1
|
El-Hammadi MM, Small-Howard AL, Fernández-Arévalo M, Turner H, Martín-Banderas L. Effects of combined CBGA and cannabis-derived terpene nanoformulations on TRPV1 activation: Implications for enhanced pain management. Int J Pharm 2025:125766. [PMID: 40419035 DOI: 10.1016/j.ijpharm.2025.125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Cannabinoids and terpenes, key bioactive components of cannabis, are increasingly studied for their individual and combined contributions to the therapeutic potential of cannabis-based treatments, with ongoing research exploring their distinct and interactive effects. This study aimed to encapsulate cannabigerolic acid (CBGA) in poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles (PEG-PLGA NPs) and investigate the effects of combining CBGA NPs with cannabis-derived terpene-loaded NPs (myrcene [MC], nerolidol [NL], and caryophyllene [CPh]) for potential applications in pain management. CBGA NPs (152 nm) and terpene-loaded NPs (233-297 nm) were prepared via nanoprecipitation and emulsion-solvent evaporation, respectively, exhibiting a polydispersity index < 0.3 and negative zeta potentials (-23 to -26 mV). Encapsulation efficiency was 98.6 % for CBGA and 13-33 % for terpenes. CBGA release followed a biphasic profile, with ∼ 20 % released within 4 h and sustained release over 72 h. In vitro evaluation used HEK293 cells expressing the nociceptive transient receptor potential vanilloid-1 (TRPV1) channel, a key mediator of pain perception. TRPV1 activation was assessed via calcium influx kinetics (Fluo-4 indicator). The EC50 values were 23.8 µg/mL (CBGA NPs), 8.0 µg/mL (MC NPs), 6.7 µg/mL (NL NPs), and 13.3 µg/mL (CPh NPs). Combinatorial treatments of CBGA NPs with terpene NPs at their respective EC50 concentrations revealed significantly enhanced calcium influx compared to individual NPs, with the strongest interaction observed for CBGA/NL and moderate effects for CBGA/MC. Fluorescence imaging further corroborated these findings. These results suggest that combining CBGA NPs with terpene-loaded NPs could potentiate pain-relief efficacy, offering a promising strategy for advanced therapeutic formulations.
Collapse
Affiliation(s)
- Mazen M El-Hammadi
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González, n°2 41012 Sevilla, Spain.
| | - Andrea L Small-Howard
- Gb Sciences, Inc. (OTCQB:GBLX), 9205 W. Russell Road, Suite 240 Las Vegas, Nevada 89148, United States
| | - Mercedes Fernández-Arévalo
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González, n°2 41012 Sevilla, Spain
| | - Helen Turner
- Laboratory of Pharmacology and Analytics, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Lucía Martín-Banderas
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González, n°2 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
2
|
Dilena E, Hunt I, Close DC. Optimal nitrogen rates and clonal effects on cannabinoid yields of medicinal cannabis. Sci Rep 2025; 15:12341. [PMID: 40210892 PMCID: PMC11985917 DOI: 10.1038/s41598-025-96761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Nitrogen (N) nutrition and germplasm of clones can influence biomass and cannabinoid concentration in medicinal cannabis. However, there are discrepancies on the optimal nitrogen (N) application rate at the flowering stage to achieve maximum yield and if, or how, this interacts with clones from different seed lines of the same genotype. This research examined the relationship between N application rate, concentration of cannabinoids and biomass yield of a CBD-type medicinal cannabis cultivar in clones propagated from five different seed lines (hereafter referred to as clones). Clonal rooted cuttings were propagated from five mother plants germinated from seeds of cultivar 'Tas1'. Five N levels (30, 90, 160, 240 and 400 mg/L N) were imposed at the start of the inflorescence period and continued until harvest eight weeks later. Some pollen contamination occurred during the trial so that seed biomass was assessed for each plant and included in statistical analysis. Weight of total biomass, leaves and inflorescence (from upper and lower canopy positions), N%, and cannabinoid concentrations were measured after the harvest. Results indicated that increasing N supply generated a clear upward trend in inflorescence biomass that peaked at 160 mg/L N after which it did not significantly change, while leaf biomass steadily increased with N. Delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations decreased significantly with increasing N concentration in leaves with a similar, but non-significant, trend for inflorescences. The CBD to THC ratio increased with increased N. Clone source was strongly correlated with cannabinoid concentration, but not leaf, inflorescence or total biomass, across all N treatments. Clones 13 and 27 developed greater cannabinoid concentrations relative to clones 18 and 26 irrespective of N treatment. Pollen contamination induced seed development that comprised up to 5% of inflorescence biomass dry weight but this did not significantly affect whole-plant biomass, N accumulation (N%), or cannabinoid concentration. These findings provide valuable insights for improving cannabinoid yield in this widely cultivated plant species.
Collapse
Affiliation(s)
- Enrico Dilena
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Life Sciences Building, Level 2, College Rd, Sandy Bay, TAS, 7005, Australia.
| | - Ian Hunt
- BioSS, Edinburgh University, James Clerk Maxwell Building, Peter Guthrie Tate Road, Edinburgh, Scotland, UK
| | - Dugald C Close
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Life Sciences Building, Level 2, College Rd, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|
3
|
Bolaños-Martínez OC, Urbanetz A, Maresch D, Strasser R, Vimolmangkang S. Engineering Nicotiana benthamiana for production of active cannabinoid synthases via secretory pathway optimization. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00865. [PMID: 39691101 PMCID: PMC11647631 DOI: 10.1016/j.btre.2024.e00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The production of cannabinoid compounds such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) with potential pharmaceutical applications is growing sharply. However, challenges such as the low yield of minor cannabinoids, legal restrictions on cultivation, and the complexity and cost of purification from the Cannabis sativa plant necessitate a biotechnological approach. Since the biosynthetic pathway is disclosed, cannabinoids have been produced in yeast, insect cells and plants mainly by the heterologous expression of tetrahydrocannabinol acid synthase (THCAS). THCAS and cannabidiolic acid synthase (CBDAS) use cannabigerolic acid (CBGA) as a substrate. In this study, we transiently expressed recombinant forms of THCAS and CBDAS in leaves of Nicotiana benthamiana. Our results demonstrate that efficient expression in the secretory pathway relies on replacing the endogenous signal peptide with a heterologous one. Both proteins were successfully secreted to the apoplast. MS-based analysis of the purified proteins revealed that they are heavily glycosylated with mainly Golgi-processed complex type N-glycans. In planta enzymatic removal of N-glycans indicated that glycosylation plays a role for CBDAS protein folding or stability. Finally, in vitro assays with CBGA showed that the plant-made recombinant CBDAS and THCAS are enzymatically active.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Anna Urbanetz
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Wang F, Zang Z, Zhao Q, Xiaoyang C, Lei X, Wang Y, Ma Y, Cao R, Song X, Tang L, Deyholos MK, Zhang J. Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD). ACS Synth Biol 2024; 13:2008-2018. [PMID: 38900848 PMCID: PMC11264327 DOI: 10.1021/acssynbio.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.
Collapse
Affiliation(s)
- Fu Wang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhao
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunxiao Xiaoyang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Lei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yingping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yiqiao Ma
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Rongan Cao
- College
of Food Science, Heilongjiang Bayi Agricultural
University, Daqing 163319, China
| | - Xixia Song
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Lili Tang
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Michael K. Deyholos
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
5
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
6
|
Love AC, Purdy TN, Hubert FM, Kirwan EJ, Holland DC, Moore BS. Discovery of Latent Cannabichromene Cyclase Activity in Marine Bacterial Flavoenzymes. ACS Synth Biol 2024; 13:1343-1354. [PMID: 38459634 PMCID: PMC11031283 DOI: 10.1021/acssynbio.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Production of phytocannabinoids remains an area of active scientific interest due to the growing use of cannabis by the public and the underexplored therapeutic potential of the over 100 minor cannabinoids. While phytocannabinoids are biosynthesized by Cannabis sativa and other select plants and fungi, structural analogs and stereoisomers can only be accessed synthetically or through heterologous expression. To date, the bioproduction of cannabinoids has required eukaryotic hosts like yeast since key, native oxidative cyclization enzymes do not express well in bacterial hosts. Here, we report that two marine bacterial flavoenzymes, Clz9 and Tcz9, perform oxidative cyclization reactions on phytocannabinoid precursors to efficiently generate cannabichromene scaffolds. Furthermore, Clz9 and Tcz9 express robustly in bacteria and display significant tolerance to organic solvent and high substrate loading, thereby enabling fermentative production of cannabichromenic acid in Escherichia coli and indicating their potential for biocatalyst development.
Collapse
Affiliation(s)
- Anna C. Love
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Trevor N. Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Felix M. Hubert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Ella J. Kirwan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Darren C. Holland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Schmidt C, Aras M, Kayser O. Engineering cannabinoid production in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300507. [PMID: 38403455 DOI: 10.1002/biot.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Phytocannabinoids are natural products with highly interesting pharmacological properties mainly produced by plants. The production of cannabinoids in a heterologous host system has gained interest in recent years as a promising alternative to production from plant material. However, the systems reported so far do not achieve industrially relevant titers, highlighting the need for alternative systems. Here, we show the production of the cannabinoids cannabigerolic acid and cannabigerol from glucose and hexanoic acid in a heterologous yeast system using the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. The production was significantly increased by introducing a fusion protein consisting of ERG20WW and NphB. Furthermore, we improved the production of the precursor olivetolic acid to a titer of 56 mg L-1 . The implementation of the cannabinoid synthase genes enabled the production of Δ9 -tetrahydrocannabinolic acid, cannabidiolic acid as well as cannabichromenic acid, where the heterologous biosynthesis of cannabichromenic acid in a yeast system was demonstrated for the first time. In addition, we found that the product spectrum of the cannabinoid synthases localized to the vacuoles of the yeast cells was highly dependent on extracellular pH, allowing for easy manipulation. Finally, using a fed-batch approach, we showed cannabigerolic acid and olivetolic acid titers of up to 18.2 mg L-1 and 117 mg L-1 , respectively.
Collapse
Affiliation(s)
- Christina Schmidt
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Marco Aras
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
8
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Kosalková K, Barreiro C, Sánchez-Orejas IC, Cueto L, García-Estrada C. Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids. J Fungi (Basel) 2023; 9:jof9020234. [PMID: 36836348 PMCID: PMC9963667 DOI: 10.3390/jof9020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cannabinoids are bioactive meroterpenoids comprising prenylated polyketide molecules that can modulate a wide range of physiological processes. Cannabinoids have been shown to possess various medical/therapeutic effects, such as anti-convulsive, anti-anxiety, anti-psychotic, antinausea, and anti-microbial properties. The increasing interest in their beneficial effects and application as clinically useful drugs has promoted the development of heterologous biosynthetic platforms for the industrial production of these compounds. This approach can help circumvent the drawbacks associated with extraction from naturally occurring plants or chemical synthesis. In this review, we provide an overview of the fungal platforms developed by genetic engineering for the biosynthetic production of cannabinoids. Different yeast species, such as Komagataella phaffii (formerly P. pastoris) and Saccharomyces cerevisiae, have been genetically modified to include the cannabinoid biosynthetic pathway and to improve metabolic fluxes in order to increase cannabinoid titers. In addition, we engineered the filamentous fungus Penicillium chrysogenum for the first time as a host microorganism for the production of Δ9-tetrahydrocannabinolic acid from intermediates (cannabigerolic acid and olivetolic acid), thereby showing the potential of filamentous fungi as alternative platforms for cannabinoid biosynthesis upon optimization.
Collapse
Affiliation(s)
- Katarina Kosalková
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Campus de Vegazana, Universidad de León, 24007 León, Spain
| | | | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Departamento de Ciencias Biomédicas, Campus de Vegazana, Universidad de León, 24007 León, Spain
- Correspondence: ; Tel.: +34-987-293-693
| |
Collapse
|
11
|
Go MK, Zhu T, Lim KJH, Hartono YD, Xue B, Fan H, Yew WS. Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. Int J Mol Sci 2023; 24:ijms24021259. [PMID: 36674774 PMCID: PMC9862763 DOI: 10.3390/ijms24021259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/10/2023] Open
Abstract
We report enzymes from the berberine bridge enzyme (BBE) superfamily that catalyze the oxidative cyclization of the monoterpene moiety in cannabigerolic acid (CBGA) to form cannabielsoin (CBE). The enzymes are from a variety of organisms and are previously uncharacterized. Out of 232 homologues chosen from the enzyme superfamily, four orthologues were shown to accept CBGA as a substrate and catalyze the biosynthesis of CBE. The four enzymes discovered in this study were recombinantly expressed and purified in Pichia pastoris. These enzymes are the first report of heterologous expression of BBEs that did not originate from the Cannabis plant that catalyze the production of cannabinoids using CBGA as substrate. This study details a new avenue for discovering and producing natural and unnatural cannabinoids.
Collapse
Affiliation(s)
- Maybelle Kho Go
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Tingting Zhu
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Kevin Jie Han Lim
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Yossa Dwi Hartono
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
12
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
13
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
14
|
Livingston SJ, Rensing KH, Page JE, Samuels AL. A polarized supercell produces specialized metabolites in cannabis trichomes. Curr Biol 2022; 32:4040-4047.e4. [PMID: 35917819 DOI: 10.1016/j.cub.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
For centuries, humans have cultivated cannabis for the pharmacological properties that result from consuming its specialized metabolites, primarily cannabinoids and terpenoids. Today, cannabis is a multi-billion-dollar industry whose existence rests on the biological activity of tiny cell clusters, called glandular trichomes, found mainly on flowers. Cannabinoids are toxic to cannabis cells,1 and how the trichome cells can produce and secrete massive quantities of lipophilic metabolites is not known.1 To address this gap in knowledge, we investigated cannabis glandular trichomes using ultra-rapid cryofixation, quantitative electron microscopy, and immuno-gold labeling of cannabinoid pathway enzymes. We demonstrate that the metabolically active cells in cannabis form a "supercell," with extensive cytoplasmic bridges across the cell walls and a polar distribution of organelles adjacent to the apical surface where metabolites are secreted. The predicted metabolic role of the non-photosynthetic plastids is supported by unusual membrane arrays in the plastids and the localization of the start of the cannabinoid/terpene pathway in the stroma of the plastids. Abundant membrane contact sites connected plastid paracrystalline cores with the plastid envelope, plastid with endoplasmic reticulum (ER), and ER with plasma membrane. The final step of cannabinoid biosynthesis, catalyzed by tetrahydrocannabinolic acid synthase (THCAS), was localized in the cell-surface wall facing the extracellular storage cavity. We propose a new model of how the cannabis cells can support abundant metabolite production, with emphasis on the key role of membrane contact sites and extracellular THCA biosynthesis. This new model can inform synthetic biology approaches for cannabinoid production in yeast or cell cultures.
Collapse
Affiliation(s)
- Samuel J Livingston
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | | - Jonathan E Page
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Nguyen GN, Jordan EN, Kayser O. Synthetic Strategies for Rare Cannabinoids Derived from Cannabis sativa. JOURNAL OF NATURAL PRODUCTS 2022; 85:1555-1568. [PMID: 35648593 DOI: 10.1021/acs.jnatprod.2c00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient syntheses of eight key cannabinoids were established and optimized. Predominant cannabinoids such as cannabigerol (CBG-C5) and cannabidiol (CBD-C5) were prepared from olivetol via regioselective condensation. Further treatments of CBD led to Δ9-tetrahydrocannabinol (THC-C5), Δ8-iso-tetrahydrocannabinol (iso-THC-C5), and cannabinol (CBN-C5). Alternatively, a [3 + 3] annulation between olivetol and citral yielded the minor cannabinoid cannabichromene (CBC-C5), which was converted into two very rare polycycles, cannabicyclol (CBL-C5) and cannabicitran (CBT-C5), in a one-pot reaction. Finally, all eight syntheses were extended by utilizing resorcinol and two phenolic analogues, achieving a cannabinoid group with more than 30 compounds through a facile synthesis strategy.
Collapse
Affiliation(s)
- Gia-Nam Nguyen
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical, University Dortmund University, 44227 Dortmund, Germany
- MINDbioscience GmbH, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany
| | - Erin Noel Jordan
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical, University Dortmund University, 44227 Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical, University Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
16
|
Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. PLANTS 2022; 11:plants11091236. [PMID: 35567237 PMCID: PMC9104644 DOI: 10.3390/plants11091236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
Abstract
Cannabis sativa L. is an illegal plant in many countries. The worldwide criminalization of the plant has for many years limited its research. Consequently, understanding the full scope of its benefits and harm became limited too. However, in recent years the world has witnessed an increased pace in legalization and decriminalization of C. sativa. This has prompted an increase in scientific studies on various aspects of the plant’s growth, development, and use. This review brings together the historical and current information about the plant’s relationship with mankind. We highlight the important aspects of C. sativa classification and identification, carefully analyzing the supporting arguments for both monotypic (single species) and polytypic (multiple species) perspectives. The review also identifies recent studies on suitable conditions and methods for C. sativa propagation as well as highlighting the diverse uses of the plant. Specifically, we describe the beneficial and harmful effects of the prominent phytocannabinoids and provide status of the studies on heterologous synthesis of phytocannabinoids in different biological systems. With a historical view on C. sativa legality, the review also provides an up-to-date worldwide standpoint on its regulation. Finally, we present a summary of the studies on genome editing and suggest areas for future research.
Collapse
|
17
|
Purdy TN, Moore BS, Lukowski AL. Harnessing ortho-Quinone Methides in Natural Product Biosynthesis and Biocatalysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:688-701. [PMID: 35108487 PMCID: PMC9006567 DOI: 10.1021/acs.jnatprod.1c01026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The implementation of ortho-quinone methide (o-QM) intermediates in complex molecule assembly represents a remarkably efficient strategy designed by Nature and utilized by synthetic chemists. o-QMs have been taken advantage of in biomimetic syntheses for decades, yet relatively few examples of o-QM-generating enzymes in natural product biosynthetic pathways have been reported. The biosynthetic enzymes that have been discovered thus far exhibit tremendous potential for biocatalytic applications, enabling the selective production of desirable compounds that are otherwise intractable or inherently difficult to achieve by traditional synthetic methods. Characterization of this biosynthetic machinery has the potential to shine a light on new enzymes capable of similar chemistry on diverse substrates, thus expanding our knowledge of Nature's catalytic repertoire. The presently known o-QM-generating enzymes include flavin-dependent oxidases, hetero-Diels-Alderases, S-adenosyl-l-methionine-dependent pericyclases, and α-ketoglutarate-dependent nonheme iron enzymes. In this review, we discuss their diverse enzymatic mechanisms and potential as biocatalysts in constructing natural product molecules such as cannabinoids.
Collapse
Affiliation(s)
- Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| | - April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| |
Collapse
|
18
|
Converting Sugars into Cannabinoids—The State-of-the-Art of Heterologous Production in Microorganisms. FERMENTATION 2022. [DOI: 10.3390/fermentation8020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The legal cannabis market worldwide is facing new challenges regarding innovation in the production of cannabinoid-based drugs. The usual cannabinoid production involves growing Cannabis sativa L. outdoor or in dedicated indoor growing facilities, followed by isolation and purification steps. This process is limited by the growth cycles of the plant, where the cannabinoid content can deeply vary from each harvest. A game change approach that does not involve growing a single plant has gained the attention of the industry: cannabinoids fermentation. From recombinant yeasts and bacteria, researchers are able to reproduce the biosynthetic pathway to generate cannabinoids, such as (-)-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and (-)-Δ9-tetrahydrocannabivarin (Δ9-THCV). This approach avoids pesticides, and natural resources such as water, land, and energy are reduced. Compared to growing cannabis, fermentation is a much faster process, although its limitation regarding the phytochemical broad range of molecules naturally present in cannabis. So far, there is not a consolidated process for this brand-new approach, being an emerging and promising concept for countries in which cultivation of Cannabis sativa L. is illegal. This survey discusses the techniques and microorganisms already established to accomplish the task and those yet in seeing for the future, exploring upsides and limitations about metabolic pathways, toxicity, and downstream recovery of cannabinoids throughout heterologous production. Therapeutic potential applications of cannabinoids and in silico methodology toward optimization of metabolic pathways are also explored. Moreover, conceptual downstream analysis is proposed to illustrate the recovery and purification of cannabinoids through the fermentation process, and a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
|
19
|
Zheljazkov VD, Maggi F. Valorization of CBD-hemp through distillation to provide essential oil and improved cannabinoids profile. Sci Rep 2021; 11:19890. [PMID: 34615971 PMCID: PMC8494916 DOI: 10.1038/s41598-021-99335-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC-MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.
Collapse
Affiliation(s)
- Valtcho D Zheljazkov
- Crop and Soil Science Department, Oregon State University, 3050 SW Campus Way, Corvallis, OR, 97331, USA.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
20
|
Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol 2021; 105:6649-6668. [PMID: 34468803 PMCID: PMC8408309 DOI: 10.1007/s00253-021-11539-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Medicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance. Key points • Bioactive plant secondary metabolites are important for current and future use in medicine • In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis • Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production
Collapse
|
21
|
Lim KJH, Lim YP, Hartono YD, Go MK, Fan H, Yew WS. Biosynthesis of Nature-Inspired Unnatural Cannabinoids. Molecules 2021; 26:2914. [PMID: 34068935 PMCID: PMC8156804 DOI: 10.3390/molecules26102914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Natural products make up a large proportion of medicine available today. Cannabinoids from the plant Cannabis sativa is one unique class of meroterpenoids that have shown a wide range of bioactivities and recently seen significant developments in their status as therapeutic agents for various indications. Their complex chemical structures make it difficult to chemically synthesize them in efficient yields. Synthetic biology has presented a solution to this through metabolic engineering in heterologous hosts. Through genetic manipulation, rare phytocannabinoids that are produced in low yields in the plant can now be synthesized in larger quantities for therapeutic and commercial use. Additionally, an exciting avenue of exploring new chemical spaces is made available as novel derivatized compounds can be produced and investigated for their bioactivities. In this review, we summarized the biosynthetic pathways of phytocannabinoids and synthetic biology efforts in producing them in heterologous hosts. Detailed mechanistic insights are discussed in each part of the pathway in order to explore strategies for creating novel cannabinoids. Lastly, we discussed studies conducted on biological targets such as CB1, CB2 and orphan receptors along with their affinities to these cannabinoid ligands with a view to inform upstream diversification efforts.
Collapse
Affiliation(s)
- Kevin J. H. Lim
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Yan Ping Lim
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Yossa D. Hartono
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Maybelle K. Go
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (K.J.H.L.); (Y.P.L.); (Y.D.H.); (M.K.G.); (H.F.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
22
|
Blatt-Janmaat K, Qu Y. The Biochemistry of Phytocannabinoids and Metabolic Engineering of Their Production in Heterologous Systems. Int J Mol Sci 2021; 22:ijms22052454. [PMID: 33671077 PMCID: PMC7957758 DOI: 10.3390/ijms22052454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
The medicinal properties of cannabis and the its legal status in several countries and jurisdictions has spurred the massive growth of the cannabis economy around the globe. The value of cannabis stems from its euphoric activity offered by the unique phytocannabinoid tetrahydrocannabinol (THC). However, this is rapidly expanding beyond THC owing to other non-psychoactive phytocannabinoids with new bioactivities that will contribute to their development into clinically useful drugs. The discovery of the biosynthesis of major phytocannabinoids has allowed the exploration of their heterologous production by synthetic biology, which may lead to the industrial production of rare phytocannabinoids or novel synthetic cannabinoid pharmaceuticals that are not easily offered by cannabis plants. This review summarizes the biosynthesis of major phytocannabinoids in detail, the most recent development of their metabolic engineering in various systems, and the engineering approaches and strategies used to increase the yield.
Collapse
Affiliation(s)
- Kaitlyn Blatt-Janmaat
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Correspondence:
| |
Collapse
|
23
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
24
|
Sholler DJ, Huestis MA, Amendolara B, Vandrey R, Cooper ZD. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav 2020; 199:173059. [PMID: 33086126 PMCID: PMC7725960 DOI: 10.1016/j.pbb.2020.173059] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.
Collapse
Affiliation(s)
- Dennis J Sholler
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin Amendolara
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziva D Cooper
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Thomas F, Schmidt C, Kayser O. Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast. Appl Microbiol Biotechnol 2020; 104:9551-9563. [PMID: 33043390 PMCID: PMC7595985 DOI: 10.1007/s00253-020-10798-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
Heterologous biosynthesis of tetrahydrocannabinolic acid (THCA) in yeast is a biotechnological process in Natural Product Biotechnology that was recently introduced. Based on heterologous genes from Cannabis sativa and Streptomyces spp. cloned into Saccharomyces cerevisiae, the heterologous biosynthesis was fully embedded as a proof of concept. Low titer and insufficient biocatalytic rate of most enzymes require systematic optimization of recombinant catalyst by protein engineering and consequent C-flux improvement of the yeast chassis for sufficient precursor (acetyl-CoA), energy (ATP), and NADH delivery. In this review basic principles of in silico analysis of anabolic pathways towards olivetolic acid (OA) and cannabigerolic acid (CBGA) are elucidated and discussed to identify metabolic bottlenecks. Based on own experimental results, yeasts are discussed as potential platform organisms to be introduced as potential cannabinoid biofactories. Especially feeding strategies and limitations in the committed mevalonate and olivetolic acid pathways are in focus of in silico and experimental studies to validate the scientific and commercial potential as a realistic alternative to the plant Cannabis sativa.Key points• First time critical review of the heterologous process for recombinant THCA/CBDA production and critical review of bottlenecks and limitations for a bioengineered technical process• Integrative approach of protein engineering, systems biotechnology, and biochemistry of yeast physiology and biosynthetic cannabinoid enzymes• Comparison of NphB and CsPT aromatic prenyltransferases as rate-limiting catalytic steps towards cannabinoids in yeast as platform organisms Graphical abstract.
Collapse
Affiliation(s)
- Fabian Thomas
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Christina Schmidt
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Oliver Kayser
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
26
|
Zheljazkov VD, Sikora V, Dincheva I, Kačániová M, Astatkie T, Semerdjieva IB, Latkovic D. Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity? Molecules 2020; 25:molecules25204631. [PMID: 33053634 PMCID: PMC7587197 DOI: 10.3390/molecules25204631] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Hemp (Cannabis sativa L.) is currently one of the most controversial and promising crops. This study compared nine wild hemp (C. sativa spp. spontanea V.) accessions with 13 registered cultivars, eight breeding lines, and one cannabidiol (CBD) hemp strain belonging to C. sativa L. The first three groups had similar main essential oil (EO) constituents, but in different concentrations; the CBD hemp had a different EO profile. The concentration of the four major constituents in the industrial hemp lines and wild hemp accessions varied as follows: β-caryophyllene 11-22% and 15.4-29.6%; α-humulene 4.4-7.6% and 5.3-11.9%; caryophyllene oxide 8.6-13.7% and 0.2-31.2%; and humulene epoxide 2, 2.3-5.6% and 1.2-9.5%, respectively. The concentration of CBD in the EO of wild hemp varied from 6.9 to 52.4% of the total oil while CBD in the EO of the registered cultivars varied from 7.1 to 25%; CBD in the EO of the breeding lines and in the CBD strain varied from 6.4 to 25% and 7.4 to 8.8%, respectively. The concentrations of δ9-tetrahydrocannabinol (THC) in the EO of the three groups of hemp were significantly different, with the highest concentration being 3.5%. The EO of wild hemp had greater antimicrobial activity compared with the EO of registered cultivars. This is the first report to show that significant amounts of CBD could be accumulated in the EO of wild and registered cultivars of hemp following hydro-distillation. The amount of CBD in the EO can be greater than that in the EO of the USA strain used for commercial production of CBD. Furthermore, this is among the first reports that show greater antimicrobial activity of the EO of wild hemp vs. the EO of registered cultivars. The results suggest that wild hemp may offer an excellent opportunity for future breeding and the selection of cultivars with a desirable composition of the EO and possibly CBD-rich EO production.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-5877
| | - Vladimir Sikora
- Institute of Field and Vegetable Crops, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Ivayla Dincheva
- Plant Genetic Research Group, Agrobioinstitute, Agricultural Academy, 8 “Dragan Tsankov” Blvd., 1164 Sofia, Bulgaria;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Tr. A. Hlinku 2, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
- Department of Bioenergetics and Food Analysis, Institution of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Ivanka B. Semerdjieva
- Department of Botany and Agrometeorology, Faculty of Agronomy, Agricultural University, 4000 Plovdiv, Bulgaria;
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
27
|
Romero P, Peris A, Vergara K, Matus JT. Comprehending and improving cannabis specialized metabolism in the systems biology era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110571. [PMID: 32771172 DOI: 10.1016/j.plantsci.2020.110571] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Cannabis sativa is a source of food, fiber and specialized metabolites such as cannabinoids, with psychoactive and pharmacological effects. Due to its expanding and increasingly-accepted use in medicine, cannabis cultivation is acquiring more importance and less social stigma. Humans initiated different domestication episodes whose later spread gave rise to a plethora of landrace cultivars. At present, breeders cross germplasms from different gene pools depending on their specific use. The fiber (hemp) and drug (marijuana) types of C. sativa differ in their cannabinoid chemical composition phenotype (chemotype) and also in the accumulation of terpenoid compounds that constitute a strain's particular flavor and scent. Cannabinoids are isoprenylated polyketides among which cannabidiolic acid (CBDA) and (-)-trans-Δ⁹-tetrahydrocannabinol acid (THCA) have been well-documented for their many effects on humans. Here, we review the most studied specialized metabolic pathways in C. sativa, showing how terpenes and cannabinoids share both part of the isoprenoid pathway and the same biosynthetic compartmentalization (i.e. glandular trichomes of leaves and flowers). We enlist the several studies that have deciphered these pathways in this species including physical and genetic maps, QTL analyses and localization and enzymatic studies of cannabinoid and terpene synthases. In addition, new comparative modeling of cannabinoid synthases and phylogenetic trees are presented. We describe the genome sequencing initiatives of several accessions with the concomitant generation of next-generation genome maps and transcriptomic data. Very recently, proteomic characterizations and systems biology approaches such as those applying network theory or the integration of multi-omics data have increased the knowledge on gene function, enzyme diversity and metabolite content in C. sativa. In this revision we drift through the history, present and future of cannabis research and on how second- and third-generation sequencing technologies are bringing light to the field of cannabis specialized metabolism. We also discuss different biotechnological approaches for producing cannabinoids in engineered microorganisms.
Collapse
Affiliation(s)
- P Romero
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain
| | - A Peris
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain
| | - K Vergara
- Centro de Estudios del Cannabis, CECANN, Santiago, Chile
| | - J T Matus
- Institute for Integrative Systems Biology, I²SysBio (Universitat de València - CSIC), 46908, Paterna, Valencia, Spain.
| |
Collapse
|
28
|
Zheljazkov VD, Sikora V, Semerdjieva IB, Kačániová M, Astatkie T, Dincheva I. Grinding and Fractionation during Distillation Alter Hemp Essential Oil Profile and Its Antimicrobial Activity. Molecules 2020; 25:E3943. [PMID: 32872359 PMCID: PMC7504750 DOI: 10.3390/molecules25173943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/05/2022] Open
Abstract
The hypothesis of this study was that we can modify the essential oil (EO) profile of hemp (Cannabis sativa L.) and obtain fractions with differential composition and antimicrobial activity. Therefore, the objective was to evaluate the effects of grinding of hemp biomass before EO extraction and fractionation during distillation on EO profile and antimicrobial activity. The study generated a several EO fractions with a diversity of chemical profile and antimicrobial activity. The highest concentrations of β-pinene and myrcene in the EO can be obtained in the 5-10 min distillation time (DT) of ground material or in the 80-120 min DT of nonground material. High δ-3-carene and limonene EO can be obtained from 0-5 min DT fraction of nonground material. High eucalyptol EO can be sampled either in the 0-5 min DT of the ground material or in the 80-120 min of nonground material. Overall, the highest concentrations of β-caryophyllene, α-(E)-bergamotene, (Z)-β-farnesene, α-humulene, caryophyllenyl alcohol, germacrene D-4-ol, spathulenol, caryophyllene oxide, humulene epoxide 2, β-bisabolol, α-bisabolol, sesquiterpenes, and cannabidiol (CBD) can be obtained when EO is sampled in the 80-120 min DT and the material is nonground. Monoterpenes in the hemp EO can be increased twofold to 85% by grinding the material prior to distillation and collecting the EO in the first 10 min. However, grinding resulted in a slight but significant decrease in the CBD concentration of the EO. CBD-rich oil can be produced by collecting at 120-180 min DT. Different EO fractions had differential antimicrobial activity. The highest antimicrobial activity of EO fraction was found against Staphylococcus aureus subsp. aureus. THC-free EO can be obtained if the EO distillation is limited to 120 min. The results can be utilized by the hemp processing industry and by companies developing new hemp EO-infused products, including perfumery, cosmetics, dietary supplements, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA
| | - Vladimir Sikora
- Institute for Field and Vegetable Crops, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Ivanka B. Semerdjieva
- Department of Botany and Agrometeorology, Faculty of Agronomy, Agricultural University, 4000 Plovdiv, Bulgaria;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Tr. A. Hlinku 2, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovak Republic;
- Department of Bioenergetics and Food Analysis, Institution of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Ivayla Dincheva
- Plant Genetic Research Group, Agrobioinstitute, Agricultural Academy, 8 “Dragan Tsankov” Blvd, 1164 Sofia, Bulgaria;
| |
Collapse
|
29
|
Mating-type switching and mating-type gene array expression in the methylotrophic yeast Ogataea thermomethanolica TBRC656. Microbiol Res 2019; 232:126372. [PMID: 31759230 DOI: 10.1016/j.micres.2019.126372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
The methylotrophic yeast, Ogataea thermomethanolica TBRC656, is an attractive host organism for heterologous protein production owing to the availability of protein expression vectors and a genome-editing tool. In this study, we focused on mating-type switching and gene expression in order to elucidate its sexual life cycle and establish genetic approaches applicable for the strain. A putative mating-type gene cluster was identified in TBRC656 that is syntenic to the cluster in Ogataea parapolymorpha DL-1 (previously named Hansenula polymorpha). Like DL-1, TBRC656 possesses two mating loci, namely MATa and MATα, and also shows flip-flop mating-type switching. Interestingly, unlike any other methylotrophic yeast, TBRC656 robustly switched mating type during late growth in rich medium (YPD). Under nutrient depletion, mating-type switching was observed within one hour. Transcription from both MATa and MATα mating loci was detected during growth in YPD, and possibly induced upon nitrogen depletion. Gene expression from MATα was detected as a single co-transcript from a three-gene array (α2-α1-a1S). Deletion of a putative a1S ORF at the MATα locus had no observed effect on mating-type switching but demonstrated significant effect on mating-type gene expression at both MATa and MATα loci.
Collapse
|
30
|
Rodziewicz P, Loroch S, Marczak Ł, Sickmann A, Kayser O. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:108-116. [PMID: 31084863 DOI: 10.1016/j.plantsci.2019.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Cannabinoids are terpenophenolic compounds produced by Cannabis sativa L., which accumulate in storage cavities of glandular trichomes as a part of the exudates. We investigated if tetrahydrocannabinolic acid synthase and cannabidiolic acid synthase, which are involved in the last step of cannabinoid biosynthesis, are also secreted into Cannabis trichome exudates. The exudates were collected by microsuction from storage cavities of Cannabis glandular trichomes and were subjected for proteomic and metabolomic analyses. The catalytic activity of the exudates was documented by cannabigerolic acid biotransformation studies under hydrophobic conditions. Electrophoretic separations revealed protein bands at ˜65 kDa, which were further identified as tetrahydrocannabinolic acid synthase and cannabidiolic acid synthase. The accumulation of the enzymes in trichome exudates increased substantially during the flowering period in the drug-type Cannabis plants. The content of cannabinoids increased significantly after incubating hexane-diluted trichome exudates with cannabigerolic acid. In this study, we showed that Cannabis glandular trichomes secrete and accumulate cannabinoid synthases in storage cavities, and the enzymes able to convert cannabigerolic acid under hydrophobic trichome-mimicking conditions. Metabolite profiling of the exudates revealed compounds with hydrophilic, osmoprotective and amphiphilic properties, which may play a role in providing a necessary aqueous microenvironment, which enables enzyme solubility and biocatalysis under hydrophobic conditions of glandular trichomes.
Collapse
Affiliation(s)
- Paweł Rodziewicz
- Department of Technical Biochemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry PAS, Piotrowo 2, 60-965 Poznan, Poland
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB24 3FX, United Kingdom
| | - Oliver Kayser
- Department of Technical Biochemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
31
|
Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark Classics in Chemical Neuroscience: Δ 9-Tetrahydrocannabinol. ACS Chem Neurosci 2019; 10:2160-2175. [PMID: 30689342 DOI: 10.1021/acschemneuro.8b00651] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis ( Cannabis sativa) is the most widely used illicit drug in the world, with an estimated 192 million users globally. The main psychoactive component of cannabis is (-)- trans-Δ9-tetrahydrocannabinol (Δ9-THC), a compound with a diverse range of pharmacological actions. The unique and distinctive intoxication caused by Δ9-THC primarily reflects partial agonist action at central cannabinoid type 1 (CB1) receptors. Δ9-THC is an approved therapeutic treatment for a range of conditions, including chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis, and is being investigated in indications such as anorexia nervosa, agitation in dementia, and Tourette's syndrome. It is available as a regulated pharmaceutical in products such as Marinol, Sativex, and Namisol as well as in an ever-increasing range of unregistered medicinal and recreational cannabis products. While cannabis is an ancient medicament, contemporary use is embroiled in legal, scientific, and social controversy, much of which relates to the potential hazards and benefits of Δ9-THC itself. Robust contemporary debate surrounds the therapeutic value of Δ9-THC in different diseases, its capacity to produce psychosis and cognitive impairment, and the addictive and "gateway" potential of the drug. This review will provide a profile of the chemistry, pharmacology, and therapeutic uses of Δ9-THC as well as the historical and societal import of this unique, distinctive, and ubiquitous psychoactive substance.
Collapse
Affiliation(s)
- Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Science and Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Lin GM, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019; 567:123-126. [PMID: 30814733 DOI: 10.1038/s41586-019-0978-9] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/24/2019] [Indexed: 01/25/2023]
Abstract
Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia1. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications2. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments3. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids4, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway5. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid6, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases7,8. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency9. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.
Collapse
|
34
|
|
35
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativaL. J Biotechnol 2018; 284:17-26. [PMID: 30053500 DOI: 10.1016/j.jbiotec.2018.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cannabinoids are secondary natural products from the plant Cannabis sativaL. Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research. We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA). Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa - Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA). In pursuit of improved enzyme properties for a biotechnological cannabinoid production, we performed site-directed mutagenesis to investigate the glycosylation pattern, the C-terminal berberine-bridge-enzyme (BBE) domain, the active site and the product specificity of both enzymes. The THCAS variant T_N89Q+N499Q (lacking two glycosylation sites) exerted about two-fold increased activity compared to wild-type enzyme. Variant T_H494C+R532C (additional disulfide bridge) exerted about 1.7-fold increased activity compared to wild-type enzyme and a shifted temperature optimum from 52 °C to 57 °C. We generated two CBDAS variants, C_S116A and C_A414V, with 2.8 and 3.3-fold increased catalytic activities for CBDA production. C_A414V additionally showed a broadened pH spectrum and a 19-fold increased catalytic activity for THCA production. These studies lay the groundwork for further research as well as biotechnological cannabinoid production.
Collapse
|
37
|
Walker RSK, Pretorius IS. Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes (Basel) 2018; 9:E340. [PMID: 29986380 PMCID: PMC6070867 DOI: 10.3390/genes9070340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered yeast are an important production platform for the biosynthesis of high-value compounds with medical applications. Recent years have witnessed several new developments in this area, largely spurred by advances in the field of synthetic biology and the elucidation of natural metabolic pathways. This minireview presents an overview of synthetic biology applications for the heterologous biosynthesis of biopharmaceuticals in yeast and demonstrates the power and potential of yeast cell factories by highlighting several recent examples. In addition, an outline of emerging trends in this rapidly-developing area is discussed, hinting upon the potential state-of-the-art in the years ahead.
Collapse
Affiliation(s)
- Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | | |
Collapse
|
38
|
Geissler M, Volk J, Stehle F, Kayser O, Warzecha H. Subcellular localization defines modification and production of Δ 9-tetrahydrocannabinolic acid synthase in transiently transformed Nicotiana benthamiana. Biotechnol Lett 2018; 40:981-987. [PMID: 29619743 DOI: 10.1007/s10529-018-2545-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Through heterologous expression of the tetrahydrocannabinolic acid synthase (THCAS) coding sequence from Cannabis sativa L. in Nicotiana benthamiana, we evaluated a transient plant-based expression system for the production of enzymes involved in cannabinoid biosynthesis. RESULTS Thcas was modularized according to the GoldenBraid grammar and its expression tested upon alternative subcellular localization of the encoded catalyst with and without fusion to a fluorescent protein. THCAS was detected only when ER targeting was used; cytosolic and plastidal localization resulted in no detectable protein. Moreover, THCAS seems to be glycosylated in N. benthamiana, suggesting that this modification might have an influence on the stability of the protein. Activity assays with cannabigerolic acid as a substrate showed that the recombinant enzyme produced not only THCA (123 ± 12 fkat g FW-1 activity towards THCA production) but also cannabichromenic acid (CBCA; 31 ± 2.6 fkat g FW-1 activity towards CBCA production). CONCLUSION Nicotiana benthamiana is a suitable host for the generation of cannabinoid producing enzymes. To attain whole pathway integration, careful analysis of subcellular localization is necessary.
Collapse
Affiliation(s)
- Marcus Geissler
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany
| | - Jascha Volk
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany
| | - Felix Stehle
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Oliver Kayser
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
39
|
Carvalho Â, Hansen EH, Kayser O, Carlsen S, Stehle F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 2018; 17:3861260. [PMID: 28582498 PMCID: PMC5812543 DOI: 10.1093/femsyr/fox037] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
Abstract
During the last decade, the use of medical Cannabis has expanded globally and legislation is getting more liberal in many countries, facilitating the research on cannabinoids. The unique interaction of cannabinoids with the human endocannabinoid system makes these compounds an interesting target to be studied as therapeutic agents for the treatment of several medical conditions. However, currently there are important limitations in the study, production and use of cannabinoids as pharmaceutical drugs. Besides the main constituent tetrahydrocannabinolic acid, the structurally related compound cannabidiol is of high interest as drug candidate. From the more than 100 known cannabinoids reported, most can only be extracted in very low amounts and their pharmacological profile has not been determined. Today, cannabinoids are isolated from the strictly regulated Cannabis plant, and the supply of compounds with sufficient quality is a major problem. Biotechnological production could be an attractive alternative mode of production. Herein, we explore the potential use of synthetic biology as an alternative strategy for synthesis of cannabinoids in heterologous hosts. We summarize the current knowledge surrounding cannabinoids biosynthesis and present a comprehensive description of the key steps of the genuine and artificial pathway, systems biotechnology needs and platform optimization.
Collapse
Affiliation(s)
- Ângela Carvalho
- Evolva Biotech A/S, Lersø Parkallé 42-44, 2100, Copenhagen, Denmark
| | | | - Oliver Kayser
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Simon Carlsen
- Evolva Biotech A/S, Lersø Parkallé 42-44, 2100, Copenhagen, Denmark
| | - Felix Stehle
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| |
Collapse
|
40
|
Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, Kayser O. Optimization of Δ 9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 2018; 272-273:40-47. [PMID: 29549004 DOI: 10.1016/j.jbiotec.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Δ9-Tetrahydrocannabinolic acid (THCA) is a secondary natural product from the plant Cannabis sativa L. with therapeutic indications like analgesics for cancer pain or reducing spasticity associated with multiple sclerosis. Here, we investigated the influence of the co-expression of 12 helper protein genes from Komagataella phaffii (formerly Pichia pastoris) on the functional expression of the Δ9-tetrahydrocannabinolic acid synthase (THCAS) heterologously expressed in K. phaffii by screening 21 clones of each transformation. Our findings substantiate the necessity of a suitable screening system when interfering with the secretory network of K. phaffii. We found that co-production of the chaperones CNE1p and Kar2p, the foldase PDI1p, the UPR-activator Hac1p as well as the FAD synthetase FAD1p enhanced THCAS activity levels within the K. phaffii cells. The strongest influence showed co-expression of Hac1s - increasing the volumetric THCAS activities 4.1-fold on average. We also combined co-production of Hac1p with the other beneficial helper proteins to further enhance THCAS activity levels. An optimized strain overexpressing Hac1s, FAD1 and CNE1 was isolated that showed 20-fold increased volumetric, intracellular THCAS activity compared to the starting strain. We used this strain for a whole cell bioconversion of cannabigerolic acid (CBGA) to THCA. After 8 h of incubation at 37 °C, the cells produced 3.05 g L-1 THCA corresponding to 12.5% gTHCA gCDW-1.
Collapse
Affiliation(s)
- Bastian Zirpel
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Friederike Degenhardt
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Chantale Zammarelli
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix Stehle
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
41
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
42
|
Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F. Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 2017; 259:204-212. [PMID: 28694184 DOI: 10.1016/j.jbiotec.2017.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
Δ9-tetrahydrocannabinolic acid (THCA) is a plant derived secondary natural product from the plant Cannabis satival. The discovery of the human endocannabinoid system in the late 1980s resulted in a growing number of known physiological functions of both synthetic and plant derived cannabinoids. Thus, manifold therapeutic indications of cannabinoids currently comprise a significant area of research. Here we reconstituted the final biosynthetic cannabinoid pathway in yeasts. The use of the soluble prenyltransferase NphB from Streptomyces sp. strain CL190 enables the replacement of the native transmembrane prenyltransferase cannabigerolic acid synthase from C. sativa. In addition to the desired product cannabigerolic acid, NphB catalyzes an O-prenylation leading to 2-O-geranyl olivetolic acid. We show for the first time that the bacterial prenyltransferase and the final enzyme of the cannabinoid pathway tetrahydrocannabinolic acid synthase can both be actively expressed in the yeasts Saccharomyces cerevisiae and Komagataella phaffii simultaneously. While enzyme activities in S. cerevisiae were insufficient to produce THCA from olivetolic acid and geranyl diphosphate, genomic multi-copy integrations of the enzyme's coding sequences in K. phaffii resulted in successful synthesis of THCA from olivetolic acid and geranyl diphosphate. This study is an important step toward total biosynthesis of valuable cannabinoids and derivatives and demonstrates the potential for developing a sustainable and secure yeast bio-manufacturing platform.
Collapse
Affiliation(s)
- Bastian Zirpel
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Friederike Degenhardt
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Chantale Martin
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany.
| | - Felix Stehle
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| |
Collapse
|
43
|
Beyond Cannabis: Plants and the Endocannabinoid System. Trends Pharmacol Sci 2016; 37:594-605. [DOI: 10.1016/j.tips.2016.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
|
44
|
Lange K, Schmid A, Julsing MK. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis. J Biotechnol 2016; 233:42-8. [PMID: 27369551 DOI: 10.1016/j.jbiotec.2016.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022]
Abstract
Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids.
Collapse
Affiliation(s)
- Kerstin Lange
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany; Department of Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
45
|
Koszul R. Beyond the bounds of evolution: Synthetic chromosomes… How and what for? C R Biol 2016; 339:324-8. [PMID: 27289455 DOI: 10.1016/j.crvi.2016.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
Abstract
Chromosome synthesis is still at its early stage. The budding yeast Saccharomyces cerevisiae is an organism of choice with respect to this field, thanks to its efficient homologous recombination pathway. By iteratively concatenating short DNA molecules to ultimately generate large sequences of megabase size, these approaches allow piecing together multiple genes and genetic elements in a way designed by an individual prior to their assembly. They therefore hold important promises as a tool to design complex genetic systems or assemble new genetic pathways that allow addressing fundamental and applied questions. The constant drop in DNA synthesis costs, fed by the development of new technologies, opens new perspectives with respect to the conceptual way these questions can be addressed. Thanks to its properties, S. cerevisiae may provide solutions for chromosome synthesis in other organisms, in combination with genome editing techniques.
Collapse
Affiliation(s)
- Romain Koszul
- Institut Pasteur, Genomes and Genetics Department, Groupe "Régulation spatiale des génomes", 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France.
| |
Collapse
|
46
|
Moreno-Sanz G. Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ 9-Tetrahydrocannabinolic Acid A. Cannabis Cannabinoid Res 2016; 1:124-130. [PMID: 28861488 PMCID: PMC5549534 DOI: 10.1089/can.2016.0008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Δ9-tetrahydrocannabinolic acid A (THCA-A) is the acidic precursor of Δ9-tetrahydrocannabinol (THC), the main psychoactive compound found in Cannabis sativa. THCA-A is biosynthesized and accumulated in glandular trichomes present on flowers and leaves, where it serves protective functions and can represent up to 90% of the total THC contained in the plant. THCA-A slowly decarboxylates to form THC during storage and fermentation and can further degrade to cannabinol. Decarboxylation also occurs rapidly during baking of edibles, smoking, or vaporizing, the most common ways in which the general population consumes Cannabis. Contrary to THC, THCA-A does not elicit psychoactive effects in humans and, perhaps for this reason, its pharmacological value is often neglected. In fact, many studies use the term “THCA” to refer indistinctly to several acid derivatives of THC. Despite this perception, many in vitro studies seem to indicate that THCA-A interacts with a number of molecular targets and displays a robust pharmacological profile that includes potential anti-inflammatory, immunomodulatory, neuroprotective, and antineoplastic properties. Moreover, the few in vivo studies performed with THCA-A indicate that this compound exerts pharmacological actions in rodents, likely by engaging type-1 cannabinoid (CB1) receptors. Although these findings may seem counterintuitive due to the lack of cannabinoid-related psychoactivity, a careful perusal of the available literature yields a plausible explanation to this conundrum and points toward novel therapeutic perspectives for raw, unheated Cannabis preparations in humans.
Collapse
Affiliation(s)
- Guillermo Moreno-Sanz
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, California
| |
Collapse
|
47
|
Nemhauser JL, Torii KU. Plant synthetic biology for molecular engineering of signalling and development. NATURE PLANTS 2016; 2:16010. [PMID: 27249346 PMCID: PMC5164986 DOI: 10.1038/nplants.2016.10] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Collapse
Affiliation(s)
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
48
|
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. FRONTIERS IN PLANT SCIENCE 2016; 7:19. [PMID: 26870049 PMCID: PMC4740396 DOI: 10.3389/fpls.2016.00019] [Citation(s) in RCA: 754] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
Collapse
Affiliation(s)
- Christelle M. Andre
- Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|
49
|
Hanuš LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep 2016; 33:1357-1392. [DOI: 10.1039/c6np00074f] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabis sativaL. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.
Collapse
Affiliation(s)
- Lumír Ondřej Hanuš
- Institute for Drug Research
- School of Pharmacy
- Faculty of Medicine
- Hebrew University
- Jerusalem 91120
| | - Stefan Martin Meyer
- Phytoplant Research S. L
- Rabanales 21 – The Science and Technology Park of Cordoba
- Cordoba
- Spain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba
- Reina Sofía University Hospital
- Department of Cell Biology, Physiology and Immunology
- University of Córdoba
- Córdoba
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale
- 28100 Novara
- Italy
| |
Collapse
|