1
|
Zhang H, Ren J, Li J, Zhai C, Mao F, Yang S, Zhang Q, Liu Z, Fu X. Comparison of heterologous prime-boost immunization strategies with DNA and recombinant vaccinia virus co-expressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus in pigs. Microb Pathog 2023; 183:106328. [PMID: 37661073 DOI: 10.1016/j.micpath.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.
Collapse
Affiliation(s)
- Hewei Zhang
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China; Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jiachen Li
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Chongkai Zhai
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Fuchao Mao
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Shaozhe Yang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Qingwei Zhang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Zhongyu Liu
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| | - Xiuhong Fu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| |
Collapse
|
2
|
Tang J, Bi Z, Ding M, Yin D, Zhu J, Zhang L, Miao Q, Zhu Y, Wang G, Liu G. Immunization with a suicidal DNA vaccine expressing the E glycoprotein protects ducklings against duck Tembusu virus. Virol J 2018; 15:140. [PMID: 30217161 PMCID: PMC6137926 DOI: 10.1186/s12985-018-1053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUD Duck Tembusu virus (DTMUV), a pathogenic flavivirus, emerged in China since 2010 and causing huge economic loss in the Chinese poultry industry. Although several vaccines have been reported to control DTMUV disease, few effective vaccines are available and new outbreaks were continuously reported. Thus, it is urgently to develop a new effective vaccine for prevention of this disease. METHODS In this study, a suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon and DTMUV E glycoprotein gene was constructed and the efficacy of this new vaccine was assessed according to humoral and cell-mediated immune responses as well as protection against the DTMUV challenge in ducklings. RESULTS Our results showed that the recombinant SFV replicon highly expressed E glycoprotein in DEF cells. After intramuscular injection of this new DNA vaccine in ducklings, robust humoral and cellular immune responses were observed in all immunized ducklings. Moreover, all ducklings were protected against challenge with the virulent DTMUV AH-F10 strain. CONCLUSIONS In conclusion, we demonstrate that this suicidal DNA vaccine is a promising candidate facilitating the prevention of DTMUV infection.
Collapse
Affiliation(s)
- Jingyu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Zhuangli Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Mingyang Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Dongdong Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Li Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. .,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China.
| |
Collapse
|
3
|
Du Y, Du T, Shi Y, Zhang A, Zhang C, Diao Y, Jin G, Zhou EM. Synthetic Toll-like receptor 7 ligand inhibits porcine reproductive and respiratory syndrome virus infection in primary porcine alveolar macrophages. Antiviral Res 2016; 131:9-18. [PMID: 27079946 DOI: 10.1016/j.antiviral.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a common viral pathogen, causes huge annual economic losses to the swine industry worldwide. After triggering by specific ligands, the Toll-like receptor 7 (TLR7), a type of pattern-recognition receptor (PRR), induces antiviral cytokines production. Previously, we synthesized an adenine analog, designated SZU101, a TLR7-specific ligand. In this study, we assessed the inhibitory effect of SZU101 on PRRSV infection in vitro. SZU101 significantly suppressed PRRSV infection in primary porcine alveolar macrophages (PAMs) in a dose-dependent manner. Moreover, SZU101-induced inhibition involved NF-κB pathway activation in PAMs to initiate expression of TLR7-mediated cytokines and induce expression of downstream signaling IFN-stimulated genes (ISGs). Chloroquine, a TLR7 inhibitor, and BAY 11-7082, an NF-κB inhibitor, reversed both the SZU101-induced antiviral effect and induction of cytokine genes and ISGs expression. Therefore, SZU101 antiviral effects depend at least in part on TLR7-NF-κB signaling pathway. Additionally, administration of SZU101 enhanced the humoral and cell-mediated immune responses against PRRSV antigens in mice. Given these results, SZU101 holds promise as an antiviral agent and a vaccine adjuvant to prevent PRRSV infection in pigs.
Collapse
Affiliation(s)
- Yongkun Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Yunpeng Shi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Angke Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Yuwen Diao
- Cancer Research Center, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Engineering Laboratory of Synthetic Biology, Shenzhen, Guangdong 518060, China.
| | - Guangyi Jin
- Cancer Research Center, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Engineering Laboratory of Synthetic Biology, Shenzhen, Guangdong 518060, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice. J Virol Methods 2015; 225:35-40. [DOI: 10.1016/j.jviromet.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022]
|
5
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015; 33:3065-72. [PMID: 25980425 DOI: 10.1016/j.vaccine.2015.04.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virology Swine Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
6
|
Ren J, Lu H, Wen S, Sun W, Yan F, Chen X, Jing J, Liu H, Liu C, Xue F, Xiao P, Xin S, Jin N. Enhanced immune responses in pigs by DNA vaccine coexpressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus. J Virol Methods 2014; 206:27-37. [PMID: 24882496 DOI: 10.1016/j.jviromet.2014.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
Abstract
The European (EU) type of porcine reproductive and respiratory syndrome virus (PRRSV) has recently emerged in China. In this study, three recombinant DNA vaccines, pVAX1-EU-ORF3-ORF5 (coexpressing EU type PRRSV GP3 and GP5), pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed and evaluated for their abilities to induce humoral and cellular responses as well as to protect piglets against homologous virus challenge. All piglets were given booster vaccinations at 21 days after the initial inoculation and then challenged 14 days later. Pigs inoculated with pVAX1-EU-ORF3-ORF5 developed significantly higher (P<0.05) PRRSV-specific antibody responses, neutralizing antibodies and levels of IL-4 and IL-10 than those given pVAX1-EU-ORF3, pVAX1-EU-ORF5 or pVAX1. Moreover, pigs immunized with pVAX1-EU-ORF3-ORF5 had markedly increased levels of IFN-γ and IL-2 in serum and T-lymphocytes (CD3(+)CD4(+) and CD3(+)CD8(+) T cells) in peripheral blood. Thus, EU-type PRRSV GP3 and GP5 proteins demonstrated good immunogenicity and reactogenicity and could induce cellular immunity in pigs. Following challenge with the Lelystad virus (LV) strain, piglets inoculated with pVAX1-EU-ORF3-ORF5 showed viremia and virus load distributed in organ tissues that were significantly lower (P<0.05) than those in the pVAX1-EU-ORF3 group and control group, and slightly lower than those in the pVAX1-EU-ORF5 group (P>0.05). As GP3 could enhance humoral- and cell-mediated immune responses to GP5, the results of this study suggested that these two proteins delivered by a vaccine can synergistically induce immunity against PRRSV.
Collapse
Affiliation(s)
- Jingqiang Ren
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Huijun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shubo Wen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wenchao Sun
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Fulong Yan
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xing Chen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jie Jing
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Hao Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Cunxia Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Fei Xue
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Pengpeng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shu Xin
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
7
|
Tang D, Liu J, Li C, Zhang H, Ma P, Luo X, Zeng Z, Hong N, Liu X, Wang B, Wang F, Gan Z, Hao F. Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine. J Vet Sci 2013; 15:99-109. [PMID: 24136204 PMCID: PMC3973771 DOI: 10.4142/jvs.2014.15.1.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 07/09/2013] [Indexed: 01/24/2023] Open
Abstract
The purpose of this study was to investigate the effects of porcine interleukin (IL)-2 and IL-4 genes on enhancing the immunogenicity of a porcine reproductive and respiratory syndrome virus ORF5 DNA vaccine in piglets. Eukaryotic expression plasmids pcDNA-ORF5, pcDNA-IL-2, and pcDNA-IL-4 were constructed and then expressed in Marc-145 cells. The effects of these genes were detected using an indirect immunofluorescent assay and reverse transcription polymerase chain reaction (RT-PCR). Characteristic fluorescence was observed at different times after pcDNA-ORF5 was expressed in the Marc-145 cells, and PCR products corresponding to ORF5, IL-2, and IL-4 genes were detected at 48 h. Based on these data, healthy piglets were injected intramuscularly with different combinations of the purified plasmids: pcDNA-ORF5 alone, pcDNA-ORF5 + pcDNA-IL-2, pcDNA-ORF5 + pcDNA-IL-4, and pcDNA-ORF5 + pcDNAIL-4 + pcDNA-IL-2. The ensuing humoral immune responses, percentages of CD4+ and CD8+ T lymphocytes, proliferation indices, and interferon-γ expression were analyzed. Results revealed that the piglets co-immunized with pcDNA-ORF5 + pcDNA-IL-4 + pcDNA-IL-2 plasmids developed significantly higher antibody titers and neutralizing antibody levels, had significantly increased levels of specific T lymphocyte proliferation, elevated percentages of CD4+ and CD8+ T lymphocytes, and significantly higher IFN-γ production than the other inoculated pigs (p < 0.05).
Collapse
Affiliation(s)
- Deyuan Tang
- Department of Animal Science, Guizhou University, Guiyang 550025,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Liu G, Shi L, Li W, Li C, Chen Z, Jin H, Xu B, Li G. Immune responses in mice vaccinated with a suicidal DNA vaccine expressing the hemagglutinin glycoprotein from the peste des petits ruminants virus. J Virol Methods 2013; 193:525-30. [PMID: 23896018 DOI: 10.1016/j.jviromet.2013.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
Peste des petits ruminants (PPR), an acute and highly contagious disease, affects sheep, goats, and some small ruminants. The hemagglutinin (H) glycoprotein of the PPR virus (PPRV) is considered important for inducing protective immune responses. In this study, a suicidal DNA vaccine based on the Semliki Forest virus (SFV) replicon was constructed and tested for its ability to induce immunogenicity in a mouse model. For this, the H gene of PPRV was cloned and inserted into pSCA1, an SFV replicon vector. The resultant plasmid named pSCA1-H was then transfected into BHK-21 cells following which the antigenicity of the expressed protein was confirmed by Western blotting and immunofluorescence. The pSCA1-H plasmid was then injected intramuscularly into BALB/c mice thrice at 2-week intervals. To evaluate the immunogenicity of pSCA1-H, specific antibodies and neutralizing antibodies against PPRV-H were measured using an indirect enzyme-linked immunosorbent assay and a microneutralization test, respectively. Cell-mediated immune responses were also examined using a lymphocyte proliferation assay. The results showed that pSCA1-H could express the H protein in BHK-21 cells. Specific antibodies, neutralizing antibodies, and lymphocyte proliferation responses were all induced in mice. Thus, this suicidal DNA vaccine could be a promising new approach for vaccine development against PPR.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cell Proliferation
- Enzyme-Linked Immunosorbent Assay
- Female
- Genetic Vectors
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Injections, Intramuscular
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Peste-des-Petits-Ruminants/prevention & control
- Peste-des-petits-ruminants virus/genetics
- Peste-des-petits-ruminants virus/immunology
- Semliki forest virus/genetics
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Liu G, Chen Z, Li C, Shi L, Li W, Huang H, Tao C, Cheng C, Xu B, Li G. Recombinant adenovirus expressing F and H fusion proteins of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in goats. Vet Immunol Immunopathol 2013; 154:1-7. [DOI: 10.1016/j.vetimm.2013.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
|
10
|
Roques E, Girard A, St-Louis MC, Massie B, Gagnon CA, Lessard M, Archambault D. Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Vet Res 2013; 44:17. [PMID: 23497101 PMCID: PMC3608016 DOI: 10.1186/1297-9716-44-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P,O, Box 8888, Montréal, Québec, H3C 3P8, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang L, Bai J, Liu J, Wang X, Li Y, Jiang P. Toll-like receptor ligands enhance the protective effects of vaccination against porcine reproductive and respiratory syndrome virus in swine. Vet Microbiol 2013; 164:253-60. [PMID: 23523335 DOI: 10.1016/j.vetmic.2013.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the heavy economic losses in pig industry in the world. Current vaccination strategies provide only a limited protection. Previous studies have demonstrated the immunostimulatory adjuvant effects of Toll-like receptor (TLR) ligands, synthetic double-stranded RNA polyriboinosinic polyribocytidylic [poly(I:C)], lipoteichoic acid (LTA) and CL097 in humans and animals. To study the effects of these compounds on the induction of PRRSV-specific immune responses, mice were immunized subcutaneously with killed virus (KV) antigens incorporating pairs of TLR ligands. It was found that poly(I:C) and CL097 induced the higher IFN-γ levels and PRRSV-specific antibodies, comparing with that KV with or without LTA in mice. Piglets were vaccinated with the KV mixed with poly(I:C) or CL097 and the protective effects of the vaccination were evaluated. The results showed that PRRSV-specific antibodies and T lymphocyte proliferation levels in KV mixed with poly(I:C) or CL097 groups were higher than those in KV group. Following challenge with PRRSV, pigs inoculated with KV mixed with poly(I:C) or CL097 showed lighter clinical signs, lower viremia and less pathological lesion of lungs, as compared to those of KV and challenge control groups. It indicated that co-administration of poly(I:C) and CL097 with killed PRRSV vaccine conferred higher protection against PRRSV challenge. TLR3 and TLR7/8 ligands are promising adjuvant candidates for the development of novel vaccines against PRRSV.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
12
|
Wu Q, Xu F, Fang L, Xu J, Li B, Jiang Y, Chen H, Xiao S. Enhanced immunogenicity induced by an alphavirus replicon-based pseudotyped baculovirus vaccine against porcine reproductive and respiratory syndrome virus. J Virol Methods 2012. [PMID: 23201089 DOI: 10.1016/j.jviromet.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudotyped baculovirus has emerged as a promising vector for vaccine development and gene therapy. Alphaviruses, such as Semliki Forest virus (SFV), have also received considerable attention for use as expression vectors because of their self-replicating properties. In this study, pseudotyped baculovirus containing the hybrid cytomegalovirus (CMV) promoter/SFV replicon was used as a vector to co-express the GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV). The immunogenicity of the resulting recombinant baculovirus (BV-SFV-5m6) was compared with the pseudotyped baculovirus vaccine (BV-CMV-5m6), in which the expression of GP5 and M were driven by the CMV promoter only. In vitro, BV-SFV-5m6 exhibited enhanced expression of foreign proteins and also caused apoptosis in transduced cells. After immunization in BALB/c mice, BV-SFV-5m6 induced strong GP5-specific ELISA antibodies and neutralizing antibodies against homologous and heterologous viruses, along with dose sparing. Further analysis of the cell-mediated immune response showed that BV-SFV-5m6 elicited a Th1-dominant immune response that was greater than that elicited by BV-CMV-5m6. Taken together, the results of this study indicate that a baculovirus containing the hybrid CMV promoter/alphavirus replicon can be utilized as an alternative strategy to develop an efficacious vaccine against PRRSV infection.
Collapse
Affiliation(s)
- Qunfeng Wu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Du Y, Qi J, Lu Y, Wu J, Yoo D, Liu X, Zhang X, Li J, Sun W, Cong X, Shi J, Wang J. Evaluation of a DNA vaccine candidate co-expressing GP3 and GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) with interferon α/γ in immediate and long-lasting protection against HP-PRRSV challenge. Virus Genes 2012; 45:474-87. [DOI: 10.1007/s11262-012-0790-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/16/2012] [Indexed: 12/01/2022]
|
14
|
Zhang X, Wang X, Mu L, Ding Z. Immune responses in pigs induced by recombinant DNA vaccine co-expressing swine IL-18 and membrane protein of porcine reproductive and respiratory syndrome virus. Int J Mol Sci 2012; 13:5715-5728. [PMID: 22754326 PMCID: PMC3382812 DOI: 10.3390/ijms13055715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/15/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Xiaoli Wang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Lianzhi Mu
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Zhuang Ding
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| |
Collapse
|
15
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
16
|
Prieto C, Martínez-Lobo FJ, Díez-Fuertes F, Aguilar-Calvo P, Simarro I, Castro JM. Immunisation of pigs with a major envelope protein sub-unit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) results in enhanced clinical disease following experimental challenge. Vet J 2011; 189:323-9. [PMID: 20713312 PMCID: PMC7172774 DOI: 10.1016/j.tvjl.2010.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 12/23/2022]
Abstract
Disease exacerbation was observed in pigs challenged with virulent porcine reproductive and respiratory syndrome virus (PRRSV) following immunisation with a recombinant GP5 sub-unit PRRSV vaccine (rGP5) produced in E. coli. Eighteen animals were divided into three experimental groups: group A were immunised twice IM with rGP5, 21 days apart; group B acted as positive controls (challenged but not immunised); and group C were negative controls. Pigs in groups A and B were challenged 21 days after the second immunisation of the group A animals. Following challenge, three pigs given rGP5 exhibited more severe clinical signs than the positive controls, including respiratory distress and progressive weight-loss. Although not statistically significant, the more severe disease exhibited by group A animals may suggest previous immunisation as a contributory factor. The mechanisms of these findings remain unclear and no association could be established between the severity of disease, non-neutralising antibody concentrations and tissue viral loads.
Collapse
|
17
|
Cao J, Wang X, Du Y, Li Y, Wang X, Jiang P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 2010; 28:7514-22. [PMID: 20851084 DOI: 10.1016/j.vaccine.2010.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused heavy economic losses in swine industry worldwide. Current vaccination strategies only provide a limited protective efficacy, thus immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. In this study, the recombinant adenoviruses expressing porcine CD40 ligand (CD40L) and GP3/GP5 of PRRSV were constructed and the immune responses were examined in pigs. The results showed that rAd-CD40L-GP35 (co-expressing CD40L and GP3-GP5) or rAd-GP35 (expressing GP3-GP5) plus rAd-CD40L (expressing CD40L) could provide significant higher specific anti-PRRSV ELISA antibody and neutralizing antibody. And the levels of proliferative responses of peripheral blood mononuclear cells (PBMC), IFN-γ and IL-4 were markedly increased in rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 groups than those in rAd-GP35 group. Following homologous challenge with Chinese isolate of the North-American genotype of PRRSV, pigs inoculated with recombinant rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 showed lighter clinical signs and lower viremia, as compared to those in rAd-GP35 group. It indicated that porcine CD40L could effectively increase humoral and cell-mediated immune responses of GP3 and GP5 of PRRSV. Porcine CD40L might be used as an attractive adjuvant or immunotargeting strategies to enhance the PRRSV subunit vaccine responses in swine.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|