1
|
Graham NR, Krehenwinkel H, Lim JY, Staniczenko P, Callaghan J, Andersen JC, Gruner DS, Gillespie RG. Ecological network structure in response to community assembly processes over evolutionary time. Mol Ecol 2023; 32:6489-6506. [PMID: 36738159 DOI: 10.1111/mec.16873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The dynamic structure of ecological communities results from interactions among taxa that change with shifts in species composition in space and time. However, our ability to study the interplay of ecological and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of measuring community structure over long temporal scales. Here, we made use of a geological chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem development, to sample 11 communities of arthropods and their associated plant taxa using semiquantitative DNA metabarcoding. We then examined how ecological communities changed with community age by calculating quantitative network statistics for bipartite networks of arthropod-plant associations. The average number of interactions per species (linkage density), ratio of plant to arthropod species (vulnerability) and uniformity of energy flow (interaction evenness) increased significantly in concert with community age. The index of specializationH 2 ' has a curvilinear relationship with community age. Our analyses suggest that younger communities are characterized by fewer but stronger interactions, while biotic associations become more even and diverse as communities mature. These shifts in structure became especially prominent on East Maui (~0.5 million years old) and older volcanos, after enough time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression of specialization during community assembly is probably impeded by the rapid infiltration of non-native species, with special risk to younger or more recently disturbed communities that are composed of fewer specialized relationships.
Collapse
Affiliation(s)
- Natalie R Graham
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Henrik Krehenwinkel
- Department of Biogeography, Faculty of Regional and Environmental Sciences, Trier University, Trier, Germany
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Phillip Staniczenko
- Department of Biology, Brooklyn College, City University of New York, New York, New York, USA
| | - Jackson Callaghan
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Rosemary G Gillespie
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
2
|
Goss EM, Kendig AE, Adhikari A, Lane B, Kortessis N, Holt RD, Clay K, Harmon PF, Flory SL. Disease in Invasive Plant Populations. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:97-117. [PMID: 32516034 DOI: 10.1146/annurev-phyto-010820-012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-native invasive plants can establish in natural areas, where they can be ecologically damaging and costly to manage. Like cultivated plants, invasive plants can experience a relatively disease-free period upon introduction and accumulate pathogens over time. Diseases of invasive plant populations are infrequently studied compared to diseases of agriculture, forestry, and even native plant populations. We evaluated similarities and differences in the processes that are likely to affect pathogen accumulation and disease in invasive plants compared to cultivated plants, which are the dominant focus of the field of plant pathology. Invasive plants experience more genetic, biotic, and abiotic variation across space and over time than cultivated plants, which is expected to stabilize the ecological and evolutionary dynamics of interactions with pathogens and possibly weaken the efficacy of infectious disease in their control. Although disease is expected to be context dependent, the widespread distribution of invasive plants makes them important pathogen reservoirs. Research on invasive plant diseases can both protect crops and help manage invasive plant populations.
Collapse
Affiliation(s)
- Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, USA;
| | - Amy E Kendig
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Ashish Adhikari
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Brett Lane
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Nicholas Kortessis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | - Philip F Harmon
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
3
|
Aldorfová A, Knobová P, Münzbergová Z. Plant–soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. OIKOS 2020. [DOI: 10.1111/oik.07186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Aldorfová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - Pavlína Knobová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
| | - Zuzana Münzbergová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
4
|
Context dependency, co-introductions, novel mutualisms, and host shifts shaped the ectomycorrhizal fungal communities of the alien tree Eucalyptus globulus. Sci Rep 2019; 9:7121. [PMID: 31073194 PMCID: PMC6509251 DOI: 10.1038/s41598-019-42550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The identity and relevance of the ectomycorrhizal (ECM) fungal partners of Eucalyptus globulus was investigated in NW Spain, to detect which symbionts mainly support its invasiveness. Root tips of E. globulus and of three common native plant species (Quercus robur, Pinus pinaster and Halimium lasianthum) were collected in eucalypt plantations, Q. robur forests, P. pinaster plantations and shrublands. Fungal taxonomical identity was ascertained by use of rDNA and direct sequencing. We studied diversity, composition and colonization rate of the ECM fungal communities of E. globulus to determine if fungal assemblages are host specific (i.e. similar in different habitats) or more dependent on the neighbourhood context. We also identified the type of associations formed (i.e. co-introductions, familiar or novel associations). Twenty-six ECM taxa were associated with E. globulus. Most of them engaged in novel associations with eucalypts, whereas only three fungal species were co-introduced Australian aliens. Eucalypt fungal richness, diversity and colonization rate differed between habitats, being higher in native oak forests, whereas in shrublands E. globulus showed the lowest colonization rate and diversity. The Australian fungus Descolea maculata dominated the eucalypt fungal assemblage and also spread to the native host plants, in all the habitats, posing the risk of further co-invasion.
Collapse
|
5
|
|
6
|
Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AOB PLANTS 2017; 8:plw076. [PMID: 27821517 PMCID: PMC5206332 DOI: 10.1093/aobpla/plw076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/26/2016] [Indexed: 05/28/2023]
Abstract
When non-native plants reach novel environments, they typically arrive with hidden microbiomes. In general, most of these hitchhikers remain on their co-evolved hosts, some contribute to the invasiveness of their hosts, and a small number can undergo host shifts and move onto native hosts. Invasion success can vary depending upon the different categories of fungal associates. When an invader tree relies on a fungal mutualism to survive in the new environment, there is a fundamentally lower likelihood of either the tree, or the fungus, establishing novel associations. In contrast, parasitic hitchhikers could merely use their host plants to move through the landscape and to become established on new hosts (host shifts). Evidence suggests the frequency of these host shifts is low and depends upon the fungal functional group. However, epidemics caused by invasive pathogens in native ecosystems have occurred globally. Thus, elucidating the potential for hidden non-native fungi to form novel host associations in a new environment is important for biodiversity conservation.
Collapse
Affiliation(s)
- Treena I Burgess
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Casparus J Crous
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
- Present address: Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Jarkko Hantula
- Natural Resources Institute Finland, Natural Resources and Bioproduction Unit, Vantaa 01300, Finland
| | - Michael J Wingfield
- Centre of Phytophthora Science and Management, School of Veterinary and Life Science, Murdoch University, Murdoch 6150, Australia
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
7
|
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F. Invasions Toolkit. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Burgess TI, Wingfield MJ. Pathogens on the Move: A 100-Year Global Experiment with Planted Eucalypts. Bioscience 2016. [DOI: 10.1093/biosci/biw146] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Heilmann-Clausen J, Maruyama PK, Bruun HH, Dimitrov D, Laessøe T, Frøslev TG, Dalsgaard B. Citizen science data reveal ecological, historical and evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi. THE NEW PHYTOLOGIST 2016; 212:1072-1082. [PMID: 27659274 DOI: 10.1111/nph.14194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 05/04/2023]
Abstract
Woody plants host diverse communities of associated organisms, including wood-inhabiting fungi. In this group, host effects on species richness and interaction network structure are not well understood, especially not at large geographical scales. We investigated ecological, historical and evolutionary determinants of fungal species richness and network modularity, that is, subcommunity structure, across woody hosts in Denmark, using a citizen science data set comprising > 80 000 records of > 1000 fungal species on 91 genera of woody plants. Fungal species richness was positively related to host size, wood pH, and the number of species in the host genus, with limited influence of host frequency and host history, that is, time since host establishment in the area. Modularity patterns were unaffected by host history, but largely reflected host phylogeny. Notably, fungal communities differed substantially between angiosperm and gymnosperm hosts. Host traits and evolutionary history appear to be more important than host frequency and recent history in structuring interactions between hosts and wood-inhabiting fungi. High wood acidity appears to act as a stress factor reducing fungal species richness, while large host size, providing increased niche diversity, enhances it. In some fungal groups that are known to interact with live host cells in the establishment phase, host selectivity is common, causing a modular community structure.
Collapse
Affiliation(s)
- Jacob Heilmann-Clausen
- Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Pietro K Maruyama
- Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), Cx. Postal 6109, Campinas, SP, CEP: 13083-862, Brazil
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Dimitar Dimitrov
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, Oslo, NO-0318, Norway
| | - Thomas Laessøe
- Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Tobias Guldberg Frøslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, DK-1350, Denmark
| | - Bo Dalsgaard
- Centre for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, DK-2100, Denmark
| |
Collapse
|
10
|
Ibanez S, Arène F, Lavergne S. How phylogeny shapes the taxonomic and functional structure of plant-insect networks. Oecologia 2016; 180:989-1000. [PMID: 26787076 DOI: 10.1007/s00442-016-3552-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 10/28/2015] [Indexed: 11/26/2022]
Abstract
Phylogenetically related species share a common evolutionary history and may therefore have similar traits. In terms of interaction networks, where traits are a major determinant, related species should therefore interact with other species which are also related. However, this prediction is challenged by current evidence that there is a weak, albeit significant, phylogenetic signal in species' taxonomic niche, i.e., the identity of interacting species. We studied mutualistic and antagonistic plant-insect interaction networks in species-rich alpine meadows and show that there is instead a very strong phylogenetic signal in species' functional niches-i.e., the mean functional traits of their interactors. This pattern emerges because related species tend to interact with species bearing certain traits that allow biotic interactions (pollination, herbivory) but not necessarily with species from all the same evolutionary lineages. Those traits define a set of potential interactors and show clear patterns of phylogenetic clustering on several portions of plants and insect phylogenies. Thus, this emerging pattern of low phylogenetic signal in taxonomic niches but high phylogenetic signal in functional niches may be driven by the interplay between functional trait convergence across plants' and insects' phylogenies and random sampling of the potential interactors.
Collapse
Affiliation(s)
- Sébastien Ibanez
- Laboratoire d'Écologie Alpine (LECA), UMR 5553, CNRS/Université de Savoie, 73000, Chambéry, France.
| | - Fabien Arène
- Laboratoire d'Écologie Alpine (LECA), UMR 5553, CNRS/Université Grenoble Alpes, 38000, Grenoble, France
| | - Sébastien Lavergne
- Laboratoire d'Écologie Alpine (LECA), UMR 5553, CNRS/Université Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
11
|
Vacher C, Tamaddoni-Nezhad A, Kamenova S, Peyrard N, Moalic Y, Sabbadin R, Schwaller L, Chiquet J, Smith MA, Vallance J, Fievet V, Jakuschkin B, Bohan DA. Learning Ecological Networks from Next-Generation Sequencing Data. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2015.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Traveset A, Richardson DM. Mutualistic Interactions and Biological Invasions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091857] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutualisms structure ecosystems and mediate their functioning. They also enhance invasions of many alien species. Invasions disrupt native mutualisms, often leading to population declines, reduced biodiversity, and altered ecosystem functioning. Focusing on three main types of mutualisms (pollination, seed dispersal, and plant-microbial symbioses) and drawing on examples from different ecosystems and from species- and community-level studies, we review the key mechanisms whereby such positive interactions mediate invasions and are in turn influenced by invasions. High interaction generalization is “the norm” in most systems, allowing alien species to infiltrate recipient communities. We identify traits that influence invasiveness (e.g., selfing capacity in plants, animal behavioral traits) or invasibility (e.g., partner choice in mycorrhizas/rhizobia) through mutualistic interactions. Mutualistic disruptions due to invasions are pervasive, and subsequent cascading effects are also widespread. Ecological networks provide a useful framework for predicting tipping points for community collapse in response to invasions and other synergistic drivers of global change.
Collapse
Affiliation(s)
- Anna Traveset
- Mediterranean Institute of Advanced Studies, E07190 Esporles, Mallorca, Balearic Islands, Spain
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Matieland 7602, South Africa
| |
Collapse
|
13
|
Constán-Nava S, Soliveres S, Torices R, Serra L, Bonet A. Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0780-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
SIS along a continuum (SISc) epidemiological modelling and control of diseases on directed trade networks. Math Biosci 2012; 236:44-52. [DOI: 10.1016/j.mbs.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
|
16
|
Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T, Jeger MJ, Xu X, Holdenrieder O, Pautasso M. Networks in plant epidemiology: from genes to landscapes, countries, and continents. PHYTOPATHOLOGY 2011; 101:392-403. [PMID: 21062110 DOI: 10.1094/phyto-07-10-0192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is increasing use of networks in ecology and epidemiology, but still relatively little application in phytopathology. Networks are sets of elements (nodes) connected in various ways by links (edges). Network analysis aims to understand system dynamics and outcomes in relation to network characteristics. Many existing natural, social, and technological networks have been shown to have small-world (local connectivity with short-cuts) and scale-free (presence of super-connected nodes) properties. In this review, we discuss how network concepts can be applied in plant pathology from the molecular to the landscape and global level. Wherever disease spread occurs not just because of passive/natural dispersion but also due to artificial movements, it makes sense to superimpose realistic models of the trade in plants on spatially explicit models of epidemic development. We provide an example of an emerging pathosystem (Phytophthora ramorum) where a theoretical network approach has proven particularly fruitful in analyzing the spread of disease in the UK plant trade. These studies can help in assessing the future threat posed by similar emerging pathogens. Networks have much potential in plant epidemiology and should become part of the standard curriculum.
Collapse
|
17
|
Ness JH, Rollinson EJ, Whitney KD. Phylogenetic distance can predict susceptibility to attack by natural enemies. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19119.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Pautasso M, Xu X, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L. Disease spread in small-size directed trade networks: the role of hierarchical categories. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2010.01884.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|