1
|
Golan J, Wang YW, Adams CA, Cross H, Elmore H, Gardes M, Gonçalves SC, Hess J, Richard F, Wolfe B, Pringle A. Death caps (Amanita phalloides) frequently establish from sexual spores, but individuals can grow large and live for more than a decade in invaded forests. THE NEW PHYTOLOGIST 2024; 242:1753-1770. [PMID: 38146206 DOI: 10.1111/nph.19483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Global change is reshaping Earth's biodiversity, but the changing distributions of nonpathogenic fungi remain largely undocumented, as do mechanisms enabling invasions. The ectomycorrhizal Amanita phalloides is native to Europe and invasive in North America. Using population genetics and genomics, we sought to describe the life history traits of this successfully invading symbiotic fungus. To test whether death caps spread underground using hyphae, or aboveground using sexual spores, we mapped and genotyped mushrooms from European and US sites. Larger genetic individuals (genets) would suggest spread mediated by vegetative growth, while many small genets would suggest dispersal mediated by spores. To test whether genets are ephemeral or persistent, we also sampled from populations over time. At nearly every site and across all time points, mushrooms resolve into small genets. Individuals frequently establish from sexual spores. But at one Californian site, a single individual measuring nearly 10 m across dominated. At two Californian sites, the same genetic individuals were discovered in 2004, 2014, and 2015, suggesting single individuals (both large and small) can reproduce repeatedly over relatively long timescales. A flexible life history strategy combining both mycelial growth and spore dispersal appears to underpin the invasion of this deadly perennial ectomycorrhizal fungus.
Collapse
Affiliation(s)
- Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yen-Wen Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Catharine A Adams
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Hugh Cross
- National Ecological Observatory Network-Battelle, 1685 38th, Suite 100, Boulder, CO, 80301, USA
| | - Holly Elmore
- Rethink Priorities, 530 Divisadero St. PMB #796, San Francisco, CA, 94117, USA
| | - Monique Gardes
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174 UPS-CNRS-IRD, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex, F-31062, France
| | - Susana C Gonçalves
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, 3000-456, Portugal
| | | | - Franck Richard
- CEFE, Université de Montpellier - CNRS - EPHE - IRD, 1919 route de Mende, F-34293, Montpellier Cedex 5, France
| | - Benjamin Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Chot E, Suravajhala P, Medicherla KM, Reddy MS. Characterization and genome-wide sequence analysis of an ectomycorrhizal fungus Pisolithus albus, a potential source for reclamation of degraded lands. 3 Biotech 2023; 13:58. [PMID: 36714549 PMCID: PMC9873894 DOI: 10.1007/s13205-023-03483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Pisolithus albus is a ubiquitous ectomycorrhizal fungus that establishes symbiosis with a wide range of woody plants around the globe. The symbiotic association of this fungus plays a crucial role in the nutrient cycling of their host plants and enables them to thrive in adverse environmental conditions. Based on its ecological importance and lack of genomic studies, whole-genome sequencing was carried out to analyze P. albus sequences through an Illumina HiSeq X system. The functional annotations were performed against various databases to explore genomic patterns and traits possibly attributing to its specialization. Comparative genomics of P. albus with phylogenetically related Pisolithus microcarpus and Pisolithus tinctorius (only available genomes of Pisolithus at NCBI till now) led to the identification of their unique and shared basic functional and stress adaptation capabilities. The de novo assembled genome of 56.15 Mb with 91.8% BUSCO completeness is predicted to encode 23,035 genes. The study is aimed to generate solid genomic data resources for P. albus, forming the theoretical basis for future transcriptomic, proteomic and metabolomic studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03483-5.
Collapse
Affiliation(s)
- Eetika Chot
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004 India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala 690525 India
| | | | - Mondem Sudhakara Reddy
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004 India
| |
Collapse
|
3
|
Ramírez NA, Zacarias LKE, Salvador-Montoya CA, Tasselli M, Popoff OF, Niveiro N. Russula (Russulales, Agaricomycetes) associated with Pinus spp. plantations from northeastern Argentina. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Russula comprises more than 3,000 species worldwide and is a characteristic genus of the coniferous forests of the northern hemisphere. The forest plantations with non-native species in the northeastern Argentina, such as pine or eucalyptus, provide the biotic and environmental conditions for the establishment of ectomycorrhizal fungi associated with these forest plantations. Due to the complexity of identifying Russula at specific level, morpho-anatomical, scanning electron microscopy, and phylogenetic (ITS) analysis were used to identify the specimens. As result, three Russula species, R. recondita, R. sardonia, and R. sororia, are described in detail and illustrated, none previously known to Argentina. Also, two of them, R. recondita and R. sororia, represent new records for South America.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolás Niveiro
- Universidad Nacional del Nordeste, Argentina; IBONE (UNNE–CONICET), Argentina
| |
Collapse
|
4
|
Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P. Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. THE ISME JOURNAL 2020; 14:2336-2346. [PMID: 32499492 PMCID: PMC7608243 DOI: 10.1038/s41396-020-0692-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Alien plants represent a potential threat to environment and society. Understanding the process of alien plants naturalization is therefore of primary importance. In alien plants, successful establishment can be constrained by the absence of suitable fungal partners. Here, we used 42 independent datasets of ectomycorrhizal fungal (EcMF) communities associated with alien Pinaceae and Eucalyptus spp., as the most commonly introduced tree species worldwide, to explore the strategies these plant groups utilize to establish symbioses with EcMF in the areas of introduction. We have also determined the differences in composition of EcMF communities associated with alien ectomycorrhizal plants in different regions. While alien Pinaceae introduced to new regions rely upon association with co-introduced EcMF, alien Eucalyptus often form novel interactions with EcMF species native to the region where the plant was introduced. The region of origin primarily determines species composition of EcMF communities associated with alien Pinaceae in new areas, which may largely affect invasion potential of the alien plants. Our study shows that alien ectomycorrhizal plants largely differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in sites of introduction, which may potentially affect their invasive potential.
Collapse
Affiliation(s)
- Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Department of Biology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tomáš Antl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Jan Pergl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jana Albrechtová
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Petr Pyšek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic.
| |
Collapse
|
5
|
Vargas N, Gonçalves SC, Franco-Molano AE, Restrepo S, Pringle A. In Colombia the Eurasian fungus Amanita muscaria is expanding its range into native, tropical Quercus humboldtii forests. Mycologia 2019; 111:758-771. [PMID: 31408397 DOI: 10.1080/00275514.2019.1636608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To meet a global demand for timber, tree plantations were established in South America during the first half of the 20th century. Extensive plantings of non-native species now are found in Brazil, Chile, Argentina, and Uruguay. In Colombia, miscellaneous plantations were established in the 1950s, during a period of intensive local logging, when policies to limit deforestation in native Quercus humboldtii forests were established. One unforeseen consequence of planting non-native trees was the simultaneous introduction and subsequent persistence of ectomycorrhizal fungi. We sought to document the origins and spread of the introduced Amanita muscaria found in Colombian plantations of the Mexican species Pinus patula, North American species P. taeda, and Australian species Acacia melanoxylon and Eucalyptus globulus. In Colombia, Amanita muscaria is establishing a novel association with native Q. humboldtii and has spread to local Q. humboldtii forests. According to a Bayesian phylogeny and haplotype analysis based on the nuclear rDNA internal transcribed spacer region ITS1-5.8-ITS2 (ITS barcode), A. muscaria individuals found in four exotic plant species, and those colonizing Q. humboldtii roots, have a Eurasian origin and belong to two Eurasian haplotypes. This is the first time the spread of an introduced mutualist fungus into native Colombian Q. humboldtii forests is reported. To arrest its spread, we suggest the use of local inocula made up of native fungi, instead of inocula of introduced fungi.
Collapse
Affiliation(s)
- Natalia Vargas
- Laboratory of Mycology and Plant Pathology, Universidad de Los Andes , Bogotá , Colombia
| | - Susana C Gonçalves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra , 3000-456 Coimbra, Portugal
| | | | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology, Universidad de Los Andes , Bogotá , Colombia
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison , Madison , Wisconsin 53706.,Department of Bacteriology, University of Wisconsin-Madison , Madison , Wisconsin 53706
| |
Collapse
|
6
|
Li J, Oduor AMO, Yu F, Dong M. A native parasitic plant and soil microorganisms facilitate a native plant co-occurrence with an invasive plant. Ecol Evol 2019; 9:8652-8663. [PMID: 31410269 PMCID: PMC6686308 DOI: 10.1002/ece3.5407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co-occurring native plants. Here, we used an invasive plant Mikania micrantha, a co-occurring native plant Coix lacryma-jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co-occurring native plant. In a factorial setup, M. micrantha and C. lacryma-jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co-occurring native plant C. lacryma-jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.
Collapse
Affiliation(s)
- Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Ayub M. O. Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
- Department of Applied and Technical BiologyTechnical University of KenyaNairobiKenya
| | - Feihai Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
7
|
Fraiture A, Amalfi M, Raspé O, Kaya E, Akata I, Degreef J. Two new species of Amanitasect.Phalloideae from Africa, one of which is devoid of amatoxins and phallotoxins. MycoKeys 2019; 53:93-125. [PMID: 31217724 PMCID: PMC6565643 DOI: 10.3897/mycokeys.53.34560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023] Open
Abstract
Two new species of Amanitasect.Phalloideae are described from tropical Africa (incl. Madagascar) based on both morphological and molecular (DNA sequence) data. Amanitabweyeyensis sp. nov. was collected, associated with Eucalyptus, in Rwanda, Burundi and Tanzania. It is consumed by local people and chemical analyses showed the absence of amatoxins and phallotoxins in the basidiomata. Surprisingly, molecular analysis performed on the same specimens nevertheless demonstrated the presence of the gene sequence encoding for the phallotoxin phallacidin (PHA gene, member of the MSDIN family). The second species, Amanitaharkoneniana sp. nov. was collected in Tanzania and Madagascar. It is also characterised by a complete PHA gene sequence and is suspected to be deadly poisonous. Both species clustered together in a well-supported terminal clade in multilocus phylogenetic inferences (including nuclear ribosomal partial LSU and ITS-5.8S, partial tef1-α, rpb2 and β-tubulin genes), considered either individually or concatenated. This, along with the occurrence of other species in sub-Saharan Africa and their phylogenetic relationships, are briefly discussed. Macro- and microscopic descriptions, as well as pictures and line drawings, are presented for both species. An identification key to the African and Madagascan species of Amanitasect.Phalloideae is provided. The differences between the two new species and the closest Phalloideae species are discussed.
Collapse
Affiliation(s)
- André Fraiture
- Meise Botanic Garden, 38 Nieuwelaan, 1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifique, 1080 Brussels, BelgiumFédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifiqueBrusselsBelgium
| | - Mario Amalfi
- Meise Botanic Garden, 38 Nieuwelaan, 1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
| | - Olivier Raspé
- Meise Botanic Garden, 38 Nieuwelaan, 1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifique, 1080 Brussels, BelgiumFédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifiqueBrusselsBelgium
| | - Ertugrul Kaya
- Duzce University, Faculty of Medicine, Department of Pharmacology, Düzce, TurkeyDuzce UniversityDüzceTurkey
| | - Ilgaz Akata
- Ankara University, Faculty of Science, Department of Biology, Ankara, TurkeyAnkara UniversityAnkaraTurkey
| | - Jérôme Degreef
- Meise Botanic Garden, 38 Nieuwelaan, 1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifique, 1080 Brussels, BelgiumFédération Wallonie-Bruxelles, Service Général de l’Enseignement supérieur et de la recherche scientifiqueBrusselsBelgium
| |
Collapse
|
8
|
Context dependency, co-introductions, novel mutualisms, and host shifts shaped the ectomycorrhizal fungal communities of the alien tree Eucalyptus globulus. Sci Rep 2019; 9:7121. [PMID: 31073194 PMCID: PMC6509251 DOI: 10.1038/s41598-019-42550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The identity and relevance of the ectomycorrhizal (ECM) fungal partners of Eucalyptus globulus was investigated in NW Spain, to detect which symbionts mainly support its invasiveness. Root tips of E. globulus and of three common native plant species (Quercus robur, Pinus pinaster and Halimium lasianthum) were collected in eucalypt plantations, Q. robur forests, P. pinaster plantations and shrublands. Fungal taxonomical identity was ascertained by use of rDNA and direct sequencing. We studied diversity, composition and colonization rate of the ECM fungal communities of E. globulus to determine if fungal assemblages are host specific (i.e. similar in different habitats) or more dependent on the neighbourhood context. We also identified the type of associations formed (i.e. co-introductions, familiar or novel associations). Twenty-six ECM taxa were associated with E. globulus. Most of them engaged in novel associations with eucalypts, whereas only three fungal species were co-introduced Australian aliens. Eucalypt fungal richness, diversity and colonization rate differed between habitats, being higher in native oak forests, whereas in shrublands E. globulus showed the lowest colonization rate and diversity. The Australian fungus Descolea maculata dominated the eucalypt fungal assemblage and also spread to the native host plants, in all the habitats, posing the risk of further co-invasion.
Collapse
|
9
|
A pantropically introduced tree is followed by specific ectomycorrhizal symbionts due to pseudo-vertical transmission. ISME JOURNAL 2018. [PMID: 29535364 DOI: 10.1038/s41396-018-0088-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.
Collapse
|
10
|
Rúa MA, Lamit LJ, Gehring C, Antunes PM, Hoeksema JD, Zabinski C, Karst J, Burns C, Woods MJ. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. MYCORRHIZA 2018; 28:187-195. [PMID: 29181636 DOI: 10.1007/s00572-017-0811-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses.
Collapse
Affiliation(s)
- Megan A Rúa
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Louis J Lamit
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Catherine Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011-5640, USA
| | - Pedro M Antunes
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Cathy Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, 344 Leon Johnson Hall, Bozeman, MT, 59717, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Cole Burns
- Department of Biological Sciences, University of Calgary, 284 Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Michaela J Woods
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
11
|
|
12
|
Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AOB PLANTS 2017; 8:plw076. [PMID: 27821517 PMCID: PMC5206332 DOI: 10.1093/aobpla/plw076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/26/2016] [Indexed: 05/28/2023]
Abstract
When non-native plants reach novel environments, they typically arrive with hidden microbiomes. In general, most of these hitchhikers remain on their co-evolved hosts, some contribute to the invasiveness of their hosts, and a small number can undergo host shifts and move onto native hosts. Invasion success can vary depending upon the different categories of fungal associates. When an invader tree relies on a fungal mutualism to survive in the new environment, there is a fundamentally lower likelihood of either the tree, or the fungus, establishing novel associations. In contrast, parasitic hitchhikers could merely use their host plants to move through the landscape and to become established on new hosts (host shifts). Evidence suggests the frequency of these host shifts is low and depends upon the fungal functional group. However, epidemics caused by invasive pathogens in native ecosystems have occurred globally. Thus, elucidating the potential for hidden non-native fungi to form novel host associations in a new environment is important for biodiversity conservation.
Collapse
Affiliation(s)
- Treena I Burgess
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Casparus J Crous
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
- Present address: Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Jarkko Hantula
- Natural Resources Institute Finland, Natural Resources and Bioproduction Unit, Vantaa 01300, Finland
| | - Michael J Wingfield
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
13
|
|
14
|
Martinović T, Koukol O, Hirose D. Distinct phylogeographic structure recognized within Desmazierella acicola. Mycologia 2015; 108:20-30. [PMID: 26490702 DOI: 10.3852/14-291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/11/2015] [Indexed: 11/10/2022]
Abstract
Desmazierella acicola (anamorph Verticicladium trifidum, Chorioactidaceae) represents a frequent colonizer of pine needles in litter. Considering the global diversity and distribution of pine species, we expected different phylogenetic lineages to exist in different geographical and climatic areas inhabited by these hosts. We compared DNA sequence data with phenotypic characteristics (morphology of the anamorph and growth at three different temperatures) of 43 strains isolated mostly from pine and also spruce needle litter sampled in various geographical areas. Analyses of ITS rDNA recovered eight geographically structured lineages. Fragments of genes for the translation elongation factor 1-α, and the second largest subunit of RNA polymerase II reproduced similar lineages, although not all of them were monophyletic. The similarity in ITS sequences among the clade with samples from Continental-Atlantic Europe and four other clades was lower than 95%. Several lineages exhibit also a tendency toward host specificity to a particular pine species. Growth tests at different temperatures indicated a different tolerance to specific climatic conditions in different geographic areas. However, the surveyed phenotypic characteristics also showed high variation within lineages, most evident in the morphology of the anamorph. Until a morphological study of the teleomorph is carried out, all of these lineages should be treated as distinct populations within a single species.
Collapse
Affiliation(s)
- Tijana Martinović
- University of Ljubljana, Biotechnical faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia, and Charles University in Prague, Faculty, of Science, Department of Botany, Benátská 2, CZ-12801, Prague, Czech Republic
| | - Ondřej Koukol
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, CZ-12801, Prague, Czech Republic
| | - Dai Hirose
- School of Pharmacy, Nihon University, Funabashi, Chiba 274-8555, Japan
| |
Collapse
|
15
|
Ángeles-Argáiz RE, Flores-García A, Ulloa M, Garibay-Orijel R. Commercial Sphagnum peat moss is a vector for exotic ectomycorrhizal mushrooms. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0992-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Sphagnum peat moss is one of the most commonly used substrates for forest plant and houseplant production. It is extracted from peat bogs in the circumboreal region and exported worldwide. Commercial peat moss is pasteurized, and is therefore believed to be free of viable ectomycorrhizal propagules. We used a bioassay with Pinus montezumae to demonstrate that commercial peat moss carries viable ectomycorrhizal spores, able to form mycorrhizae. Ectomycorrhizal fungi on seedling root-tips were sequenced for phylogenetic analyses using the ITS rDNA barcode region. We found three species: Suillus brevipes, Sphaerosporella brunnea, and Thelephora terrestris. S. brevipes and T. terrestris were found as viable inoculum transported in the peat moss, while S. brunnea was a greenhouse contaminant. S. brevipes and T. terrestris have biological characteristics (such as heat resistant and long living spores) that facilitate their survival to the extraction, transport, and storage processes of peat moss. This allows them to colonize nursery seedlings and to become potential invasive species in plantation areas. S. brevipes and T. terrestris are two of the most introduced fungi by anthropic activities; it has been argued that the vehicle for the introductions are their pine symbionts. This is the first time it has been demonstrated that peat moss is an important vehicle for the introduction of these fungi; a fact potentially related to the pattern of introduction of these ectomycorrhizal species from the northern hemisphere to elsewhere in the world.
Collapse
|
16
|
Rodríguez-Echeverría S, Traveset A. Putative linkages between below- and aboveground mutualisms during alien plant invasions. AOB PLANTS 2015; 7:plv062. [PMID: 26034049 PMCID: PMC4571103 DOI: 10.1093/aobpla/plv062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Evidence of the fundamental role of below-aboveground links in controlling ecosystem processes is mostly based on studies done with soil herbivores or mutualists and aboveground herbivores. Much less is known about the links between belowground and aboveground mutualisms, which have been studied separately for decades. It has not been until recently that these mutualisms-mycorrhizas and legume-rhizobia on one hand, and pollinators and seed dispersers on the other hand-have been found to influence each other, with potential ecological and evolutionary consequences. Here we review the mechanisms that may link these two-level mutualisms, mostly reported for native plant species, and make predictions about their relevance during alien plant invasions. We propose that alien plants establishing effective mutualisms with belowground microbes might improve their reproductive success through positive interactions between those mutualists and pollinators and seed dispersers. On the other hand, changes in the abundance and diversity of soil mutualists induced by invasion can also interfere with below-aboveground links for native plant species. We conclude that further research on this topic is needed in the field of invasion ecology as it can provide interesting clues on synergistic interactions and invasional meltdowns during alien plant invasions.
Collapse
Affiliation(s)
- Susana Rodríguez-Echeverría
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Anna Traveset
- Mediterranean Institute of Advanced Studies (CSIC-UIB), C/Miquel Marqués 21, E07190 Esporles, Mallorca, Spain
| |
Collapse
|
17
|
Exotic Eucalyptus plantations in the southeastern US: risk assessment, management and policy approaches. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0844-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Bogar LM, Dickie IA, Kennedy PG. Testing the co-invasion hypothesis: ectomycorrhizal fungal communities onAlnus glutinosaandSalix fragilisin New Zealand. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12304] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Laura M. Bogar
- Department of Biology; Stanford University; 371 Serra Mall Stanford CA 94305 USA
| | - Ian A. Dickie
- Bio-Protection Research Centre; Lincoln University; Box 85084 Lincoln New Zealand
- Landcare Research; Box 69040 Lincoln New Zealand
| | - Peter G. Kennedy
- Department of Plant Biology; 250 Biological Science Center; University of Minnesota; 1445 Gortner Ave St. Paul MN 55108 USA
| |
Collapse
|
19
|
Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol 2015; 24:1969-86. [DOI: 10.1111/mec.13028] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022]
Affiliation(s)
- P. Gladieux
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - A. Feurtey
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - M. E. Hood
- Department of Biology; Amherst College; Amherst Massachusetts 01002 USA
| | - A. Snirc
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - J. Clavel
- Conservation des Espèces; Restauration et Suivi des Populations - CRBPO; Muséum National d'Histoire Naturelle-CNRS-Université Pierre et Marie Curie; 55 rue Buffon 75005 Paris France
| | - C. Dutech
- Biodiversité Gènes et Communautés; INRA-Université Bordeaux 1; Site de Pierroton 33610 Cestas France
| | - M. Roy
- Evolution et Diversité Biologique; Université Toulouse Paul Sabatier-Ecole Nationale de Formation Agronomique-CNRS; 118 route de Narbonne 31062 Toulouse France
| | - T. Giraud
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| |
Collapse
|
20
|
Rundel PW, Dickie IA, Richardson DM. Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions 2014. [DOI: 10.1007/s10530-013-0614-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
|
22
|
|
23
|
Wolfe BE, Pringle A. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. THE ISME JOURNAL 2012; 6:745-55. [PMID: 22134645 PMCID: PMC3309363 DOI: 10.1038/ismej.2011.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 11/09/2022]
Abstract
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Collapse
Affiliation(s)
- Benjamin E Wolfe
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
24
|
Trocha LK, Kałucka I, Stasińska M, Nowak W, Dabert M, Leski T, Rudawska M, Oleksyn J. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees. MYCORRHIZA 2012; 22:121-34. [PMID: 21573837 PMCID: PMC3261385 DOI: 10.1007/s00572-011-0387-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/02/2011] [Indexed: 05/22/2023]
Abstract
Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.
Collapse
Affiliation(s)
- Lidia K Trocha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dunk CW, Lebel T, Keane PJ. Characterisation of ectomycorrhizal formation by the exotic fungus Amanita muscaria with Nothofagus cunninghamii in Victoria, Australia. MYCORRHIZA 2012; 22:135-147. [PMID: 21573836 DOI: 10.1007/s00572-011-0388-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/02/2011] [Indexed: 05/30/2023]
Abstract
The occurrence of the exotic ectomycorrhizal fungus Amanita muscaria in a mixed Nothofagus-Eucalyptus native forest was investigated to determine if A. muscaria has switched hosts to form a successful association with a native tree species in a natural environment. A mycorrhizal morphotype consistently found beneath A. muscaria sporocarps was examined, and a range of morphological and anatomical characteristics in common with those described for ectomycorrhizae formed by A. muscaria on a broad range of hosts were observed. A full description is provided. The likely plant associate was determined to be Nothofagus cunninghamii based upon anatomy of the roots. Analysis of ITS-1 and ITS-2 regions of nuclear ribosomal DNA sequences confirmed the identities of both fungal and plant associates. These findings represent conclusive evidence of the invasion of a non-indigenous ectomycorrhizal fungus into native forest and highlight the ecological implications of this discovery.
Collapse
|
26
|
Jairus T, Mpumba R, Chinoya S, Tedersoo L. Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. THE NEW PHYTOLOGIST 2011; 192:179-187. [PMID: 21627665 DOI: 10.1111/j.1469-8137.2011.03775.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Transportation of forestry materials results in unintended co-introduction of nonnative species that may cause enormous ecological or economic damage. While the invasion ecology of plants and animals is relatively well-known, that of microorganisms, except aboveground pathogens, remains poorly understood. • This work addresses host shifts and invasion potential of root symbiotic ectomycorrhizal fungi that were co-introduced with Australian eucalypts and planted in clear-cut miombo woodlands in Zambia, south-central Africa. • By use of rDNA and plastid intron sequence analysis for identification and phylogenetic techniques for inferring fungal origin, we demonstrated that host shifts were uncommon in the Australian fungi, but frequent in the African fungi, especially in mixed plantations where roots of different trees intermingle. • There was evidence for naturalization, but not for invasion by Australian ectomycorrhizal fungi. Nevertheless, the fungi introduced may pose an invasion risk along with further adaptation to local soil environment and host trees. Inoculation of eucalypts with native edible fungi may ameliorate the potential invasion risks of introduced fungi and provide an alternative source of nutrition.
Collapse
Affiliation(s)
- Teele Jairus
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005 Tartu, Estonia
| | | | - Stephen Chinoya
- Loloma Mission Hospital, PO Box 100 Manyinga, Kabompo, Zambia
| | - Leho Tedersoo
- Natural History Museum of Tartu University, 46 Vanemuise Street 51005 Tartu, Estonia
| |
Collapse
|
27
|
Rodríguez-Echeverría S, Le Roux JJ, Crisóstomo JA, Ndlovu J. Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species? DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00787.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Pennington HG, Bidartondo MI, Barsoum N. A few exotic mycorrhizal fungi dominate eucalypts planted in England. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Moreno G, Alvarado P, Manjón JL. Phylogenetic affiliation of Choiromyces magnusii and C. venosus Tuberaceae Ascomycota) from Spain. Mycol Prog 2011. [DOI: 10.1007/s11557-011-0762-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
The Asian black truffle Tuber indicum can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2010.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
|
32
|
Dickie IA, Bolstridge N, Cooper JA, Peltzer DA. Co-invasion by Pinus and its mycorrhizal fungi. THE NEW PHYTOLOGIST 2010; 187:475-484. [PMID: 20456067 DOI: 10.1111/j.1469-8137.2010.03277.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
*The absence of co-evolved mutualists of plants invading a novel habitat is the logical corollary of the more widely recognized 'enemy escape'. To avoid or overcome the loss of mutualists, plants may co-invade with nonnative mutualists, form novel associations with native mutualists or form associations with native cosmopolitan mutualists, which are native but not novel to the invading plant. *We tested these hypotheses by contrasting the ectomycorrhizal fungal communities associated with invasive Pinus contorta in New Zealand with co-occurring endemic Nothofagus solandri var. cliffortioides. *Fungal communities on Pinus were species poor (14 ectomycorrhizal species) and dominated by nonnative (93%) and cosmopolitan fungi (7%). Nothofagus had a species-rich (98 species) fungal community dominated by native Cortinarius and two cosmopolitan fungi. *These results support co-invasion by mutualists rather than novel associations as an important mechanism by which plants avoid or overcome the loss of mutualists, consistent with invasional meltdown.
Collapse
Affiliation(s)
- Ian A Dickie
- Landcare Research, Box 40, Lincoln 7640, New Zealand
| | | | | | | |
Collapse
|
33
|
Emer C, Fonseca CR. Araucaria Forest conservation: mechanisms providing resistance to invasion by exotic timber trees. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9801-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. MYCORRHIZA 2010; 20:217-63. [PMID: 20191371 DOI: 10.1007/s00572-009-0274-x] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 08/13/2009] [Indexed: 05/11/2023]
Abstract
The ectomycorrhizal (EcM) symbiosis involves a large number of plant and fungal taxa worldwide. During studies on EcM diversity, numerous misidentifications, and contradictory reports on EcM status have been published. This review aims to: (1) critically assess the current knowledge of the fungi involved in the EcM by integrating data from axenic synthesis trials, anatomical, molecular, and isotope studies; (2) group these taxa into monophyletic lineages based on molecular sequence data and published phylogenies; (3) investigate the trophic status of sister taxa to EcM lineages; (4) highlight other potentially EcM taxa that lack both information on EcM status and DNA sequence data; (5) recover the main distribution patterns of the EcM fungal lineages in the world. Based on critically examining original reports, EcM lifestyle is proven in 162 fungal genera that are supplemented by two genera based on isotopic evidence and 52 genera based on phylogenetic data. Additionally, 33 genera are highlighted as potentially EcM based on habitat, although their EcM records and DNA sequence data are lacking. Molecular phylogenetic and identification studies suggest that EcM symbiosis has arisen independently and persisted at least 66 times in fungi, in the Basidiomycota, Ascomycota, and Zygomycota. The orders Pezizales, Agaricales, Helotiales, Boletales, and Cantharellales include the largest number of EcM fungal lineages. Regular updates of the EcM lineages and genera therein can be found at the UNITE homepage http://unite.ut.ee/EcM_lineages . The vast majority of EcM fungi evolved from humus and wood saprotrophic ancestors without any obvious reversals. Herbarium records from 11 major biogeographic regions revealed three main patterns in distribution of EcM lineages: (1) Austral; (2) Panglobal; (3) Holarctic (with or without some reports from the Austral or tropical realms). The holarctic regions host the largest number of EcM lineages; none are restricted to a tropical distribution with Dipterocarpaceae and Caesalpiniaceae hosts. We caution that EcM-dominated habitats and hosts in South America, Southeast Asia, Africa, and Australia remain undersampled relative to the north temperate regions. In conclusion, EcM fungi are phylogenetically highly diverse, and molecular surveys particularly in tropical and south temperate habitats are likely to supplement to the present figures. Due to great risk of contamination, future reports on EcM status of previously unstudied taxa should integrate molecular identification tools with axenic synthesis experiments, detailed morphological descriptions, and/or stable isotope investigations. We believe that the introduced lineage concept facilitates design of biogeographical studies and improves our understanding about phylogenetic structure of EcM fungal communities.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences and Natural History Museum of Tartu University, 40 Lai Street, 51005, Tartu, Estonia.
| | | | | |
Collapse
|
35
|
Wolfe BE, Richard F, Cross HB, Pringle A. Distribution and abundance of the introduced ectomycorrhizal fungus Amanita phalloides in North America. THE NEW PHYTOLOGIST 2010; 185:803-816. [PMID: 20002314 DOI: 10.1111/j.1469-8137.2009.03097.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite a growing awareness of the global reach of ectomycorrhizal (EM) fungal introductions, little is known about the fate of introduced EM fungi in novel ranges. Using herbarium specimens, species distribution models, and field collections of sporocarps, root tips and extramatrical mycelia, we assessed the distribution and abundance of the European species Amanita phalloides in North America. There are two distinct ranges of the fungus, one along the West Coast (California to British Columbia) and the second on the East Coast (Maryland to Maine). As predicted by a species distribution model, the West Coast range is larger. Amanita phalloides is more frequently found in native forests on the West Coast than on the East Coast. At Point Reyes Peninsula in California, A. phalloides dominates community sporocarp biomass, and is frequent as root tips. In individual soil cores at Point Reyes, root tips of A. phalloides make up 50% of total root tip biomass. Hyphae of A. phalloides are frequent, but make up only 2% of total hyphal biomass. The contrasting patterns of the distribution and abundance of A. phalloides on the East and West Coasts of North America may influence both its future spread and its impacts.
Collapse
Affiliation(s)
- Benjamin E Wolfe
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
36
|
Vellinga EC, Wolfe BE, Pringle A. Global patterns of ectomycorrhizal introductions. THE NEW PHYTOLOGIST 2009; 181:960-973. [PMID: 19170899 DOI: 10.1111/j.1469-8137.2008.02728.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants have often been moved across the globe with intact root systems. These roots are likely to have housed symbiotic ectomycorrhizal (EM) fungi and the movement of plants may have facilitated the introduction of EM fungi.Here, we report data compiled from a newly created database of EM fungal introductions.We estimate the magnitude of EM fungal introductions around the world and examine patterns associated with these introductions. We also use the data to develop a framework for understanding the invasion biology of EM fungi.At least 200 species of basidiomycete and ascomycete EM fungi have been moved from native ranges to novel habitats. The majority of recorded introductions are associated with Pinus or Eucalyptus plantations in the southern hemisphere. Most introduced species appear to be constrained from spreading in novel habitats and associate only with their introduced hosts. Aspects of life history, including host range, may influence the ability of EM species to establish or invade. Human-caused introductions of EM fungi are a common and global phenomenon.The mechanisms controlling EM fungi in novel habitats and potential impacts of EM fungal introductions are almost entirely unknown.
Collapse
Affiliation(s)
- Else C Vellinga
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Benjamin E Wolfe
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Anne Pringle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
37
|
Smith ME, Douhan GW, Fremier AK, Rizzo DM. Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. THE NEW PHYTOLOGIST 2009; 182:295-299. [PMID: 19302178 DOI: 10.1111/j.1469-8137.2009.02801.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Matthew E Smith
- Farlow Herbarium and Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Plant Pathology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Alexander K Fremier
- Department of Fish and Wildlife, University of Idaho, Moscow, ID 83844-1141, USA
| | - David M Rizzo
- Department of Plant Pathology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
38
|
Roy M, Dubois MP, Proffit M, Vincenot L, Desmarais E, Selosse MA. Evidence from population genetics that the ectomycorrhizal basidiomycete Laccaria amethystina is an actual multihost symbiont. Mol Ecol 2008; 17:2825-38. [PMID: 18489549 DOI: 10.1111/j.1365-294x.2008.03790.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is commonly assumed that ectomycorrhizal (ECM) fungi associated with temperate forest tree roots are not host-specific. Because this assumption relies on species delineations based on fruitbodies morphology or ribosomal DNA sequences, host-specific, cryptic biological species cannot be ruled out. To demonstrate that Laccaria amethystina has true generalist abilities, we sampled 510 fruitbodies on three French sites situated 150-450 km away from each other. At each site, populations from monospecific stands (Abies alba, Castanea europea and Fagus sylvatica) or mixed stands (F. sylvatica + Quercus robur or Q. robur +Carpinus betulus) were sampled. Three different sets of markers were used for genotyping: (i) five microsatellite loci plus the ribosomal DNA intergenic spacer, (ii) the mitochondrial large ribosomal DNA subunit, and (iii) direct amplification of length polymorphism (DALP), a new method for fungi providing dominant markers. Evidence for allogamous populations (with possible inbreeding at local scale) and possibly for biparental mitochondrial inheritance was found. All markers congruently demonstrated that L. amethystina populations show little structure at this geographical scale, indicating high gene flow (as many as 50% of founding spores in all populations being of external origin). Our results also showed that host species contributed even less to population differentiation, and there was no evidence for cryptic biological species. This first in situ demonstration of a true multihost ability in an ECM species is discussed in terms of ecology and evolutionary biology.
Collapse
Affiliation(s)
- Melanie Roy
- Centre d'Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175), Département Biologie des Populations, Equipe Interactions Biotiques 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
39
|
Vizzini A, Zotti M, Mello A. Alien fungal species distribution: the study case of Favolaschia calocera. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9259-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Izumi H, Cairney JWG, Killham K, Moore E, Alexander IJ, Anderson IC. Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol Lett 2008; 282:196-204. [PMID: 18355286 DOI: 10.1111/j.1574-6968.2008.01122.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacterial communities associated with ectomycorrhizal and uncolonized roots of Pinus elliottii (slash pine) collected from a plantation in south-east Queensland, Australia, were investigated, using cultivation-dependent and -independent methods. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene PCR products obtained using a cultivation-independent approach revealed that bacterial communities associated with ectomycorrhizal root tips differed significantly from those associated with roots uncolonized by ectomycorrhizal fungi. DGGE analysis of cultivable bacterial communities revealed no significant difference between ectomycorrhizal and uncolonized roots. Neither analytical approach revealed significant differences between the bacterial communities associated with ectomycorrhizal roots colonized by a Suillus sp. or an Atheliaceae taxon. Cloned bacterial 16S rRNA genes revealed sequence types closely related with that of Burkholderia phenazinium, common in both ectomycorrhizal-colonized and -uncolonized roots, while sequence types most similar to the potentially phyopathogenic bacteria Burkholderia andropogonis and Pantoea ananatis were only detected in ectomycorrhizal roots. These results highlight the possibility of global movement of microorganisms, including putative pathogens, as a result of the introduction of exotic pine plantations.
Collapse
Affiliation(s)
- Hironari Izumi
- The Macaulay Institute, Craigiebuckler, Aberdeen, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. THE NEW PHYTOLOGIST 2008; 180:479-490. [PMID: 18631297 DOI: 10.1111/j.1469-8137.2008.02561.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ectomycorrhizal (ECM) symbiosis is a widespread plant nutrition strategy in Australia, especially in semiarid regions. This study aims to determine the diversity, community structure and host preference of ECM fungi in a Tasmanian wet sclerophyll forest. Ectomycorrhizal fungi were identified based on anatomotyping and rDNA internal transcribed spacer (ITS)-large subunit (LSU) sequence analysis using taxon-specific primers. Host tree roots were identified based on root morphology and length differences of the chloroplast trnL region. A total of 123 species of ECM fungi were recovered from root tips of Eucalyptus regnans (Myrtaceae), Pomaderris apetala (Rhamnaceae) and Nothofagus cunninghamii (Nothofagaceae). The frequency of two thirds of the most common ECM fungi from several lineages was significantly influenced by host species. The lineages of Cortinarius, Tomentella-Thelephora, Russula-Lactarius, Clavulina, Descolea and Laccaria prevailed in the total community and their species richness and relative abundance did not differ by host species. This study demonstrates that strongly host-preferring, though not directly specific, ECM fungi may dominate the below-ground community. Apart from the richness of Descolea, Tulasnella and Helotiales and the lack of Suillus-Rhizopogon and Amphinema-Tylospora, the ECM fungal diversity and phylogenetic community structure is similar to that in the Holarctic realm.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
- Natural History Museum, University of Tartu, 46 Vanemuise Street, EST-51005 Tartu, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
- Natural History Museum, University of Tartu, 46 Vanemuise Street, EST-51005 Tartu, Estonia
| | - Bryony M Horton
- Schools of Agricultural Science and Plant Science, University of Tasmania, Hobart, 7001, Tasmania, Australia
| | - Kessy Abarenkov
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
| | - Triin Suvi
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
| | - Irja Saar
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, EST-51005 Tartu, Estonia
| |
Collapse
|
42
|
Gonthier P, Nicolotti G, Linzer R, Guglielmo F, Garbelotto M. Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Mol Ecol 2007; 16:1389-400. [PMID: 17391264 DOI: 10.1111/j.1365-294x.2007.03250.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was recently reported that North American (NA) individuals of the forest pathogen Heterobasidion annosum were found in a single pine stand near Rome, in association with the movement of US troops during World War II. Here, we report on some aspects of the invasion biology of this pathogen in Italian coastal pinewoods, and on its interaction with native (EU) Heterobasidion populations. Spores of Heterobasidion were sampled using woody traps in pine stands along 280 km of coast around Rome. DNA of single-spore colonies was characterized by two sets of nuclear and one set of mitochondrial taxon-specific polymerase chain reaction primers. NA spores were found not only in a single site, but in many locations over a wide geographic area. Invasion occurred at an estimated rate of 1.3 km/year through invasion corridors provided by single trees, and not necessarily by sizable patches of forests. Within the 100-km long range of expansion, the NA taxon was dominant in all pure pine stands. Because abundance of the EU taxon is low and identical among stands within and outside the area invaded by NA individuals, we infer that the exotic population has invaded habitats mostly unoccupied by the native species. Discrepancy between a mitochondrial and a nuclear marker occurred in 3.8% of spores from one site, a mixed oak-pine forest where both taxa were equally represented. Combined phylogenetic analyses on nuclear and mitochondrial loci confirmed these isolates were recombinant. The finding of hybrids indicates that genetic interaction between NA and EU Heterobasidion taxa is occurring as a result of their current sympatry.
Collapse
Affiliation(s)
- P Gonthier
- Department of Exploitation, University of Torino, Via L. da Vinci 44, I-10095 Grugliasco, Italy
| | | | | | | | | |
Collapse
|
43
|
Tedersoo L, Suvi T, Beaver K, Kõljalg U. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). THE NEW PHYTOLOGIST 2007; 175:321-333. [PMID: 17587380 DOI: 10.1111/j.1469-8137.2007.02104.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ectomycorrhizal (ECM) fungi form highly diverse communities in temperate forests, but little is known about their community ecology in tropical ecosystems. Using anatomotyping and rDNA sequencing, ECM fungi were identified on root tips of the introduced Eucalyptus robusta and Pinus caribea as well as the endemic Vateriopsis seychellarum and indigenous Intsia bijuga in the Seychelles. Sequencing revealed 30 species of ECM fungi on root tips of V. seychellarum and I. bijuga, with three species overlapping. Eucalyptus robusta shared five of these taxa, whereas P. caribea hosted three unique species of ECM fungi that were likely cointroduced with containerized seedlings. The thelephoroid (including the anamorphic genus Riessiella), euagaric, boletoid and hymenochaetoid clades of basidiomycetes dominated the ECM fungal community of native trees. Two species of Annulatascaceae (Sordariales, Ascomycota) were identified and described as ECM symbionts of V. seychellarum. The low diversity of native ECM fungi is attributed to deforestation and long-term isolation of the Seychelles. Native ECM fungi associate with exotic eucalypts, whereas cointroduced ECM fungi persist in pine plantations for decades.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Botany and Ecology, University of Tartu. 40 Lai Street, 51005 Tartu, Estonia
| | - Triin Suvi
- Institute of Botany and Ecology, University of Tartu. 40 Lai Street, 51005 Tartu, Estonia
| | - Katy Beaver
- Plant Conservation Action Group. PO Box 392, Victoria, Mahé, the Seychelles
| | - Urmas Kõljalg
- Institute of Botany and Ecology, University of Tartu. 40 Lai Street, 51005 Tartu, Estonia
| |
Collapse
|
44
|
Abstract
Cases in which introduced species facilitate one another's establishment, spread, and impacts are increasingly noted, and several experimental studies have provided strong evidence of a population-level impact. However, a full 'invasional meltdown', in which interspecific facilitation leads to an accelerating increase in the number of introduced species and their impact, has yet to be conclusively demonstrated. The great majority of suggested instances of 'invasional meltdown' remain simply plausible scenarios of long-term consequences based on short-term observations of facilitatory interactions between individuals of two species. There is a particular dearth of proven instances in which two invasive species each enhance the impact and/or probability of establishment and spread of the other. By contrast, in many authenticated cases, at least one partner is aided. The metaphor of meltdown focused attention on facilitation in invasion and has probably helped inspire recent studies. As have other metaphors from invasion biology and other sciences, 'meltdown' has struck a responsive chord with writers for the lay public; some have stretched it well beyond its meaning as understood by invasion biologists. There is no evidence that this hyperbole has impeded scientific understanding or caused loss of scientific credibility.
Collapse
Affiliation(s)
- Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
45
|
Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A. The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 2006; 9:501-15. [PMID: 16643296 DOI: 10.1111/j.1461-0248.2006.00910.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species' introductions. Moreover, recent studies of mycorrhizal symbionts have led to an increased knowledge of the potential utility of fungal inoculations in agricultural, horticultural and ecological management. The intentional movement of mycorrhizal fungal species is growing, but the concomitant potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. We assess the degree to which introductions of mycorrhizal fungi may lead to unintended negative, and potentially costly, consequences. Our purpose is to make recommendations regarding appropriate management guidelines and highlight top priority research needs. Given the difficulty in discerning invasive species problems associated with mycorrhizal inoculations, we recommend the following. First, careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Second, invasive species problems are costly and often impossible to control by the time they are recognized. We recommend using local inoculum sources whenever possible. Third, non-sterile cultures of inoculum can result in the movement of saprobes and pathogens as well as mutualists. We recommend using material that has been produced through sterile culture when local inoculum is not available. Finally, life-history characteristics of inoculated fungi may provide general guidelines relative to the likelihood of establishment and spread. We recommend that, when using non-local fungi, managers choose fungal taxa that carry life-history traits that may minimize the likelihood of deleterious invasive species problems. Additional research is needed on the potential of mycorrhizal fungi to spread to non-target areas and cause ecological damage.
Collapse
Affiliation(s)
- Mark W Schwartz
- Department of Environmental Science & Policy, University of California, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pringle A, Vellinga EC. Last Chance to Know? Using Literature to Explore the Biogeography and Invasion Biology of the Death Cap Mushroom Amanita phalloides (Vaill. ex Fr. :Fr.) Link. Biol Invasions 2006. [DOI: 10.1007/s10530-005-3804-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|