1
|
Yoshida H, Izumori K, Yoshihara A. L-rhamnose isomerase: a crucial enzyme for rhamnose catabolism and conversion of rare sugars. Appl Microbiol Biotechnol 2024; 108:488. [PMID: 39412684 PMCID: PMC11485043 DOI: 10.1007/s00253-024-13325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
L-rhamnose isomerase (L-RhI) plays a key role in the microbial L-rhamnose metabolism by catalyzing the reversible isomerization of L-rhamnose to L-rhamnulose. Additionally, the enzyme exhibits activity on various other aldoses and ketoses, and its broad substrate specificity has attracted attention for its potential application in the production of rare sugars; however, improvement of the enzyme properties is desirable, such as thermal stability, enzymatic activity, and a pH optimum suitable for industrial usage. This review summarizes our current insights into L-RhIs with respect to their substrate recognition mechanism and their relationship with D-xylose isomerase (D-XI) based on structural and phylogenetic analyses. These two enzymes are inherently different, but recognize distinctly different substrates, and share common features that may be phylogenetically related. For example, they both have a flexible loop region that is involved in shaping active sites, and this region may also be responsible for various enzymatic properties of L-RhIs, such as substrate specificity and thermal stability. KEY POINTS: •L-RhIs share structural features with D-XI. •There are two types of L-RhIs: E. coli L-RhI-type and D-XI-type. •Flexible loop regions are involved in the specific enzyme properties.
Collapse
Affiliation(s)
- Hiromi Yoshida
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan.
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
2
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Sharma S, Patel SN, Singh SP. A novel thermotolerant L-rhamnose isomerase variant for biocatalytic conversion of D-allulose to D-allose. Appl Microbiol Biotechnol 2024; 108:279. [PMID: 38564031 PMCID: PMC10987364 DOI: 10.1007/s00253-024-13074-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.
Collapse
Affiliation(s)
- Sweety Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
- Indian Institute of Science Education and Research Mohali, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306.
| |
Collapse
|
4
|
Yoshida H, Yamamoto N, Kurahara LH, Izumori K, Yoshihara A. X-ray structure and characterization of a probiotic Lactobacillus rhamnosus Probio-M9 L-rhamnose isomerase. Appl Microbiol Biotechnol 2024; 108:249. [PMID: 38430263 PMCID: PMC10908623 DOI: 10.1007/s00253-024-13075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan.
| | - Naho Yamamoto
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
5
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
6
|
Wei M, Gao X, Zhang W, Li C, Lu F, Guan L, Liu W, Wang J, Wang F, Qin HM. Enhanced Thermostability of an l-Rhamnose Isomerase for d-Allose Synthesis by Computation-Based Rational Redesign of Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15713-15722. [PMID: 37823838 DOI: 10.1021/acs.jafc.3c05736] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
d-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from Clostridium stercorarium to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations. The resulting combinatorial mutant M2-4 exhibited a 5.7-fold increased half-life at 75 °C while also exhibiting improved catalytic efficiency. Especially, by combining structure modeling and multiple sequence alignment, we identified an α0 region that was universal in the L-RI family and likely acted as a "helix-breaker". Truncating this region is crucial for improving the thermostability of related enzymes. Our work provides a significantly stable biocatalyst with potential for the industrial production of d-allose.
Collapse
Affiliation(s)
- Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P. R. China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianwen Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
7
|
Characterization of a Recombinant l-rhamnose Isomerase from Paenibacillus baekrokdamisoli to Produce d-allose from d-allulose. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Morimoto K, Suzuki T, Ikeda H, Nozaki C, Goto S. One-pot multi-step transformation of D-allose from D-fructose using a co-immobilized biocatalytic system. J GEN APPL MICROBIOL 2022; 68:1-9. [DOI: 10.2323/jgam.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Morimoto
- International Institute of Rare Sugar Research and Education, Kagawa University
| | | | | | | | | |
Collapse
|
9
|
The Functionally Characterization of Putative Genes Involved in the Formation of Mannose in the Aplanospore Cell Wall of Haematococcus pluvialis (Volvocales, Chlorophyta). Metabolites 2021; 11:metabo11110725. [PMID: 34822383 PMCID: PMC8618704 DOI: 10.3390/metabo11110725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Unicellular volvocalean green algal Haematococcus pluvialis, known as astaxanthin rich microalgae, transforms into aplanospore stage from the flagellate stage when exposed to the stress environments. However, the mechanism of the formation of aplanospore cell wall, which hinders the extraction of astaxanthin and the genetic manipulation is still unclear. In this study, the cell wall components under salicylic acid and high light stresses were explored, and cellulose was considered the main component in the flagellates, which changed gradually into mannose in the aplanospore stages. During the period, the genes related to the cellulose and mannose metabolisms were identified based on the RNA-seq data, which presented a similar expression pattern. The positive correlations were observed among these studied genes by Pearson Correlation (PC) analysis, indicating the coordination between pathways of cellulose and mannose metabolism. The study firstly explored the formation mechanism of aplanospore cell wall, which might be of scientific significance in the study of H. pluvialis.
Collapse
|
10
|
Wang R, Xu X, Yao X, Tang H, Ju X, Li L. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1. Enzyme Microb Technol 2021; 148:109789. [PMID: 34116752 DOI: 10.1016/j.enzmictec.2021.109789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Ribose-5-phosphate isomerase A (RpiA) is of great importance in biochemistry research, however its application in biotechnology has not been fully explored. In this study the activity of RpiA from Ochrobactrum sp. CSL1 (OsRpiA) towards D-allose was engineered based on sequential and structural analyses. Strategies of alanine scanning, rational design and saturated mutagenesis were employed to create three mutant libraries. A single mutant of K124A showed a 45 % activity improvement towards D-allose. The reaction properties of the mutant were analyzed, and a shift of optimal pH and higher thermal stability at low reaction temperatures were identified. The conversion of D-allose was also improved by 40 % using K124A, and higher activities on major substrates were found in the mutant's substrate scope, implying its application potential in rare sugar preparation. Kinetics analysis revealed that Km of K124A mutant decreased by 12 % and the catalytic efficiency increased by 65 % towards D-allose. Moreover, molecular dynamics simulation illustrated the binding of substrate and K124A was more stable than that of the wild-type. The shorter distance and more relax bond angle between the catalytic residue of K124A and D-allose explained the activity improvement in detail. This study highlights the potential of OsRpiA as a biocatalyst for rare sugar preparation, and provides distinct evidences for its catalytic mechanism.
Collapse
Affiliation(s)
- Rong Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xinqi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biosciences and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xuemei Yao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
11
|
Biochemical and structural insights into an Ochrobactrum sp. CSL1 ribose-5-phosphate isomerase A and its roles in isomerization of rare sugars. Enzyme Microb Technol 2020; 140:109604. [PMID: 32912675 DOI: 10.1016/j.enzmictec.2020.109604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022]
Abstract
Rare sugars have received increasing attention due to their important applications as sweeteners and building blocks. The substrate specificity and catalytic properties of ribose-5-phosphate isomerase A (RpiA) in isomerization of rare sugars have not been extensively explored. In this study, an RpiA from Ochrobactrum sp. CSL1 was cloned and expressed in Escherichia coli. The biochemical and reaction features were explored and its broad substrate specificity was identified. A higher reaction rate in isomerizing l-rhamnose to l-rhamnulose by OsRpiA, compared with OsRpiB found in the same strain indicated higher efficiency in preparing rare sugars, which was verified by kinetics study. The 2.8 Å resolution structure of OsRpiA was then solved and used in subsequent molecular dynamics experiments, providing a possible explanation for its distinct substrate specificity. The present study highlighted the unique role of microbial RpiA in preparing rare sugars, and its structural information provided a reliable reference for further reaction mechanism research and enzyme engineering work.
Collapse
|
12
|
Saburi W, Sato S, Hashiguchi S, Muto H, Iizuka T, Mori H. Enzymatic characteristics of d-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Appl Microbiol Biotechnol 2019; 103:6559-6570. [DOI: 10.1007/s00253-019-09944-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
|
13
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Improving Thermostability and Catalytic Behavior of l-Rhamnose Isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by Site-Directed Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12017-12024. [PMID: 30370768 DOI: 10.1021/acs.jafc.8b05107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Allose, a rare sugar, is an ideal table-sugar substitute and has many advantageous physiological functions. l-Rhamnose isomerase (l-RI) is an important d-allose-producing enzyme, but it exhibits comparatively low catalytic activity on d-allulose. In this study, an array of hydrophobic residues located within β1-α1-loop were solely or collectively replaced with polar amino acids by site-directed mutagenesis. A group of mutants was designed to weaken the hydrophobic environment and strengthen the catalytic behavior on d-allulose. Compared with that of the wild-type enzyme, the relative activities of the V48N/G59N/I63N and V48N/G59N/I63N/F335S mutants toward d-allulose were increased by 105.6 and 134.1%, respectively. Another group of mutants was designed to enhance thermostability. Finally, the t1/2 values of mutant S81A were increased by 7.7 and 1.1 h at 70 and 80 °C, respectively. These results revealed that site-directed mutagenesis is efficient for improving thermostability and catalytic behavior toward d-allulose.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
14
|
Isomerases and epimerases for biotransformation of pentoses. Appl Microbiol Biotechnol 2018; 102:7283-7292. [PMID: 29968034 DOI: 10.1007/s00253-018-9150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Pentoses represent monosaccharides with five carbon atoms. They are organized into two main groups, aldopentoses and ketopentoses. There are eight aldopentoses and four ketopentoses and each ketopentose corresponds to two aldopentoses. Only D-xylose, D-ribose, and L-arabinose are natural sugars, but others belong to rare sugars that occur in very small quantities in nature. Recently, rare pentoses attract much attention because of their great potentials for commercial applications, especially as precursors of many important medical drugs. Pentoses Izumoring strategy provides a complete enzymatic approach to link all pentoses using four types of enzymes, including ketose 3-epimerases, aldose-ketose isomerases, polyol dehydrogenases, and aldose reductases. At least 10 types of epimerases and isomerases have been used for biotransformation of all aldopentoses and ketopentoses, and these enzymes are reviewed in detail in this article.
Collapse
|
15
|
Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2184-2193. [PMID: 28960307 DOI: 10.1002/jsfa.8703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. RESULTS The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg-1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L-1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L-1 l-mannose, respectively. CONCLUSION The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol 2018; 102:4269-4278. [PMID: 29577167 DOI: 10.1007/s00253-018-8916-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Characterization of L-rhamnose isomerase from Clostridium stercorarium and its application to the production of D-allose from D-allulose (D-psicose). Biotechnol Lett 2017; 40:325-334. [PMID: 29124517 DOI: 10.1007/s10529-017-2468-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To characterize L-rhamnose isomerase (L-RI) from the thermophilic bacterium Clostridium stercorarium and apply it to produce D-allose from D-allulose. RESULTS A recombinant L-RI from C. stercorarium exhibited the highest specific activity and catalytic efficiency (k cat/K m) for L-rhamnose among the reported L-RIs. The L-RI was applied to the high-level production of D-allose from D-allulose. The isomerization activity for D-allulose was maximal at pH 7, 75 °C, and 1 mM Mn2+ over 10 min reaction time. The half-lives of the L-RI at 65, 70, 75, and 80 °C were 22.8, 9.5, 1.9, and 0.2 h, respectively. To ensure full stability during 2.5 h incubation, the optimal temperature was set at 70 °C. Under the optimized conditions of pH 7, 70 °C, 1 mM Mn2+, 27 U L-RI l-1, and 600 g D-allulose l-1, L-RI from C. stercorarium produced 199 g D-allose l-1 without by-products over 2.5 h, with a conversion yield of 33% and a productivity of 79.6 g l-1 h-1. CONCLUSION To the best of our knowledge, this is the highest concentration and productivity of D-allose reported thus far.
Collapse
|
18
|
Kim YS, Kim DY, Park CS. Production of l-rhamnulose, a rare sugar, from l-rhamnose using commercial immobilized glucose isomerase. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1388374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yeong-Su Kim
- Division of Plant Resource Industry, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Do-Yeon Kim
- Department of Convergence Industrialization, International Ginseng and Herb Research Institute, Geumsan, South Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Catholic University of Daegu, Hayang, South Korea
| |
Collapse
|
19
|
Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Advances in the enzymatic production of L-hexoses. Appl Microbiol Biotechnol 2016; 100:6971-9. [PMID: 27344591 DOI: 10.1007/s00253-016-7694-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.
Collapse
|
21
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2016; 100:2985-92. [DOI: 10.1007/s00253-016-7369-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
22
|
Mu W, Yu L, Zhang W, Zhang T, Jiang B. Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol 2015; 99:6571-84. [DOI: 10.1007/s00253-015-6788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
23
|
Hyperthermophilic aldolases as biocatalyst for C–C bond formation: rhamnulose 1-phosphate aldolase from Thermotoga maritima. Appl Microbiol Biotechnol 2014; 99:3057-68. [DOI: 10.1007/s00253-014-6123-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
|
24
|
Park CS. Characterization of a recombinant l-rhamnose isomerase from Bacillus subtilis and its application on production of l-lyxose and l-mannose. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0597-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Pham TV, Hong SH, Hong MK, Ngo HPT, Oh DK, Kang LW. Expression, crystallization and preliminary X-ray crystallographic analysis of cellobiose 2-epimerase from Dictyoglomus turgidum DSM 6724. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1163-6. [PMID: 24100573 PMCID: PMC3792681 DOI: 10.1107/s1744309113024391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
Cellobiose 2-epimerase epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. N-Acyl-D-glucosamine 2-epimerase (DT_epimerase) from Dictyoglomus turgidum has an unusually high catalytic activity towards its substrate cellobiose. DT_epimerase was expressed, purified and crystallized. Crystals were obtained of both His-tagged DT_epimerase and untagged DT_epimerase. The crystals of His-tagged DT_epimerase diffracted to 2.6 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=63.9, b=85.1, c=79.8 Å, β=110.8°. With a Matthews coefficient VM of 2.18 Å3 Da(-1), two protomers were expected to be present in the asymmetric unit with a solvent content of 43.74%. The crystals of untagged DT_epimerase diffracted to 1.85 Å resolution and belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=55.9, b=80.0, c=93.7 Å. One protomer in the asymmetric unit was expected, with a corresponding VM of 2.26 Å3 Da(-1) and a solvent content of 45.6%.
Collapse
Affiliation(s)
- Tan-Viet Pham
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Hye Hong
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Myoung-ki Hong
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
26
|
Yoshida H, Yoshihara A, Teraoka M, Yamashita S, Izumori K, Kamitori S. Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. FEBS Open Bio 2012; 3:35-40. [PMID: 23772372 PMCID: PMC3668531 DOI: 10.1016/j.fob.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
l-Rhamnose isomerase (l-RhI) catalyzes the reversible isomerization of l-rhamnose to l-rhamnulose. Previously determined X-ray structures of l-RhI showed a hydride-shift mechanism for the isomerization of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant l-RhI in complex with l-rhamnopyranose and d-allopyranose. Results suggest that a catalytic water molecule, which acts as an acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different anomers of substrates.
Collapse
Key Words
- D327N, mutant P. stutzeril-RhI, with a substitution of Asp327 with Asn
- E. coli, Escherichia coli
- H101N, mutant P. stutzeril-RhI, with a substitution of H101 with Asn
- P. stutzeri, Pseudomonas stutzeri
- Pseudomonas stutzeri
- RNS, l-rhamnose in a linear form
- Rare sugar
- Sugar-ring opening mechanism
- X-ray structure
- l-RhI, l-rhamnose isomerase
- l-Rhamnose isomerase
- α-APS, α-d-allopyranose
- α-RPS, α-l-rhamnopyranose
- β-RPS, β-l-rhamnopyranose
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnol Lett 2012; 35:259-64. [PMID: 23070627 DOI: 10.1007/s10529-012-1069-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A putative recombinant enzyme from Dictyoglomus turgidum was characterized and immobilized on Duolite A568 beads. The native enzyme was a 46 kDa tetramer. Its activity was highest for L-rhamnose, indicating that it is an L-rhamnose isomerase. The maximum activities of both the free and immobilized enzymes for L-rhamnose isomerization were at pH 8.0 and 75 °C in the presence of Mn(2+). Under these conditions, the half-lives of the free and immobilized enzymes were 28 and 112 h, respectively. In a packed-bed bioreactor, the immobilized enzyme produced an average of 130 g L-rhamnulose l(-1) from 300 g L-rhamnose l(-1) after 240 h at pH 8.0, 70 °C, and 0.6 h(-1), with a productivity of 78 g l(-1) h(-1) and a conversion yield of 43 %. To the best of our knowledge, this is the first report describing the enzymatic production of L-rhamnulose.
Collapse
|
28
|
Hong SH, Lim YR, Kim YS, Oh DK. Molecular characterization of a thermostable l-fucose isomerase from Dictyoglomus turgidum that isomerizes l-fucose and d-arabinose. Biochimie 2012; 94:1926-34. [DOI: 10.1016/j.biochi.2012.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022]
|
29
|
Abstract
Sugar phosphorylation is an indispensable committed step in a large variety of sugar catabolic pathways, which are major suppliers of carbon and energy in heterotrophic species. Specialized sugar kinases that are indispensable for most of these pathways can be utilized as signature enzymes for the reconstruction of carbohydrate utilization machinery from microbial genomic and metagenomic data. Sugar kinases occur in several structurally distinct families with various partially overlapping as well as yet unknown substrate specificities that often cannot be accurately assigned by homology-based techniques. A subsystems-based metabolic reconstruction combined with the analysis of genome context and followed by experimental testing of predicted gene functions is a powerful approach of functional gene annotation. Here we applied this integrated approach for functional mapping of all sugar kinases constituting an extensive and diverse sugar kinome in the thermophilic bacterium Thermotoga maritima. Substrate preferences of 14 kinases mainly from the FGGY and PfkB families were inferred by bioinformatics analysis and biochemically characterized by screening with a panel of 45 different carbohydrates. Most of the analyzed enzymes displayed narrow substrate preferences corresponding to their predicted physiological roles in their respective catabolic pathways. The observed consistency supports the choice of kinases as signature enzymes for genomics-based identification and reconstruction of sugar utilization pathways. Use of the integrated genomic and experimental approach greatly speeds up the identification of the biochemical function of unknown proteins and improves the quality of reconstructed pathways.
Collapse
|
30
|
Lin CJ, Tseng WC, Fang TY. Characterization of a thermophilic L-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8702-8708. [PMID: 21761877 DOI: 10.1021/jf201428b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
L-Rhamnose isomerase (EC 5.3.1.14, l-RhI) catalyzes the reversible aldose-ketose isomerization between L-rhamnose and L-rhamnulose. In this study, the L-rhi gene encoding L-RhI was PCR-cloned from Caldicellulosiruptor saccharolyticus ATCC 43494 and then expressed in Escherichia coli. A high yield of active L-RhI, 3010 U/g of wet cells, was obtained after 20 °C induction for 20 h. The enzyme was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified L-RhI showed an apparent optimal pH of 7 and an optimal temperature at 90 °C. The enzyme was stable at pH values ranging from 4 to 11 and retained >90% activity after a 6 h incubation at 80 °C and pH 7-8. Compared with other previously characterized L-RhIs, the L-RhI from C. saccharolyticus ATCC 43494 has a good thermostability, the widest pH-stable range, and the highest catalytic efficiencies (k(cat)/K(M)) against L-rhamnose, L-lyxose, L-mannose, D-allose, and D-ribose, suggesting that this enzyme has the potential to be applied in rare sugar production.
Collapse
Affiliation(s)
- Chia-Jui Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | |
Collapse
|
31
|
Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 2011; 91:229-35. [DOI: 10.1007/s00253-011-3370-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|