1
|
Avellaneda H, Arbeli Z, Teran W, Roldan F. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes. World J Microbiol Biotechnol 2020; 36:190. [PMID: 33247357 DOI: 10.1007/s11274-020-02962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The nitrated compounds 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN) are toxic xenobiotics widely used in various industries. They often coexist as environmental contaminants. The aims of this study were to evaluate the transformation of 100 mg L-1 of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109c and identify enzymes that may participate in the transformation. These strains were selected from 34 TNT transforming bacteria. Cupriavidus metallidurans DNT was used as a reference strain for comparison purposes. Strains DNT, M30b and M109c transformed 2,4-DNT (100%), TNT (100, 94.7 and 63.6%, respectively), and PETN (72.7, 69.3 and 90.7%, respectively). However, the presence of TNT negatively affects 2,4-DNT and PETN transformation (inhibition > 40%) in strains DNT and M109c and fully inhibited (100% inhibition) 2,4-DNT transformation in R. planticola M30b.Genomes of R. planticola M30b and R. radiobacter M109c were sequenced to identify genes related with 2,4-DNT, TNT or PETN transformation. None of the tested strains presented DNT oxygenase, which has been previously reported in the transformation of 2,4-DNT. Thus, unidentified novel enzymes in these strains are involved in 2,4-DNT transformation. Genes encoding enzymes homologous to the previously reported TNT and PETN-transforming enzymes were identified in both genomes. R. planticola M30b have homologous genes of PETN reductase and xenobiotic reductase B, while R. radiobacter M109c have homologous genes to GTN reductase and PnrA nitroreductase. The ability of these strains to transform explosive mixtures has a potentially biotechnological application in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Hernán Avellaneda
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia
| | - Ziv Arbeli
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia
| | - Wilson Teran
- Facultad de Ciencias, Departamento de Biología, Biología de Plantas y Sistemas Productivos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabio Roldan
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia.
| |
Collapse
|
2
|
Hsu DW, Wang TI, Huang DJ, Pao YJ, Lin YA, Cheng TW, Liang SH, Chen CY, Kao CM, Sheu YT, Chen CC. Copper promotes E. coli laccase-mediated TNT biotransformation and alters the toxicity of TNT metabolites toward Tigriopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:452-460. [PMID: 30798189 DOI: 10.1016/j.ecoenv.2019.02.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Although laccase is involved in the biotransformation of 2,4,6-trinitrotoluene (TNT), little is known regarding the effect of E. coli laccase on TNT biotransformation. In this study, E. coli K12 served as the parental strain to construct a laccase deletion strain and two laccase-overexpressing strains. These E. coli strains were used to investigate the effect of laccase together with copper ions on the efficiency of TNT biotransformation, the variety of TNT biotransformation products generated and the toxicity of the TNT metabolites. The results showed that the laccase level was not relevant to TNT biotransformation in the soluble fraction of the culture medium. Conversely, TNT metabolites varied in the insoluble fraction analyzed by thin-layer chromatography (TLC). The insoluble fraction from the laccase-null strain showed fewer and relatively fainter spots than those detected in the wild-type and laccase-overexpressing strains, indicating that laccase expression levels were interrelated determinants of the varieties and amounts of TNT metabolites produced. In addition, the aquatic invertebrate Tigriopus japonicus was used to assess the toxicity of the TNT metabolites. The toxicity of the TNT metabolite mixture increased when the intracellular laccase level in strains increased or when purified E. coli recombinant Laccase (rLaccase) was added to the culture medium. Thus, our results suggest that laccase activity must be considered when performing microbial TNT remediation.
Collapse
Affiliation(s)
- Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Tzu-I Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Da-Ji Huang
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Yu-Jie Pao
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yuya A Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ting-Wen Cheng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Hsiung Liang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Liang SH, Hsu DW, Lin CY, Kao CM, Huang DJ, Chien CC, Chen SC, Tsai IJ, Chen CC. Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:39-46. [PMID: 28006730 DOI: 10.1016/j.ecoenv.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, the bacterial strain Citrobacter youngae strain E4 was isolated from 2,4,6-trinitrotoluene (TNT)-contaminated soil and used to assess the capacity of TNT transformation with/without exogenous nutrient amendments. C. youngae E4 poorly degraded TNT without an exogenous amino nitrogen source, whereas the addition of an amino nitrogen source considerably increased the efficacy of TNT transformation in a dose-dependent manner. The enhanced TNT transformation of C. youngae E4 was mediated by increased cell growth and up-regulation of TNT nitroreductases, including NemA, NfsA and NfsB. This result indicates that the increase in TNT transformation by C. youngae E4 via nitrogen nutrient stimulation is a cometabolism process. Consistently, TNT transformation was effectively enhanced when C. youngae E4 was subjected to a TNT-contaminated soil slurry in the presence of an exogenous amino nitrogen amendment. Thus, effective enhancement of TNT transformation via the coordinated inoculation of the nutrient-responsive C. youngae E4 and an exogenous nitrogen amendment might be applicable for the remediation of TNT-contaminated soil. Although the TNT transformation was significantly enhanced by C. youngae E4 in concert with biostimulation, the 96-h LC50 value of the TNT transformation product mixture on the aquatic invertebrate Tigriopus japonicas was higher than the LC50 value of TNT alone. Our results suggest that exogenous nutrient amendment can enhance microbial TNT transformation; however, additional detoxification processes may be needed due to the increased toxicity after reduced TNT transformation.
Collapse
Affiliation(s)
- Shih-Hsiung Liang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chia-Ying Lin
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Da-Ji Huang
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Liang B, Kong D, Ma J, Wen C, Yuan T, Lee DJ, Zhou J, Wang A. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. WATER RESEARCH 2016; 100:157-168. [PMID: 27183211 DOI: 10.1016/j.watres.2016.05.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/07/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
Improvement of the stability of functional microbial communities in wastewater treatment system is critical to accelerate pollutants detoxification in cold regions. Although biocathode communities could accelerate environmental pollutants degradation, how to acclimate the cold stress and to improve the catalytic stability of functional microbial communities are remain poorly understood. Here we investigated the structural and functional responses of antibiotic chloramphenicol (CAP) reducing biocathode communities to constant low temperature 10 °C (10-biocathode) and temperature elevation from 10 °C to 25 °C (S25-biocathode). Our results indicated that the low temperature acclimation with electrical stimulation obviously enhanced the CAP nitro group reduction efficiency when comparing the aromatic amine product AMCl2 formation efficiency with the 10-biocathode and S25-biocathode under the opened and closed circuit conditions. The 10-biocathode generated comparative AMCl maximum as the S25-biocathode but showed significant lower dehalogenation rate of AMCl2 to AMCl. The continuous low temperature and temperature elevation both enriched core functional community in the 10-biocathode and S25-biocathode, respectively. The 10-biocathode functioning stability maintained mainly through selectively enriching cold-adapted functional species, coexisting metabolically similar nitroaromatics reducers and maintaining the relative abundance of key electrons transfer genes. This study provides new insights into biocathode functioning stability for accelerating environmental pollutants degradation in cold wastewater system.
Collapse
Affiliation(s)
- Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jincai Ma
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Chongqing Wen
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Tong Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Bussy U, Chung-Davidson YW, Li K, Li W. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4450-4457. [PMID: 25730707 DOI: 10.1021/es5057769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide.
Collapse
Affiliation(s)
- Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Bussy U, Chung-Davidson YW, Li K, Li W. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry. Anal Bioanal Chem 2014; 406:7253-60. [PMID: 25234306 DOI: 10.1007/s00216-014-8171-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023]
Abstract
Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.
Collapse
Affiliation(s)
- Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
7
|
Liang B, Cheng H, Van Nostrand JD, Ma J, Yu H, Kong D, Liu W, Ren N, Wu L, Wang A, Lee DJ, Zhou J. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. WATER RESEARCH 2014; 54:137-148. [PMID: 24565804 DOI: 10.1016/j.watres.2014.01.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
The stress of poised cathode potential condition and carbon source switchover for functional biocathode microbial community influences is poorly understood. Using high-throughput functional gene array (GeoChip v4.2) and Illumina 16S rRNA gene MiSeq sequencing, we investigated the phylogenetic and functional microbial community of the initial inoculum and biocathode for bioelectrochemical reduction of nitrobenzene to less toxic aniline in response to carbon source switchover (from organic glucose to inorganic bicarbonate). Selective transformation of nitrobenzene to aniline maintained in the bicarbonate fed biocathode although nitrobenzene reduction rate and aniline formation rate were significantly decreased compared to those of the glucose-fed biocathode. When the electrical circuit of the glucose-fed biocathode was disconnected, both rates of nitrobenzene reduction and of aniline formation were markedly decreased, confirming the essential role of an applied electric field for the enhancement of nitrobenzene reduction. The stress of poised cathode potential condition led to clear succession of microbial communities from the initial inoculum to biocathode and the carbon source switchover obviously changed the microbial community structure of biocathode. Most of the dominant genera were capable of reducing nitroaromatics to the corresponding aromatic amines regardless of the performance mode. Heterotrophic Enterococcus was dominant in the glucose-fed biocathode while autotrophic Paracoccus and Variovorax were dominant in the bicarbonate-fed biocathode. Relatively higher intensity of diverse multi-heme cytochrome c (putatively involved in electrons transfer) and carbon fixation genes was observed in the biocarbonate-fed biocathode, likely met the requirement of the energy conservation and maintained the nitrobenzene selective reduction capability after carbon source switchover. Extracellular pilin, which are important for biofilm formation and potential conductivity, had a higher gene abundance in the glucose-fed biocathode might explain the enhancement of electro-catalysis activity for nitrobenzene reduction with glucose supply. Dominant nitroaromatics-reducing or electrochemically active bacteria and diverse functional genes related to electrons transfer and nitroaromatics reduction were associated with nitrobenzene reduction efficiency of biocathode communities in response to carbon source switchover.
Collapse
Affiliation(s)
- Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haoyi Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Jincai Ma
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Hao Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Deyong Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenzong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments. ENVIRONMENTAL SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-319-01083-0_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Copper-Containing Oxidases: Occurrence in Soil Microorganisms, Properties, and Applications. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-02436-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Smith DJ, Craig AM, Duringer JM, Chaney RL. Absorption, tissue distribution, and elimination of residues after 2,4,6-trinitro[14C]toluene administration to sheep. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2563-2569. [PMID: 18504997 DOI: 10.1021/es702601n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The compound 2,4,6-trinitrotoluene (TNT) is a persistent contaminant of some industrial and military sites. Biological bioremediation techniques typically rely on the immobilization of TNT reduction products rather than on TNT mineralization. We hypothesized that sheep ruminal microbes would be suitable for TNT destruction after phytoremediation of TNT-contaminated soils by cool-season grasses. Therefore we investigated the fate of [14C]TNT in ruminating sheep to determine the utility of ruminant animals as a portion of the bioremediation process. Three wether sheep were dosed with 35.5 mg each of dietary unlabeled TNT for 21 consecutive days. On day 22 sheep (41.9 +/- 3.0 kg) were orally dosed with 35.5 mg of [14C]TNT (129 microCi; 99.1% radiochemical purity). Blood, urine, and feces were collected at regular intervals for 72 h. At slaughter, tissues were quantitatively collected. Tissues and blood were analyzed for total radioactive residues (TRR); excreta were analyzed for TRR, bound residues, and TNT metabolites. Plasma radioactivity peaked within 1 h of dosing and was essentially depleted within 18 h. Approximately 76% of the radiocarbon was excreted in feces, 17% in urine, with 5% being retained in the gastrointestinal tract and 1% retained in tissues. Parent TNT, dinitroamino metabolites, and diaminonitro metabolites were not detected in excreta. Ruminal and fecal radioactivity was essentially nonextractable using ethyl acetate, acetone, and methanol; covalent binding of fecal radioactive residues was evenly distributed among extractable organic molecules (i.e., soluble organic matter, soluble carbohydrate, protein, lipid, and nucleic acid fractions) and undigested fibers (cellulose, hemicellulose, and lignin). This study demonstrated that TNT reduction within the ruminant gastrointestinal tract leads to substantial immobilization of residues to organic matter, a fate similar to TNT in other strongly reducing environments.
Collapse
Affiliation(s)
- D J Smith
- Animal Metabolism-Agricultural Chemicals Research Unit, USDA ARS, 1605 Albrecht Blvd. Fargo, North Dakota, 58105-5674, USA.
| | | | | | | |
Collapse
|
11
|
Korbekandi H, Mather P, Gardiner J, Stephens G. Reduction of aliphatic nitro groups using an obligately anaerobic whole cell biocatalyst. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|