1
|
Li M, Du S, Xiao Y, Wu Y, Zhong K, Huang Y, Gan R, Gao H. Enhancing the quality of dark tea through fermentation with Aspergillus niger: Unveiling aroma and taste characteristics. Food Microbiol 2025; 128:104721. [PMID: 39952746 DOI: 10.1016/j.fm.2025.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Amidst the increasing demand for premium dark tea, the utilization of Aspergillus niger-inoculated fermentation has emerged as a potential solution to address the challenges associated with extended processing cycles and inconsistent quality. This study comprehensively investigated the efficacy and mechanisms of A. niger PW-2 inoculation in enhancing dark tea quality compared to spontaneous fermentation, using metabolomics, electronic tongue, molecular docking, and high-throughput sequencing. A. niger PW-2 shaped the fungal community within 7 days, degrading terpene glycosides and lactones while generating terpenoids and unsaturated fatty acids, which enriched the floral aroma of PW-2-inoculated fermentation dark tea (AF). Flavonoid degradation and reduced theaflavins/thearubigins levels in AF decreased astringency, while increased bitter dipeptides and isoflavonoids enhanced bitterness, and the accumulation of umami dipeptides and theabrownins improved umami taste perception of AF. Molecular docking identified key compounds responsible for astringency (kaempferol glycosides), bitterness (6″-caffeoylisoorientin, kaempferol 4'-glucoside 7-rhamnoside, dihydrodaidzein 7-O-glucuronide), and umami (3-O-p-trans-coumaroylalphitolic acid, dihydrodaidzein 7-O-glucuronide, 1-methoxyphaseollidin). Overall, A. niger PW-2 inoculation accelerates fermentation process and enhances flavor characteristics of dark tea, offering a promising approach for high-quality dark tea production.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sicheng Du
- International Department of Chengdu Shude High School, Chengdu, 670041, China
| | - Yue Xiao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Bharadwaj P, Devi CJ, Thakur D. Unlocking Rhizosphere Dynamics: Exploring Mechanisms of Plant-Microbe Interactions for Enhanced Tea (Camellia sinensis (L.) O. Kuntze) Productivity. Curr Microbiol 2025; 82:257. [PMID: 40261358 DOI: 10.1007/s00284-025-04235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The rhizosphere, the interface between plant roots and soil, refers to the contact zone where plants and soil microbes engage in beneficial and parasitic interactions. The significant interactions and their importance form a dynamic interface between the roots of plants and the soil. Beneficial ones, especially plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF), improve plant development and enhance stress resistance due to microbial secretions, exudates from roots, and edaphic factors. All these are very important in cultivating tea (Camellia sinensis (L.) O Kuntze) plants, boosting growth, yield, and leaf content of amino acids, proteins, caffeine, and polyphenols. Yet, the molecular mechanisms of such interactions necessitate high-end technologies like genome editing and proteomics to fine-tune rhizosphere dynamics for greater plant health and productivity. The root exudates, rich in nutrients, serve as a source of food for the soil microbes while facilitating communication and colonisation by beneficial organisms, such as AMF and bacteria, thus significantly impacting the performance of a tea plant. High nitrogen fertilisers are readily applied in tea farming, although environmental risks include soil acidification and increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Understanding and manipulating plant root-soil microbe interactions are critical for developing sustainable farming systems that enhance productivity without causing environmental damage. This review describes the mechanisms by which beneficial microbes function in the rhizosphere, strategies for modifying root exudates to improve tea production, and the tea microbiome's underexplored potential in contributing towards sustainability. This review thus emerges as one that presents knowledge gaps and possible future directions in tea microbiome science predicated on the amelioration of tea farming by enhancing productivity and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
3
|
Lu T, Dong X, Lan W, Zhou B, Teng J, Xia N, Khan MR, Huang L. From microbial perspective: Manufacturing process, chemical composition and health benefis of Liupao tea-A comprehensive review. Food Res Int 2025; 206:116088. [PMID: 40058929 DOI: 10.1016/j.foodres.2025.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Liupao tea (LPT) has garnered increasing attention from researchers due to its distinctive flavor, its role in traditional Chinese medicine for dispelling dampness and promoting health, and its rich cultural heritage. Over the past decade, studies have explored the chemical composition, biological activity, taste profile, microbial community, and safety aspects of LPT. However, a comprehensive understanding of the intricate relationships between LPT, its associated microorganisms, characteristic chemical components, and biological activities remains lacking. This review explores microorganisms' role in LPT production, focusing on their contributions to fermentation advantages, colony structure, identified species, and their impact on flavor, quality, and safety. Additionally, it highlights the role of microorganisms in chemical transformations and the link between these transformations and the tea's health benefits. The unique technological process of LPT involves a high-temperature, short-term fermentation stage (pile and tank fermentation) followed by a low-temperature, long-term fermentation stage (aging), during which microbial activity transitions from active to dormant. Key microbial genera such as Sphingomonas, Staphylococcus, Kocuria, Trichomonascus, Blastobotrys, and Aspergillus play vital roles in the development of quality and biotransformation of chemical components, including catechins, flavonoids, and alkaloids. The safety risks associated with fermentation, particularly concerning ochratoxin and citrinin, require close monitoring. Furthermore, research on the active ingredients of LPT and their corresponding physiological activities remains limited. Future studies should focus on the role of microorganisms in forming LPT's unique quality, its material transformation, risk control, and health-promoting effects such as dampness-removal, to further explore its potential scientific value and practical applications.
Collapse
Affiliation(s)
- Tanli Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xianmei Dong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Weiwei Lan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Bin Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | | | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Cheng L, Peng L, Xu L, Yu X, Zhu Y, Wei X. Metabolic function and quality contribution of tea-derived microbes, and their safety risk in dark tea manufacture. Food Chem 2025; 464:141818. [PMID: 39486219 DOI: 10.1016/j.foodchem.2024.141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Microbial fermentation, especially the microbes involved, plays a crucial role in the quality formation of dark tea. Over the last decade, numerous microbes have been isolated from dark tea and in turn, applied to dark tea manufacture through pure-strain, mixed-strain, and enhanced fermentation. This article systematically summarizes the specific metabolic function and quality contribution of tea-derived microbes, with special attention paid to their safety risk. Aspergillus niger converts catechins via hydrolysis, addition, oxidative polymerization, and B-ring fission, contributing greatly to the reddish-brown color and mellow taste of dark tea. Aspergillus sydowii and Penicillium simplicissimum are caffeine-degrading microbes, degrading caffeine mainly into theophylline. However, under adverse conditions, Aspergillus, Penicillium, and Fusarium species potentially produce aflatoxins, ochratoxin A, and citrinin, the mycotoxins occurring in dark tea. The in-depth knowledge of tea-derived microbes is important for improving the quality and safety of dark tea, providing a theoretical basis for its industrial modernization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoping Yu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Zheng J, Yu L, Aaqil M, Wang Q, Peng W, Zhuang L, Gong W, Zheng T, Zhao M, Wang C, Jiang X, Yan L, Yang R. Enhanced Fermentation of Pu-Erh Tea with Aspergillus niger: Quality and Microbial Community Analysis. Molecules 2024; 29:5647. [PMID: 39683805 DOI: 10.3390/molecules29235647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. Aspergillus niger is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of Aspergillus niger in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with Aspergillus niger isolated from Pu-erh tea to enhance the fermentation process. Metabolites and microbial communities in sun-dried green tea (CK), fortified fermented tea (TF), and naturally fermented tea (NF) were analyzed using non-targeted metabolomics, 16S rDNA, and internal transcribed spacer sequencing. Non-targeted metabolomics revealed that Aspergillus niger significantly altered the metabolite profile of the tea samples, identifying a total of 200 different metabolites, with 95 showing significant increases and 105 significant decreases, predominantly enriched in metabolic pathways associated with amino acid biosynthesis and degradation. High-throughput sequencing revealed that although the relative abundance of the fungal community remained largely unchanged, the inoculation of Aspergillus niger significantly increased the abundance of Bacillales and Pseudomonas within the bacterial community, thereby influencing the dynamic balance of the microbial ecosystem. Collectively, the inoculation of Aspergillus niger altered the composition of the microbial community and metabolic activities, resulting in changes to the content of amino acid-dominated metabolites, thereby enhancing the flavor profile and overall quality of Pu-erh tea. These findings provide important insights for optimizing the production processes of Pu-erh tea and the application of microorganisms in other fermented foods.
Collapse
Affiliation(s)
- Jingchuan Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lijun Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qiaomei Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, China
| | - Wenshu Peng
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Li Zhuang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Wanying Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Miaomiao Zhao
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Chao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingjiao Jiang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| |
Collapse
|
6
|
Cheng L, Wei Y, Peng L, Wei K, Liu Z, Wei X. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits. Crit Rev Food Sci Nutr 2024; 64:11321-11340. [PMID: 37584203 DOI: 10.1080/10408398.2023.2236701] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
7
|
He S, Deng X, Han Y, Gong Z, Wang J, Tao X, Tong H, Chen Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem 2023; 429:136992. [PMID: 37516054 DOI: 10.1016/j.foodchem.2023.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.
Collapse
Affiliation(s)
- Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhengli Gong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Jian Wang
- Ice Island Mountain Tea Company, Mengku Town, Shuangjiang Autonomous County, Yunnan Province, China
| | - Xiaoqi Tao
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
10
|
Yang W, Ren D, Shao H, Zhang X, Li T, Zhang L, Liu L, Zhao Y, Niu P, Yang X. Theabrownin from Fu Brick Tea Improves Ulcerative Colitis by Shaping the Gut Microbiota and Modulating the Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2898-2913. [PMID: 36728562 DOI: 10.1021/acs.jafc.2c06821] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fu brick tea theabrownin (FBTB) is a kind of biomacromolecule produced by oxidative polymerization of tea polyphenols. Although a variety of diseases can be alleviated by TB, its ability to treat ulcerative colitis (UC) is still worth exploring. A dextran sulfate sodium (DSS)-induced chronic UC mouse model was designed to first explore the alleviatory effect of FBTB on UC and its underlying mechanism by the sequencing of fecal 16S rRNA genes, metabolomics, and fecal microbiota transplantation (FMT). Administration of FBTB at 400 mg/kg bw in DSS-damaged mice could effectively reduce colonic damage and inflammation and improve colonic antioxidant capacity to relieve the UC-caused symptoms. FBTB could correct the disrupted gut microbiota caused by UC and contribute to the proliferation of Lactobacillus and Parasutterella. FMT in combination with antibiotic treatment showed that FBTB could elevate the levels of microbial tryptophan metabolites, including indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA), by selectively promoting the growth of Lactobacillus. Importantly, FBTB-elevated IAld and IAA could activate aromatic hydrocarbon receptors (AhRs) and enhance interleukin-22 production to repair the intestinal barrier. These findings demonstrated that FBTB alleviated UC mainly by targeting the gut microbiota involved in the AhR pathway for prophylactic and therapeutic treatment of UC.
Collapse
Affiliation(s)
- Wuqi Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
11
|
Liao SY, Zhao YQ, Jia WB, Niu L, Bouphun T, Li PW, Chen SX, Chen W, Tang DD, Zhao YL, Zou Y, Zhu MZ, Xu W. Untargeted metabolomics and quantification analysis reveal the shift of chemical constituents between instant dark teas individually liquid-state fermented by Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. Front Microbiol 2023; 14:1124546. [PMID: 36846747 PMCID: PMC9947791 DOI: 10.3389/fmicb.2023.1124546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Instant dark teas (IDTs) were individually liquid-state fermented using the fungi Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. To understand how the chemical constituents of IDTs were affected by the fungi, samples were collected and measured by liquid chromatography-tandem mass-tandem mass spectrometry (LC-MS/MS). Untargeted metabolomics analysis revealed that 1,380 chemical constituents were identified in positive and negative ion modes, and 858 kinds of chemical components were differential metabolites. Through cluster analysis, IDTs were different from the blank control, and their chemical constituents mostly included carboxylic acids and their derivatives, flavonoids, organooxygen compounds, and fatty acyls. And the metabolites of IDTs fermented by A. niger and A. tubingensis had a high degree of similarity and were classified into one category, which showed that the fungus used to ferment is critical to the formation of certain qualities of IDTs. The biosynthesis of flavonoids and phenylpropanoid, which involved nine different metabolites such as p-coumarate, p-coumaroyl-CoA, caffeate, ferulate, naringenin, kaempferol, leucocyanidin, cyanidin, and (-)-epicatechin, were significant pathways influencing the quality formation of IDTs. Quantification analysis indicated that the A. tubingensis fermented-IDT had the highest content of theaflavin, theabrownin, and caffeine, while the A. cristatus fermented-IDT had the lowest content of theabrownin, and caffeine. Overall, the results provided new insights into the relationship between the quality formation of IDTs and the microorganisms used in liquid-state fermentation.
Collapse
Affiliation(s)
- Si-yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Niu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Pin-wu Li
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sheng-xiang Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan-dan Tang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yue-ling Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yao Zou,
| | - Ming-zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China,Ming-zhi Zhu,
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Wei Xu,
| |
Collapse
|
12
|
Du J, Wu X, Sun S, Qin Y, Liao K, Liu X, Qiu R, Long Z, Zhang L. Study on inoculation fermentation by fungi to improve the taste quality of summer green tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhen Q, Liang Q, Wang H, Zheng Y, Lu Z, Bian C, Zhao X, Guo X. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice. Front Endocrinol (Lausanne) 2023; 14:1118925. [PMID: 36742397 PMCID: PMC9889550 DOI: 10.3389/fendo.2023.1118925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Nonalcoholic steatohepatitis (NASH), also known as metabolic steatohepatitis, is a clinical syndrome with pathological changes like alcoholic hepatitis but without a history of excessive alcohol consumption. NASH is closely related to metabolic disorders such as obesity, insulin resistance, type 2 diabetes mellitus, and hyperlipidemia. Its main characteristics are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, it can develop into liver cirrhosis. At present, there is no special treatment for NASH. Theabrownin (TB) is the main pigment substance in fermented tea. Theabrownin has beneficial effects on lipid metabolism and intestinal flora. However, the effect of theabrownin on NASH has not been studied. Methods This study was aimed at exploring the effects of theabrownin from Fuzhuan brick tea on NASH. 8-week-old mice were randomly assigned to three groups and fed with chow diet (CD), methionine and choline sufficient (MCS) diet (MCS Ctrl), which is a Methionine/choline deficient (MCD) control diet, and MCD diet. After 5 weeks of feeding, the MCD group mice were randomly divided into two groups and were gavaged with double distilled water (MCD Ctrl) or theabrownin (MCD TB) (200mg/kg body weight, dissolved in double distilled water) every day for another 4 weeks respectively, while continuing MCD diet feeding. Results We found that theabrownin treatment could not improve liver mass loss and steatosis. However, theabrownin ameliorated liver injury and decreased liver inflammatory response. Theabrownin also alleviated liver oxidative stress and fibrosis. Furthermore, our results showed that theabrownin increased hepatic level of fibroblast growth factor 21 (FGF21) and reduced the phosphorylation of mitogen-activated protein kinase p38 in MCD diet-fed mice.
Collapse
Affiliation(s)
- Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongchun Wang
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiulan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Hou Y, Zhang Z, Cui Y, Peng C, Fan Y, Tan C, Wang Q, Liu Z, Gong J. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions. Food Res Int 2022; 162:112176. [DOI: 10.1016/j.foodres.2022.112176] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
15
|
Theabrownin Alleviates Colorectal Tumorigenesis in Murine AOM/DSS Model via PI3K/Akt/mTOR Pathway Suppression and Gut Microbiota Modulation. Antioxidants (Basel) 2022; 11:antiox11091716. [PMID: 36139789 PMCID: PMC9495753 DOI: 10.3390/antiox11091716] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet therapeutic options for CRC often exhibit strong side effects which cause patients’ well-being to deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas, and melanoma. However, the potential antitumor effect of TB on CRC has not previously been investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS) was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore, TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression, which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our results suggest that TB could inhibit tumor formation and potentially be a promising candidate for CRC treatment.
Collapse
|
16
|
Jiang J, Zhang M, An T, Zu Z, Song P, Chen M, Yue P, Gao X. Preparation of instant dark tea by liquid-state fermentation using sequential inoculation with Eurotium cristatum and Aspergillus niger: Processes optimization, physiochemical characteristics and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Fungal flora and mycotoxin contamination in tea: Current status, detection methods and dietary risk assessment - A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Interrelation analysis between phenolic compounds and in vitro antioxidant activities in Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Vazirzadeh A, Jafarifard K, Ajdari A, Chisti Y. Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149988. [PMID: 34525699 DOI: 10.1016/j.scitotenv.2021.149988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Microalgae such Chlorella vulgaris can effectively absorb nitrate and phosphate from contaminated water. This work characterized nitrate and phosphate removal from simulated agricultural runoff using C. vulgaris. Statistically designed experiments were used to model the following responses: (1) algal growth; (2) nitrate removal; (3) phosphate removal; (4) protein in the algal biomass; (5) chlorophyll content of the biomass; (6) the biomass phenolics content; and (7) the free radical scavenging antioxidant activity of the biomass. These response were modelled for the following key experimental factors: initial nitrate concentration in the simulated runoff (1080-3240 mg L-1, as NaNO3), initial phosphate concentration (20-60 mg L-1, as K2HPO4), photoperiod (8-24 h of light/day) and culture duration (5-15 days). The validated models were used to identify the factor levels to maximize the various responses. Nitrate removal was maximized at 85.6% when initial nitrate and phosphate concentrations were 2322 mg L-1 and 38 mg L-1 (N:P atom ratio ≈ 125:1), respectively, with a 17.2 h daily photoperiod in a 13-day culture. Phosphate removal was maximized at 95% when the initial nitrate and phosphate concentrations were 1402 mg L-1 and 56.7 mg L-1 (N:P ≈ 51:1), respectively, with a 15.7 h daily photoperiod in a 14.7-day culture. At least ~14 h of a daily photoperiod and a ~11-day culture period were required to maximize all the studied responses. C. vulgaris is edible and may be used as animal feed. Nutritional aspects of the biomass were characterized. Biomass with more than 24% protein could be produced. Under the best conditions, the chlorophyll (potential food colorants) content of the biomass was 8.5% and the maximum level of total phenolics (antioxidants) in the biomass was nearly 13 mg gallic acid equivalent g-1.
Collapse
Affiliation(s)
- Arya Vazirzadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Kiyanoush Jafarifard
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Ashkan Ajdari
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education, and Extension Organization (AREEO), Chabahar, Iran
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
20
|
Wang Z, Zheng C, Ma C, Ma B, Wang J, Zhou B, Xia T. Comparative analysis of chemical constituents and antioxidant activity in tea-leaves microbial fermentation of seven tea-derived fungi from ripened Pu-erh tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Li Z, Mao Y, Teng J, Xia N, Huang L, Wei B, Chen Q. Evaluation of Mycoflora and Citrinin Occurrence in Chinese Liupao Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12116-12123. [PMID: 33108873 DOI: 10.1021/acs.jafc.0c04522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Citrinin (CIT), a known nephrotoxic mycotoxin, is mainly produced by Penicillium, Aspergillus, and Monascus species. It is a natural contaminant in cereal grains, foods, and feedstuff. Liupao tea (or Liubao tea) is a typical Chinese dark tea obtained via indigenous tea fermentation facilitated by microorganisms. Certain fungi present in Liupao tea that may produce CIT are a potential threat to consumer health. In the present study, various potential toxigenic mycoflora and the natural occurrence of CIT in Liupao tea were surveyed via the culture-dependent method, high performance liquid chromatography-fluorescence detection (HPLC-FLD), and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Total mold counts ranged from 3.5 × 102 CFU/g to 2.1 × 106 CFU/g tea in 28 tea samples. A total of 218 fungal isolates belonging to five genera and 23 species were identified. Some of these strains, such as Aspergillus ochraceus, Aspergillus oryzae, Penicillium citrinum, and Penicillium chrysogenum, may potentially be a CIT-producing species. In addition, 32.7% of 113 Liupao tea samples were contaminated with CIT at concentrations ranging from 7.8 to 206.1 μg/kg. These CIT concentrations in Liupao tea are chiefly attributed to climatic conditions and water activity during storage that favor fungal proliferation and mycotoxin production. However, CIT could not be detected in Liupao tea stored for over 10 years. These results provide the first information about the potential toxigenic mycoflora and natural occurrence of CIT in Liupao tea. Therefore, storage conditions and fungal community must be monitored to ensure the quality of Liupao tea.
Collapse
Affiliation(s)
- Zhongyu Li
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530005, China
| | - Yan Mao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530299, China
| | - Jianwen Teng
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530005, China
| | - Ning Xia
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530005, China
| | - Li Huang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530005, China
| | - Baoyao Wei
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530005, China
| | - Qingjin Chen
- Faculty of Agriculture and Food Engineering, Baise College, Baise 533000, China
| |
Collapse
|
22
|
Ma Y, Ling TJ, Su XQ, Jiang B, Nian B, Chen LJ, Liu ML, Zhang ZY, Wang DP, Mu YY, Jiao WW, Liu QT, Pan YH, Zhao M. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem 2020; 334:127560. [PMID: 32711271 DOI: 10.1016/j.foodchem.2020.127560] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Post-fermented Pu-erh tea (PFPT) is a microbially-fermented tea with distinct sensory qualities and multiple health benefits. Aspergillus are the dominant fungi in the fermentation and the main contributors to the characteristics of PFPT, so their underlying functions warrant detailed study. Here, tea leaves were fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus, and resulting samples (designated as Asn, Ast and Asf, respectively) were analyzed by proteomic and metabolomic methods. Changes to the composition of flavonoids, glycerophospholipids, organo-oxygen compounds and fatty acids resulting from Aspergillus fermentation were observed. Carbohydrate-active enzymes, e.g., endoglucanases and cellulases, for degradation of cellulose, starch, lignin, pectin, xylan and xyloglucan were identified. Glycoside hydrolase, glycosyltransferases, tannase, laccases, vanillyl-alcohol oxidases and benzoquinone reductase were identified and hypothesized to catalyze hydrolysis, oxidation, polymerization and degradation of phenolic compounds. Together, functions of Aspergillius were demonstrated as production of enzymes to change concentrations and compositions of metabolites in tea leaves.
Collapse
Affiliation(s)
- Yan Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui, China
| | - Xiao-Qin Su
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China
| | - Bin Jiang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bo Nian
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming-Li Liu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zheng-Yan Zhang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Dao-Ping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Ying Mu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Wen Jiao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qian-Ting Liu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying-Hong Pan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
23
|
Bacillus subtilis Fermentation of Malva verticillata Leaves Enhances Antioxidant Activity and Osteoblast Differentiation. Foods 2020; 9:foods9050671. [PMID: 32456062 PMCID: PMC7278731 DOI: 10.3390/foods9050671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Malva verticillata, also known as Chinese mallow, is an herbaceous plant with colorful flowers and has been used as a medicine for thousands of years. This study investigated this herb for potential antioxidant activity or an association with osteoblast differentiation. M. verticillate leaves were fermented with B. subtilis MV1 at 30 °C for 7 days to enhance their biological activities. The resultant aqueous extract (MVW) and the fermented leaves (MVB) were measured for antioxidant and osteoblast differentiation. The results showed that the total phenolic, flavonoid, and antioxidant activity, as well as the osteoblast differentiation of the MVB increased (2 to 6 times) compared with those of the MVW. MVB induced phosphorylation of p38, extracellular signal-regulated kinase in C3H10T1/2 cells, and the phosphorylation was attenuated via transforming growth factor-β (TGF-β) inhibitors. Moreover, runt-related transcription factor 2 and osterix in the nucleus increased in a time-dependent manner. The messenger RNA expression of alkaline phosphatase and bone sialoprotein increased about 9.4- and 65-fold, respectively, compared to the non-treated cells. MVB stimulated C3H10T1/2 cells in the osteoblasts via TGF-β signaling. Thus, fermented M. verticillata extract exhibited enhanced antioxidant activity and osteoblast differentiation.
Collapse
|
24
|
Zhou B, Ma C, Ren X, Xia T, Zheng C, Liu X. Correlation analysis between filamentous fungi and chemical compositions in a pu-erh type tea after a long-term storage. Food Sci Nutr 2020; 8:2501-2511. [PMID: 32405406 PMCID: PMC7215201 DOI: 10.1002/fsn3.1543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
Storage environment caused the difference between Jinhua Pu-erh tea (JPT) and General Pu-erh tea. In this study, fungal flora and chemical compositions were analyzed. The results showed that storage environment caused significant (p < .05) differences of theaflavins (TF), theabrownins (TB), tea polyphenols (TP), and water-soluble sugars (WSS), and a highly significant (p < .01) difference of thearubigins (TR). Aspergillus niger, Aspergillus pallidofulvus, Aspergillus sesamicola, Penicillium manginii, and Aspergillus tamarii were isolated from Pu-erh teas and identified based on colony characteristics and ITS, β-tubulin, and calmodulin gene sequences, respectively. A. pallidofulvus, A. sesamicola, and P. manginii were dominant fungi in JPT and generated macroscopic yellow cleistothecia after a long-term storage. Correlation analysis showed that dominant fungi exhibited significantly (p < .05 or p < .01) positive or negative corrections with TF, TB, TP, WSS, TR, and gallic acid. This study revealed dominant fungi including A. pallidofulvus, A. sesamicola, and P. manginii and their effects on given chemical compositions.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Cunqiang Ma
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
- Kunming Dapu Tea CO., LTDKunmingChina
| | - Xiaoying Ren
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
- Liaocheng Senior Financial Vocational SchoolLiaochengChina
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Chengqin Zheng
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Xiaohui Liu
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
25
|
Xue J, Yang L, Yang Y, Yan J, Ye Y, Hu C, Meng Y. Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zhou B, Ma C, Ren X, Xia T, Li X. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. J Food Sci 2020; 85:477-485. [PMID: 31905425 DOI: 10.1111/1750-3841.15015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Natural microorganisms involved in solid-state fermentation (SSF) of Pu-erh tea have a significant impact on its chemical components. Aspergillus sydowii is a fungus with a high caffeine-degrading capacity. In this work, A. sydowii was inoculated into sun-dried green tea leaves for SSF. Metabolomic analysis was carried out by using UPLC-QTOF-MS method, and caffeine and related demethylated products were determined by HPLC. The results showed that A. sydowii had a significant (P < 0.05) impact on amino acids, carbohydrates, flavonoids, and caffeine metabolism. Moreover, A. sydowii could promote the production of ketoprofen, baclofen, and tolbutamide. Along with caffeine degradation, theophylline, 3-methylxanthine, 1,7-dimethylxanthine, 1-methylxanthine, and 7-methylxanthine were increased significantly (P < 0.05) during inoculated fermentation, which showed that demethylation was the main pathway of caffeine degradation in A. sydowii secondary metabolism. The absolute quantification analysis showed that caffeine could be demethylated and converted to theophylline and 3-methylxanthine. Particularly, about 93.24% of degraded caffeine was converted to theophylline, 27.92 mg/g of theophylline was produced after fermentation. PRACTICAL APPLICATION: Aspergillus sydowii could cause caffeine degradation in Pu-erh tea solid-state fermentation and produce theophylline through the demethylation route. Using a starter strain to ferment tea leaves offers a more controllable, reproducible, and highly productive alternative for the biosynthesis of theophylline.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Long Run Pu-erh Tea, Yunnan Agricultural Univ., Kunming, 650201, Yunnan, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., Hefei, 230036, Anhui, China
| | - Cunqiang Ma
- College of Long Run Pu-erh Tea, Yunnan Agricultural Univ., Kunming, 650201, Yunnan, China.,Kunming Dapu Tea Industry Co., LTD, Kunming, 650224, Yunnan, China
| | - Xiaoying Ren
- College of Long Run Pu-erh Tea, Yunnan Agricultural Univ., Kunming, 650201, Yunnan, China.,Liaocheng Senior Financial Vocational School, Liaocheng, 252000, Shandong, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., Hefei, 230036, Anhui, China
| | - Xiaohong Li
- College of Long Run Pu-erh Tea, Yunnan Agricultural Univ., Kunming, 650201, Yunnan, China
| |
Collapse
|
27
|
Sepúlveda L, Laredo-Alcalá E, Buenrostro-Figueroa JJ, Ascacio-Valdés JA, Genisheva Z, Aguilar C, Teixeira J. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2019.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Horie M, Tada A, Kanamoto N, Tamai T, Fukuda N, Sugino S, Toyotome T, Tabei Y. Evaluation of lactic acid bacteria and component change during fermentation of Ishizuchi‐kurocha. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Masanori Horie
- Health Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu Japan
| | - Atsumi Tada
- Health Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu Japan
| | - Naoaki Kanamoto
- Food Technology Center Ehime Institute of Industrial Technology Matsuyama Japan
| | - Takahisa Tamai
- Food Technology Center Ehime Institute of Industrial Technology Matsuyama Japan
| | - Naohiro Fukuda
- Food Technology Center Ehime Institute of Industrial Technology Matsuyama Japan
| | - Sakiko Sugino
- Health Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu Japan
| | - Takahito Toyotome
- Department of Veterinary Medicine Obihiro University of Agriculture and Veterinary Medicine Obihiro Japan
| | - Yosuke Tabei
- Health Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu Japan
| |
Collapse
|
29
|
Xu Q, Sun M, Ning J, Fang S, Ye Z, Chen J, Fu R. The Core Role of Bacillus subtilis and Aspergillus fumigatus in Pile-Fermentation Processing of Qingzhuan Brick Tea. Indian J Microbiol 2019; 59:288-294. [PMID: 31388205 DOI: 10.1007/s12088-019-00802-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
To identify the microorganisms responsible for the formation of the main quality components of Qingzhuan brick tea (QZBT) during solid-state fermentation (SSF), predominant thermoduric strains were isolated from the tea leaves collected during SSF. According to their capability of releasing cellulase, pectase, protease, and polyphenol oxidase, four strains were selected as starter cultures to ferment sun-dried tea leaves during artificially inoculated SSF. According to the major enzymatic activities and quality components content (tea polyphenols, catechins, amino acids, soluble sugar, and theabrownin), it was found that Aspergillus fumigatus M1 had a significant effect on the transformation of polyphenols and Bacillus subtilis X4 could enhance the ability of bioconversion of strain M1. Strain X4 and M1 may be the core microbes responsible for developing these biochemical components of QZBT, as the values of quality components of tea leaves fermented by these two strains for 6 days was very close to that of the sample naturally fermented for 35 days in the tea factory. The results could be significant in developing industrial starters for the manufacture of QZBT and stabilizing the product quality of different batches.
Collapse
Affiliation(s)
- Qian Xu
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Min Sun
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Jingming Ning
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Shimao Fang
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Ziling Ye
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| | - Junhai Chen
- Hubei Zhaoliqiao Tea Co. Ltd, Chibi, 437300 People's Republic of China
| | - Ruiyan Fu
- 1School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036 People's Republic of China
| |
Collapse
|
30
|
Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol 2018; 76:405-415. [DOI: 10.1016/j.fm.2018.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
|
31
|
Wang Q, Šarkanj B, Jurasovic J, Chisti Y, Sulyok M, Gong J, Sirisansaneeyakul S, Komes D. Evaluation of microbial toxins, trace elements and sensory properties of a high‐theabrownins instant Pu‐erh tea produced using
Aspergillus tubingensis
via submerged fermentation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qiuping Wang
- College of Food Science and Technology Yunnan Agricultural University Heilong Tan Kunming 650201 China
| | - Bojan Šarkanj
- Department of Food Technology University Center Koprivnica University North Trg dr. Žarka Dolinara 1 Koprivnica 48000 Croatia
| | - Jasna Jurasovic
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10001 Croatia
| | - Yusuf Chisti
- School of Engineering Massey University Private Bag 11 222 Palmerston North New Zealand
| | - Michael Sulyok
- Center for Analytical Chemistry Department of Agrobiotechnology (IFA‐Tulln) University of Natural Resources and Life Sciences Vienna (BOKU) Konrad Lorenzstr. 20 A‐3430 Tulln Austria
| | - Jiashun Gong
- College of Food Science and Technology Yunnan Agricultural University Heilong Tan Kunming 650201 China
| | - Sarote Sirisansaneeyakul
- Faculty of Agro‐Industry Kasetsart University 50 Ngam Wong Wan Road Ladyao Chatuchak Bangkok 10900 Thailand
| | - Draženka Komes
- Faculty of Food Technology and Biotechnology University of Zagreb Pierrotijeva 6 Zagreb 10000 Croatia
| |
Collapse
|
32
|
Liu T, Xiang Z, Chen F, Yin D, Huang Y, Xu J, Hu L, Xu H, Wang X, Sheng J. Theabrownin suppresses in vitro osteoclastogenesis and prevents bone loss in ovariectomized rats. Biomed Pharmacother 2018; 106:1339-1347. [PMID: 30119205 DOI: 10.1016/j.biopha.2018.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Drinking tea exhibits beneficial effects on bone health and may protect against osteoporosis, particularly in postmenopausal women. Theabrownin (TB) is the main component responsible for the biological activities of Pu-erh tea, but whether it possesses anti-osteoporotic potential remains unknown. Here we investigated the in vitro and in vivo anti-osteoporotic effects of TB in the RAW 264.7 cell line and ovariectomized (OVX) rats, respectively. Our in vitro studies showed that TB significantly suppressed RANKL-induced osteoclastogenesis and the expression of related marker proteins, including NFATc1, TRAP, c-Fos, and cathepsin K. In vivo studies showed that TB treatment effectively ameliorated blood biochemical parameters, organ weights and organ coefficients in OVX rats. In addition, TB treatment significantly improved femoral bone mineral density (BMD) and biomechanical properties. What's more, TB treatment strikingly ameliorated bone microarchitecture in OVX rats because of increased cortical bone thickness and trabecular bone area in the femur. Our study therefore demonstrated that TB can inhibit RANKL-induced osteoclastogenesis in vitro and prevent bone loss in ovariectomized rats. Consequently, TB has a promising potential in postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dan Yin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
33
|
Long W, Zhang G, Dong Y, Li D. Dark tea extract mitigates hematopoietic radiation injury with antioxidative activity. JOURNAL OF RADIATION RESEARCH 2018; 59:387-394. [PMID: 29325132 PMCID: PMC6054171 DOI: 10.1093/jrr/rrx072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 05/09/2023]
Abstract
The hematopoietic system is widely studied in radiation research. Tea has been proved to have antioxidative activity. In the present study, we describe the protective effects of dark tea extract (DTE) on radiation-induced hematopoietic injury. DTE administration significantly enhanced the survival rate of mice after 7.0 and 7.5 Gy total body irradiation (TBI). The results showed that DTE not only markedly increased the numbers and cloning potential of hematopoietic cells, but also decreased DNA damages after mice were exposed to 6.0 Gy total body irradiation (TBI). In addition, DTE also decreased the levels of reactive oxygen species (ROS) in hematopoietic cells by inhibiting NOX4 expression and increasing the dismutase, catalase and glutathione peroxidase in livers. These data demonstrate that DTE can prevent radiation-induced hematopoietic syndromes, which is beneficial for protection from radiation injuries.
Collapse
Affiliation(s)
- Wei Long
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Guanghui Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Yinping Dong
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Deguan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
- Corresponding author. Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, No. 238, Baidi Road, Nankai District, Tianjin 300192, China. Tel: +86-022-85682340; Fax: +86-022-85683033;
| |
Collapse
|
34
|
Wang Y, Zhang M, Zhang Z, Jiang J, Gao X, Yue P. Multiple responses optimization of instant dark tea production by submerged fermentation using response surface methodology. Journal of Food Science and Technology 2018; 55:2579-2586. [PMID: 30042574 DOI: 10.1007/s13197-018-3178-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
Abstract
In this study, submerged fermentation mode for preparing instant dark tea production was developed through utilizing industrial low grade green tea as raw material and Aspergillus niger as fermentation microbe starter. The fermentation parameters (inoculum size, liquid-solid ratio and rotation speed) were optimized by using Box-Behnken design and response surface methodology (RSM) with desirability function, the theabrownins content, redness and turbidity value as responses. The optimal conditions were set as follow: inoculum size of 5.3% (v/v), liquid-solid ratio of 27.78 mL/g, and rotation speed of 182 r/min. The optimized conditions model showed a good correlation between the predicted and experimental values. Further, the optimum product of instant dark was achieved in a 3-L laboratory fermenter, and the main parameters of product were theabrownins content of 140.92 g/kg and redness value of 40.78 and turbidity of 90.98 NTU. Sensory evaluation showed that the instant dark tea infusion approached mellow mouthfeel, an aroma of mint and a good overall acceptance.
Collapse
Affiliation(s)
- Yuwan Wang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Mingyue Zhang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Zhengzhu Zhang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jun Jiang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xueling Gao
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Pengxiang Yue
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
- Damin Foodstuff (Zhangzhou) Co., Ltd., Zhangzhou, 363000 Fujian China
| |
Collapse
|
35
|
Wang Y, Zhang M, Zhang Z, Lu H, Gao X, Yue P. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5100-5106. [PMID: 28422292 DOI: 10.1002/jsfa.8387] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/26/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. RESULT Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g-1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg-1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg-1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. CONCLUSION The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuwan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Mingyue Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Hengqian Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengxiang Yue
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- Damin Foodstuff (Zhangzhou) Co. Ltd, Zhangzhou, Fujian, China
| |
Collapse
|
36
|
Chen M, Zhu Y, Zhang H, Wang J, Liu X, Chen Z, Zheng M, Liu B. Phenolic compounds and the biological effects of Pu-erh teas with long-term storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1217877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Haifeng Zhang
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jieping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaogang Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zheng Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
37
|
Wu J, Wang C, Huang G, Zhao J, Wang X, Ji L, Zhang X. Biotransformation of vine tea ( Ampelopsis grossedentata) by solid-state fermentation using medicinal fungus Poria cocos. Journal of Food Science and Technology 2016; 53:3225-3232. [PMID: 27784917 DOI: 10.1007/s13197-016-2297-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Vine tea was bio-transformed using Poria cocos by solid-state fermentation in order to improve its taste and quality. Volatile components in vine tea were also identified by GC-MS. The changes of flavonoid, tea polyphenols and polysaccharides in fermented vine tea were evaluated. Flavonoid and polyphenols in vine tea were remained unchanged even after biotransformation, but content of polysaccharides increased to 3.9-fold than that of unfermented vine tea. Antioxidant activity such as DPPH free radical scavenging capacity (SR) was determined that there was a positive correlation between SR and content of polysaccharides in vine tea. Methyl 2-methylvalerate-a new volatile compound was identified and gave the vine tea rich delicate fragrance of fruits. The content of linolenic acid increased from 0.88 to 19.59 %. Biotransformation improved the taste and quality of vine tea.
Collapse
Affiliation(s)
- Jianguo Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Chenhuan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Gang Huang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jieyuan Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Lilian Ji
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
38
|
Wang Q, Gong J, Chisti Y, Sirisansaneeyakul S. Production of theabrownins using a crude fungal enzyme concentrate. J Biotechnol 2016; 231:250-259. [DOI: 10.1016/j.jbiotec.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
|
39
|
Lu H, Yue P, Wang Y, Fu R, Jiang J, Gao X. Optimization of Submerged Fermentation Parameters for Instant Dark Tea Production by E
urotium cristatum. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 West Changjiang Road Hefei Anhui 230036 China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory for Extracting & Processing Technology of Edible Plant; Zhangzhou Fujian China
| | - Yuwan Wang
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 West Changjiang Road Hefei Anhui 230036 China
| | - Ruiyan Fu
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 West Changjiang Road Hefei Anhui 230036 China
| | - Jun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 West Changjiang Road Hefei Anhui 230036 China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 West Changjiang Road Hefei Anhui 230036 China
| |
Collapse
|
40
|
Wang Q, Gong J, Chisti Y, Sirisansaneeyakul S. Fungal isolates from a Pu-erh type tea fermentation and their ability to convert tea polyphenols to theabrownins. J Food Sci 2015; 80:M809-17. [PMID: 25799937 DOI: 10.1111/1750-3841.12831] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023]
Abstract
The natural microbiota involved in the fermentation influence the quality and taste of fully postfermented teas such as China's Pu-erh tea. Ten microbial isolates representing 6 species were recovered from a solid-state fermentation of a Pu-erh type tea. The isolates were Aspergillus tubingensis, Aspergillus marvanovae, Rhizomucor pusillus, Rhizomucor tauricus, Aspergillus fumigatus, and Candida mogii. With the exception of A. marvanovae and C. mogii, all these microorganisms have been previously reported in solid-state fermentations of native Pu-erh tea. The ability of the isolates for converting the tea polyphenols to bioactive theabrownins in infusions of sun-dried green tea leaves in a submerged fermentation process was subsequently investigated. All isolates except C. mogii TISTR 5938 effectively produced theabrownins in a 4-d fermentation in shake flasks at 40 °C, 250 rpm. A. tubingensis TISTR 3646, A. tubingensis TISTR 3647, A. marvanovae TISTR 3648, and A. fumigatus TISTR 3654 produced theabrownins at particularly high levels of 6.5, 12.4, 11.1, and 8.4 g/L, respectively.
Collapse
Affiliation(s)
- Qiuping Wang
- Dept. of Biotechnology, Faculty of Agro-Industry, Kasetsart Univ, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | | | | | | |
Collapse
|