Leticia P. Roma
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Anne-Françoise Close
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Brussels, Belgium
- * E-mail:
| |
Collapse
|
30
|
Roma LP, Pascal SM, Duprez J, Jonas JC. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration. Diabetologia 2012; 55:2226-37. [PMID: 22643931 DOI: 10.1007/s00125-012-2581-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/19/2012] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. METHODS Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). RESULTS Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. CONCLUSIONS/INTERPRETATION Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.
Collapse
Affiliation(s)
- L P Roma
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Avenue Hippocrate 55, B1.55.06, 1200, Brussels, Belgium
| | | | | | | |
Collapse
|
31
|
Duprez J, Jonas JC. Role of activating transcription factor 3 in low glucose- and thapsigargin-induced apoptosis in cultured mouse islets. Biochem Biophys Res Commun 2011; 415:294-9. [DOI: 10.1016/j.bbrc.2011.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022]
|
32
|
Ma DL, Chan DSH, Man BYW, Leung CH. Oligonucleotide-based luminescent detection of metal ions. Chem Asian J 2011; 6:986-1003. [PMID: 21337527 DOI: 10.1002/asia.201000870] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Indexed: 01/20/2023]
Abstract
Metal ions are prevalent in biological systems and are critically involved in essential life processes. However, excess concentrations of metals can pose a serious danger to living organisms. Oligonucleotides represent a versatile sensing platform for the detection of various molecular entities including metal ions. This review summarizes the recent advances in the development of oligonucleotide-based luminescent detection methods for metal ions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China.
| | | | | | | |
Collapse
|
33
|
Ronildo Clarindo W, Roberto Carvalho C. Flow cytometric analysis using SYBR Green I for genome size estimation in coffee. Acta Histochem 2011; 113:221-5. [PMID: 20149417 DOI: 10.1016/j.acthis.2009.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/28/2022]
Abstract
Plant genome size has been measured by flow cytometry using propidium iodide as a dye for nuclear DNA staining. However, some authors have reported the occurrence of genome size estimation errors, especially in plants rich in secondary metabolites, such as the coffee tree. In this context, we tested an alternative cytometric protocol using the SYBR Green I as a fluorochrome for stoichiometrically staining nuclear double-stranded DNA in Coffea canephora (2x) and Coffea arabica (4x). The results showed that the respective mean genome size measured from nuclei stained with SYBR Green I and propidium iodide was statistically identical. However, the G(0)/G(1) peaks of nuclei stained with SYBR Green I exhibited lower coefficient variations (1.57-2.85%) compared to those stained with propidium iodide (2.75-4.80%). Coefficient variation statistical data suggest that SYBR Green I is adequate for stoichiometric nuclei staining using this methodology. Our results provide evidence that SYBR Green I can be used in flow cytometry measurements of plants, with the advantages of minimizing errors in nuclear DNA content quantification, staining relatively quicker, with high affinity, and being less mutagenic than propidium iodide.
Collapse
Affiliation(s)
- Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
34
|
Pascal SMA, Veiga-da-Cunha M, Gilon P, Van Schaftingen E, Jonas JC. Effects of fructosamine-3-kinase deficiency on function and survival of mouse pancreatic islets after prolonged culture in high glucose or ribose concentrations. Am J Physiol Endocrinol Metab 2010; 298:E586-96. [PMID: 20009024 DOI: 10.1152/ajpendo.00503.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to their high glucose permeability, insulin-secreting pancreatic beta-cells likely undergo strong intracellular protein glycation at high glucose concentrations. They may, however, be partly protected from the glucotoxic alterations of their survival and function by fructosamine-3-kinase (FN3K), a ubiquitous enzyme that initiates deglycation of intracellular proteins. To test that hypothesis, we cultured pancreatic islets from Fn3k-knockout (Fn3k(-/-)) mice and their wild-type (WT) littermates for 1-3 wk in the presence of 10 or 30 mmol/l glucose (G10 or G30, respectively) and measured protein glycation, apoptosis, preproinsulin gene expression, and Ca(2+) and insulin secretory responses to acute glucose stimulation. The more potent glycating agent d-ribose (25 mmol/l) was used as positive control for protein glycation. In WT islets, a 1-wk culture in G30 significantly increased the amount of soluble intracellular protein-bound fructose-epsilon-lysines and the glucose sensitivity of beta-cells for changes in Ca(2+) and insulin secretion, whereas it decreased the islet insulin content. After 3 wk, culture in G30 also strongly decreased beta-cell glucose responsiveness and preproinsulin mRNA levels, whereas it increased islet cell apoptosis. Although protein-bound fructose-epsilon-lysines were more abundant in Fn3k(-/-) vs. WT islets, islet cell survival and function and their glucotoxic alterations were almost identical in both types of islets, except for a lower level of apoptosis in Fn3k(-/-) islets cultured for 3 wk in G30. In comparison, d-ribose (1 wk) similarly decreased preproinsulin expression and beta-cell glucose responsiveness in both types of islets, whereas it increased apoptosis to a larger extent in Fn3k(-/-) vs. WT islets. We conclude that, despite its ability to reduce the glycation of intracellular islet proteins, FN3K is neither required for the maintenance of beta-cell survival and function under control conditions nor involved in protection against beta-cell glucotoxicity. The latter, therefore, occurs independently from the associated increase in the level of intracellular fructose-epsilon-lysines.
Collapse
Affiliation(s)
- S M A Pascal
- Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Jean-Claude G. Bünzli
- Laboratory of Lanthanide Supramolecular Chemistry, École Polytechnique Fédérale de Lausanne (EPFL), BCH 1402, CH-1015 Lausanne, Switzerland, and Department of Advanced Materials Chemistry, WCU Center for Next Generation Photovoltaic Systems, Korea University, Sejong Campus, 208 Seochang, Jochiwon, Chung Nam 339-700, Republic of Korea
| |
Collapse
|
36
|
Huby-Chilton F, Murphy J, Chilton NB, Gajadhar AA, Blais BW. Detection of prohibited animal products in livestock feeds by single-strand conformation polymorphism analysis. J Food Prot 2010; 73:119-24. [PMID: 20051214 DOI: 10.4315/0362-028x-73.1.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-strand conformation polymorphism (SSCP) analysis of amplicons produced from a mitochondrial DNA region between the tRNA(Lys) and ATPase8 genes was applied for the detection of animal product within livestock feeds. Identification of prohibited animal (cattle, elk, sheep, deer, and goat) and nonprohibited animal (pig and horse) products from North America was possible based on the differential display of the single-stranded DNA fragments for the different animal species on SSCP gels. This method allowed specific detection and identification of mixed genomic DNA from different animal species. Trace amounts of cattle-derived materials were also detected in pig meat and bone meal and in grain-based feeds fortified with 10, 5, 1, or 0% porcine meat and bone meal. This study demonstrates the applicability of SSCP analyses to successfully identify the origin of animal species derived materials potentially present in animal feeds.
Collapse
Affiliation(s)
- Florence Huby-Chilton
- Centre for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada S7N 2R3
| | | | | | | | | |
Collapse
|
37
|
Skoblov MY, Shibanova ED, Kovaleva EV, Bairamashvilli DI, Skoblov YS, Miroshnikov AI. DNA assay for recombinant pharmaceutical substances using the real-time PCR technique. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:112-6. [DOI: 10.1134/s1068162010010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Dissolved oxygen alteration of the spectrophotometric analysis and quantification of nucleic acid solutions. Biochem Soc Trans 2009; 37:466-70. [PMID: 19290883 DOI: 10.1042/bst0370466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nucleic acids are routinely and readily analysed using the A(260)/A(280) ratio, although this method is known to be prone to erroneous results owing to contaminants in solution that absorb at similar wavelengths. The aim of the present review, while highlighting the problems and alternatives of using UV spectrophotometry for nucleic acid measurements, is to bring forth an observational result from our recent studies, namely that DO (dissolved oxygen) and nitrogen can alter the A(260) of aqueous DNA solutions. Our finding is of importance because DO is highly variable between protocols and storage conditions of DNA preparations. The physicochemical nature of the oxygen-DNA interactions is briefly discussed.
Collapse
|
39
|
ACHYUTHAN KE, McCLAIN JL, ZHOU Z, WHITTEN DG, BRANCH DW. Spectroscopic Analyses of the Noncovalent Self-Assembly of Cyanines upon Various Nucleic Acid Scaffolds. ANAL SCI 2009; 25:469-74. [DOI: 10.2116/analsci.25.469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Jaime L. McCLAIN
- Biosensors and Nanomaterials Department, Sandia National Laboratories
| | - Zhijun ZHOU
- Department of Chemical and Nuclear Engineering, University of New Mexico
| | - David G. WHITTEN
- Department of Chemical and Nuclear Engineering, University of New Mexico
| | - Darren W. BRANCH
- Biosensors and Nanomaterials Department, Sandia National Laboratories
| |
Collapse
|
40
|
Liu B. Highly sensitive oligonucleotide-based fluorometric detection of mercury(II) in aqueous media. Biosens Bioelectron 2008; 24:762-6. [DOI: 10.1016/j.bios.2008.06.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/09/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
41
|
Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice. Biotechniques 2008; 45:247-58. [PMID: 18778249 DOI: 10.2144/000112913] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.
Collapse
|
42
|
Al-Adhami BH, Huby-Chilton F, Blais BW, Martinez-Perez A, Chilton NB, Gajadhar AA. Rapid discrimination of Salmonella isolates by single-strand conformation polymorphism analysis. J Food Prot 2008; 71:1960-6. [PMID: 18939738 DOI: 10.4315/0362-028x-71.10.1960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A molecular typing technique was developed for the differentiation of Salmonella isolates based on single-strand conformation polymorphism (SSCP) analysis of amplicons generated by PCR. Amplicons from parts of the fimA (both the 5' and 3' ends), mdh, invA, and atpD genes were generated separately from a panel of Salmonella strains representing Salmonella bongori, and four subspecies and 17 serovars of Salmonella enterica. These amplicons were subjected to SSCP analysis for differentiation of the salmonellae on the basis of different conformational forms arising due to nucleotide sequence variations in the target genes. Several distinct SSCP banding patterns (a maximum of 14 each for atpD and fimA 3' end) were observed with this panel of Salmonella strains for amplicons generated from each target gene. The best discrimination of Salmonella subspecies and serovar was achieved from the SSCP analysis of a combination of at least three gene targets: atpD, invA, and either mdh or fimA 3' end. This demonstrates the applicability of SSCP analysis as an important additional method to classical typing approaches for the differentiation of foodborne Salmonella isolates. SSCP is simple to perform and should be readily transferable to food microbiology laboratories with basic PCR capability.
Collapse
Affiliation(s)
- Batol H Al-Adhami
- Centre for Food-Borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Lai YF, Tseng YJ, Yang FY, Au LC. Mammalian cis-reporting plasmid may alter activities due to the derivation of host Escherichia coli strains. Anal Biochem 2008; 376:103-7. [PMID: 18294948 DOI: 10.1016/j.ab.2008.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/16/2008] [Accepted: 01/25/2008] [Indexed: 11/17/2022]
Abstract
Methylation status of CpG dinucleotides in the promoter/regulatory region contributes to regulation of transcriptional activities of downstream genes. Nearly all plasmid vectors used in mammalian cells are generated from transformed Escherichia coli. However, these E. coli hosts may have different DNA methylation activities. For instance E. coli JM109 and DH5alpha contain Dam and Dcm methylases, which are absent in E. coli JM110 and GM2163. It has not been determined whether plasmids propagated from E. coli of different methylation activities result in altered expression in mammalian cells when transient transfection is conducted. In this report, cis-reporting plasmids were tested. When promoter/enhancer of tested plasmids contained several Dam/Dcm sites, the cis-reporting activity was 2 to 3 fold lower for those plasmids isolated from JM109 than from JM110. In contrast, the E. coli-derived methylation had little effect on transcription when the sites of methylation resided in the coding region. These findings suggest that cis-reporting plasmids used in comparative or successive experiments are required to be derived from the E. coli strain of the same methylation status. The plasmid for promoter-transcription factor studies should be Dam/Dcm negative E. coli strain.
Collapse
Affiliation(s)
- Ying-Fei Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan 11221, ROC
| | | | | | | |
Collapse
|
44
|
Song B, Vandevyver CDB, Deiters E, Chauvin AS, Hemmilä I, Bünzli JCG. A versatile method for quantification of DNA and PCR products based on time-resolved Euiii luminescence. Analyst 2008; 133:1749-56. [DOI: 10.1039/b807959e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Bonasera V, Alberti S, Sacchetti A. Protocol for high-sensitivity/long linear-range spectrofluorimetric DNA quantification using ethidium bromide. Biotechniques 2007; 43:173-4, 176. [PMID: 17824384 DOI: 10.2144/000112500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ethidium bromide (EtBr) is the most widely used fluorescent dye in nucleic acid gel electrophoresis since decades. However, it has been essentially forgotten in DNA quantification by spectrofluorimetry. While investigating sensitivity and dynamic range of available fluorochromes, we found that EtBr permits much more sensitive fluorimetric measurements than previously thought. We report here a revised, accurate, and easy-to-use protocol for EtBr-based DNA quantification in solution, which usefully complements the widely used indirect quantification on agarose gels.
Collapse
|