1
|
Moukarzel R, Waller LP, Jones EE, Ridgway HJ. Arbuscular mycorrhizal fungal symbiosis in New Zealand ecosystems: challenges and opportunities. Lett Appl Microbiol 2025; 78:ovaf070. [PMID: 40402470 DOI: 10.1093/lambio/ovaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that form a symbiotic and mutualistic relationship with most terrestrial plants, playing an important role in plant growth, nutrient acquisition, and ecosystem stability. This review synthesizes current knowledge on AMF colonization in plants within New Zealand ecosystems, including the challenges and opportunities of molecular identification techniques used in characterizing AMF communities in natural and managed systems. The ecosystem services provided by AMF, such as improved growth parameters, enhanced nutrition, and disease control, are discussed in detail, highlighting their significance in sustainable agriculture and natural ecosystems. Additionally, the role of AMF in invasion ecology was examined, revealing their dual potential to either facilitate or hinder invasive plant species. Despite significant advances in understanding AMF biology, future research is needed to explore the underlying mechanisms of AMF-plant interactions and to address the challenges caused by changing environmental conditions. This review focused on the importance of AMF in promoting ecosystem resilience and suggests avenues for future research to harness their full potential in agricultural and ecological contexts.
Collapse
Affiliation(s)
- Romy Moukarzel
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| | - Lauren P Waller
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| | - E Eirian Jones
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| | - Hayley J Ridgway
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, Canterbury 7647, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Christchurch 7608, New Zealand
| |
Collapse
|
2
|
Borda V, Burni M, Cofré N, Longo S, Mansur T, Ortega G, Urcelay C. Does the flavonoid quercetin influence the generalist-selective nature of mycorrhizal interactions in invasive and non-invasive native woody plants? MYCORRHIZA 2025; 35:25. [PMID: 40164744 DOI: 10.1007/s00572-025-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
It has been suggested that invasive plant species are more generalist than non-invasive species in their interactions with arbuscular mycorrhizal fungi (AMF), allowing them to associate with novel AMF communities. There is emerging evidence suggesting that the flavonoid quercetin may play a role in regulating these interactions as a signaling compound. In this study, we experimentally grew three invasive alien and three non-invasive native woody species with AMF communities collected from within (though foreign to invasives) and outside their current distribution ranges. After 96 days, we: (a) assessed mycorrhizal colonization rates; (b) evaluated the impact of these interactions on plant performance (growth and phosphorus nutrition); and (c) tested whether these responses were influenced by the addition of quercetin to the plant growth medium. Our findings reveal that the invasive species exhibited mycorrhizal colonization when grown with both novel AMF communities and benefited from them in terms of phosphorus (P) nutrition. In contrast, two of the three non- invasive native species showed mycorrhizal colonization and enhanced P nutrition only with AMF from their current distribution range, but not with novel AMF from outside their range, suggesting selective behavior in their mycorrhizal interactions. The addition of quercetin did not have a strong effect on mycorrhizal colonization in either invasive or non-invasive native species. However, quercetin promoted moderate increases in P nutrition in the two non-invasive native species when grown with the novel AMF communities. Overall, the results suggest that invasive species are more generalist in their AM symbiosis than two of the three non-invasive species, and that the addition of quercetin had a limited, moderate influence on their AM interactions.
Collapse
Affiliation(s)
- Valentina Borda
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, 5000, Córdoba, Argentina.
| | - Magali Burni
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Silvana Longo
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Tomás Mansur
- Escuela de Biología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriela Ortega
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Córdoba, Argentina
| | - Carlos Urcelay
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| |
Collapse
|
3
|
Morman KE, Buckley HL, Higgins CM, Tosi M, Dunfield KE, Day NJ. Simulated fire and plant-soil feedback effects on mycorrhizal fungi and invasive plants. iScience 2024; 27:111193. [PMID: 39555402 PMCID: PMC11564915 DOI: 10.1016/j.isci.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Climate change intensifies fires, raising questions about their impacts on plant invasions via changes in soil biota and plant-soil feedback (plants alter soil conditions, changing plant growth and vice-versa). We explored effects of plant-soil feedback and simulated fire (heat) on mutualistic arbuscular mycorrhizal (AM) fungal communities and invasive plant growth. Soils were collected from a dominant native grass (Chionochloa macra) and two invasive hawkweeds (Hieracium lepidulum, Pilosella officinarum) in a New Zealand grassland and then heated. In our experiment, both hawkweeds exhibited greater biomass in Pilosella soils, which also had the highest AM fungal richness. Heat had little effect on plant biomass or AM fungal community composition and richness. Hawkweeds altered AM fungal communities relative to the dominant native grass, and moderate soil heating increased Hieracium growth. Hieracium plants also grew better in Pilosella soils, suggesting the potential for soil-mediated invasional meltdown whereby one invasive species facilitates invasion by another.
Collapse
Affiliation(s)
- Kendall E. Morman
- School of Science, Auckland University of Technology, Auckland, New Zealand
- Ngāti Kuri, Kaitaia, New Zealand
| | - Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Colleen M. Higgins
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Kari E. Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Naven Narayanan, Shaw AK. Mutualisms impact species' range expansion speeds and spatial distributions. Ecology 2024; 105:e4171. [PMID: 37776264 DOI: 10.1002/ecy.4171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.
Collapse
Affiliation(s)
- Naven Narayanan
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
5
|
Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, et alDelavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTTF, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miscicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS. Native diversity buffers against severity of non-native tree invasions. Nature 2023; 621:773-781. [PMID: 37612513 PMCID: PMC10533391 DOI: 10.1038/s41586-023-06440-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Niamh M Robmann
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas Lauber
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Sara Kuebbing
- The Forest School at The Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Mathieu Decuyper
- Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brazil
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Martin Herold
- Wageningen University and Research, Wageningen, The Netherlands
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land, Malton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | - Nicolas Picard
- Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Irina Polo
- Jardín Botánico de Medellín, Medellin, Colombia
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile
- Depto. de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk Russian Federation, Krasnoyarsk, Russia
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, France
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Betafaculty, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Viseu, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
6
|
Policelli N, Hoeksema JD, Moyano J, Vilgalys R, Vivelo S, Bhatnagar JM. Global pine tree invasions are linked to invasive root symbionts. THE NEW PHYTOLOGIST 2023; 237:16-21. [PMID: 36221214 DOI: 10.1111/nph.18527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Nahuel Policelli
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jason D Hoeksema
- Department of Biology, The University of Mississippi, Oxford, MS, 38677, USA
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue, San Carlos de Bariloche, 8400, Argentina
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sasha Vivelo
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | |
Collapse
|
7
|
Co-invading ectomycorrhizal fungal succession in pine-invaded mountain grasslands. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang R, Wang Y, Guerin-Laguette A, Zhang P, Colinas C, Yu F. Factors influencing successful establishment of exotic Pinus radiata seedlings with co-introduced Lactarius deliciosus or local ectomycorrhizal fungal communities. Front Microbiol 2022; 13:973483. [DOI: 10.3389/fmicb.2022.973483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
An introduction of exotic or non-native trees may fail due to a lack of suitable fungal partners. We planted exotic Pinus radiata in Xifeng, Guizhou Southwest China. Strategies to introduce P. radiata seedlings either colonized with an ectomycorrhizal fungus (EcMF), Lactarius deliciosus, or expect them to form familiar/new associations with local EcMF in a new habitat were studied to know how P. radiata could be successfully established over a period of 2.5 years. Plant height and needle nutrient acquisition, the persistence of the co-introduced L. deliciosus, and fungal community composition in rhizosphere soil and root tips were analyzed. In addition, a greenhouse bioassay experiment of local soil to assess the differences in the EcMF community between exotic and native pine seedlings was also conducted. The current results demonstrated that P. radiata could establish in the Xifeng plantation with or without co-introduced L. deliciosus. The co-introduced L. deliciosus might be naturalized with P. radiata in the new area since it has been fruited for 2 years with high relative abundance in mycorrhizosphere soil. L. deliciosus pre-colonization significantly altered the mycorrhizosphere fungal composition and it had a positive correlation with nitrogen acquisition of P. radiata. Host identity had no effect on fungal composition since exotic P. radiata and native P. massoniana recruited similar local fungal communities in early establishment or in plantation. The cosmopolitan species Suillus placidus, with high relative abundance, formed a familiar association with P. radiata. The greenhouse bioassay experiment further showed that Suillus sp. contributed relatively higher total extracellular enzymes by forming ectomycorrhizas with P. radiata and the same type of ectomycorrhiza of P. radiata and P. massoniana showed different enzymatic functions. Our study indicated that exotic P. radiata could be a suitable tree capable to get established successfully in the Xifeng plantation either by interaction with the co-introduced L. deliciosus or with a local EcMF, but we should be cautious about large-scale planting of P. radiata. L. deliciosus persisted in plantation and more attention should be paid to local EcMF community changes induced by the introduced L. deliciosus.
Collapse
|
9
|
Cowan JA, Grady KC, Dijkstra P, Schwartz E, Gehring CA. Invasive and native grasses exert negative plant-soil feedbacks on the woody shrub Artemisia tridentata. Oecologia 2022; 199:1007-1019. [PMID: 35969273 DOI: 10.1007/s00442-022-05236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Displacement of diverse native plant communities by low-diversity invasive communities is a global problem. In the western United States, the displacement of sagebrush-dominated communities by cheatgrass has increased since the 1920s. Restoration outcomes are poor, potentially due to soil alteration by cheatgrass. We explored the poorly understood role of plant-soil feedbacks in the dominance of cheatgrass in a greenhouse study where uninvaded sagebrush soils were conditioned with either cheatgrass, a native bunchgrass or sagebrush. Sagebrush seedlings were grown in the soils that remained following the removal of conditioning plants. We expected cheatgrass to strongly suppress sagebrush due to a change in belowground microbial communities, conspecifics to have neutral effects and the native bunchgrass to have intermediate effects as it coevolved with sagebrush but belongs to a different functional group. We assessed the effects of conditioning on sagebrush growth, tissue nutrients, and carbon allocation. We also characterized the abundance, diversity and community composition of root microbial associates. Cheatgrass strongly suppressed sagebrush growth at high and low conditioning densities, the native bunchgrass showed suppression at high conditioning densities only and conspecific effects were neutral. Tissue nutrients, amount of root colonization by soil fungi or root microbial community composition were not associated with these plant-soil feedbacks. Although we did not identify the precise mechanism, our results provide key evidence that rapid soil alteration by cheatgrass results in negative plant-soil feedbacks on sagebrush growth. These feedbacks likely contribute to cheatgrass dominance and the poor success of sagebrush restoration.
Collapse
Affiliation(s)
- Jacob A Cowan
- School of Forestry, Northern Arizona University, Flagstaff, USA.
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, USA
| | - Paul Dijkstra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| | - Egbert Schwartz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| |
Collapse
|
10
|
Chen D, van Kleunen M. Invasional meltdown mediated by plant-soil feedbacks may depend on community diversity. THE NEW PHYTOLOGIST 2022; 235:1589-1598. [PMID: 35551668 DOI: 10.1111/nph.18218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
It has been suggested that establishment of one alien invader might promote further invasions. Such a so-called invasional meltdown could be mediated by differences in soil-legacy effects between alien and native plants. Whether such legacy effects might depend on the diversity of the invaded community has not been explored to date. Here, we conducted a two-phase plant-soil feedback experiment. In a soil-conditioning phase, we grew five alien and five native species as invaders in 21 communities of one, two or four species. In the subsequent test phase, we grew five alien and five native species on the conditioned soils. We found that growth of these test species was negatively affected by soils conditioned by both a community and an invader, and particularly if the previous invader was a conspecific (i.e. negative plant-soil feedback). Alien test species suffered less from soil-legacy effects of previous allospecific alien invaders than from the legacy effects of previous native invaders. However, this effect decreased when the soil had been co-conditioned by a multispecies community. Our findings suggest that plant-soil feedback-mediated invasional meltdown may depend on community diversity and therefore provide some evidence that diverse communities could increase resistance against subsequent alien invasions.
Collapse
Affiliation(s)
- Duo Chen
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
11
|
Ectomycorrhizal Assemblages of Invasive Quercus rubra L. and Non-Invasive Carya Nutt. Trees under Common Garden Conditions in Europe. FORESTS 2022. [DOI: 10.3390/f13050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Invasive tree species change biodiversity, nutrient cycles, and ecosystem services, and can turn native ecosystems into novel ecosystems determined by invaders. In the acclimatization and invasion of alien tree species, the crucial role is played by ectomycorrhizal (ECM) fungi. We tested ECM fungi associated with Quercus rubra and Carya trees that are alien to Europe. Quercus rubra is among the most invasive tree species in Europe, and the Carya species are not considered invasive. Both form ectomycorrhizal symbiosis, and in their native range in North America, coexist in oak-hickory forests. Six study stands were located in Kórnik Arboretum: three for Q. rubra and three for Carya trees. Ectomycorrhizal fungi were assessed by molecular identification of ECM roots. We identified 73 ECM fungal taxa of 23 ECM phylogenetic lineages. All identified ECM fungi were native to Europe. Similar richness but different composition of ECM taxa were found on Q. rubra and Carya roots. Phylogenetic lineages /tomentella-thelephora, /russula-lactarius, and /genea-humaria were most abundant on both Carya and Q. rubra roots. Lineages /tuber-helvella and /entoloma were abundant only on Carya, and lineages /pisolithus-scleroderma and /cortinarius were abundant only on Q. rubra roots. Analysis of similarities revealed a significant difference in ectomycorrhizal assemblages between invasive Q. rubra and non-invasive Carya. Highlights: (1) under common garden conditions, ECM taxa richness was similar on Q. rubra and Carya roots; (2) ECM taxa composition differed between invasive Q. rubra and non-invasive Carya; (3) high abundance of long-distance exploration type (lineages from Boletales) was on Q. rubra; and (4) high abundance of short-distance exploration type (e.g., /tuber-helvella) was on Carya.
Collapse
|
12
|
Guisande‐Collazo A, González L, Souza‐Alonso P. Origin makes a difference: Alternative responses of an AM-dependent plant to mycorrhizal inoculum from invaded and native soils under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:417-429. [PMID: 35220660 PMCID: PMC9303955 DOI: 10.1111/plb.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/21/2022] [Indexed: 05/30/2023]
Abstract
The presence of invasive alien plants (IAPs) alters the composition of soil arbuscular mycorrhizal (AM) fungal communities. Although fundamental for plant development, plant responses to AM from invaded soils have not been widely explored, especially under environmental stress. We compared plant growth, P accumulation, root colonization and the photosynthetic responses of the native AM-dependent Plantago lanceolata growing in contact with AM fungi from communities invaded by Acacia dealbata Link (AMinv) or non-invaded communities (AMnat) exposed to water and light restriction (shade). Under optimal growing conditions, plants in contact with AMnat produced higher leaf biomass and accumulated more P. However, plant responses to different AM inocula varied as the level of stress increased. Inoculation with AMinv promoted plant growth and root length under light restriction. When plants grew in contact with AMnat under drought, leaf P increased under severe water restriction, and leaf and root P increased under intermediate water irrigation. Growing in contact with the AMnat inoculum promoted root P content in both full light and light restriction. Colonization rates of P. lanceolata roots were comparable between treatments, and plants maintained photosynthetic activity within similar ranges, regardless of the level of stress applied. Our results suggest that origin of the inoculum (native soils versus invaded soils) did not affect the ability of AM species therein to establish effective mutualistic associations with P. lanceolata roots but did influence plant responses depending on the type and level of the abiotic stress.
Collapse
Affiliation(s)
- A. Guisande‐Collazo
- Plant Ecophysiology GroupDepartment of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
- CITACAAgri‐Food Research and Transfer ClusterCampus da AugaUniversity of VigoOurenseSpain
| | - L. González
- Plant Ecophysiology GroupDepartment of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
- CITACAAgri‐Food Research and Transfer ClusterCampus da AugaUniversity of VigoOurenseSpain
| | - P. Souza‐Alonso
- Department of Soil Science and Agricultural ChemistryUniversity of Santiago de CompostelaLugoSpain
- Department of Environmental ChemistryUniversidad Católica de Concepción UCSCConcepciónChile
| |
Collapse
|
13
|
Policelli N, Horton TR, Kitzberger T, Nuñez MA. Invasive ectomycorrhizal fungi can disperse in the absence of their known vectors. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Policelli N, Vietorisz C, Bhatnagar JM, Nuñez MA. Ectomycorrhizal Fungi Invasions in Southern South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Corcoz L, Păcurar F, Pop-Moldovan V, Vaida I, Stoian V, Vidican R. Mycorrhizal Patterns in the Roots of Dominant Festuca rubra in a High-Natural-Value Grassland. PLANTS (BASEL, SWITZERLAND) 2021; 11:112. [PMID: 35009115 PMCID: PMC8747109 DOI: 10.3390/plants11010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Grassland ecosystems occupy significant areas worldwide and represent a reservoir for biodiversity. These areas are characterized by oligotrophic conditions that stimulate mycorrhizal symbiotic partnerships to meet nutritional requirements. In this study, we selected Festuca rubra for its dominance in the studied mountain grassland, based on the fact that grasses more easily accept a symbiotic partner. Quantification of the entire symbiosis process, both the degree of colonization and the presence of a fungal structure, was performed using the root mycorrhizal pattern method. Analysis of data normality indicated colonization frequency as the best parameter for assessing the entire mycorrhizal mechanism, with five equal levels, each of 20%. Most of the root samples showed an intensity of colonization between 0 and 20% and a maximum of arbuscules of about 5%. The colonization degree had an average value of 35%, which indicated a medium permissiveness of roots for mycorrhizal partners. Based on frequency regression models, the intensity of colonization presented high fluctuations at 50% frequency, while the arbuscule development potential was set to a maximum of 5% in mycorrhized areas. Arbuscules were limited due to the unbalanced and unequal root development and their colonizing hyphal networks. The general regression model indicated that only 20% of intra-radicular hyphae have the potential to form arbuscules. The colonization patterns of dominant species in mountain grasslands represent a necessary step for improved understanding of the symbiont strategies that sustain the stability and persistence of these species.
Collapse
Affiliation(s)
- Larisa Corcoz
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Florin Păcurar
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Victoria Pop-Moldovan
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Ioana Vaida
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Roxana Vidican
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| |
Collapse
|
16
|
Pine invasion drives loss of soil fungal diversity. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Nuske SJ, Fajardo A, Nuñez MA, Pauchard A, Wardle DA, Nilsson MC, Kardol P, Smith JE, Peltzer DA, Moyano J, Gundale MJ. Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: evidence from a multi-country experiment on Pinus contorta invasion. THE NEW PHYTOLOGIST 2021; 232:303-317. [PMID: 33966267 DOI: 10.1111/nph.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The success of invasive plants is influenced by many interacting factors, but evaluating multiple possible mechanisms of invasion success and elucidating the relative importance of abiotic and biotic drivers is challenging, and therefore rarely achieved. We used live, sterile or inoculated soil from different soil origins (native range and introduced range plantation; and invaded plots spanning three different countries) in a fully factorial design to simultaneously examine the influence of soil origin and soil abiotic and biotic factors on the growth of invasive Pinus contorta. Our results displayed significant context dependency in that certain soil abiotic conditions in the introduced ranges (soil nitrogen, phosphorus or carbon content) influenced responses to inoculation treatments. Our findings do not support the enemy release hypothesis or the enhanced mutualism hypothesis, as biota from native and plantation ranges promoted growth similarly. Instead, our results support the missed mutualism hypothesis, as biota from invasive ranges were the least beneficial for seedling growth. Our study provides a novel perspective on how variation in soil abiotic factors can influence plant-soil feedbacks for an invasive tree across broad biogeographical contexts.
Collapse
Affiliation(s)
- Susan J Nuske
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, 8400, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - David A Wardle
- Asian School of the Environment, College of Science, Nanyong Technological University, Singapore, 639798, Singapore
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Jane E Smith
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Duane A Peltzer
- Manaaki Whenua Landcare Research, Lincoln, 7608, New Zealand
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, 8400, Argentina
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
18
|
Torres N, Herrera I, Fajardo L, Bustamante RO. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol Evol 2021; 21:172. [PMID: 34496752 PMCID: PMC8425116 DOI: 10.1186/s12862-021-01899-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background One of the ecological impacts of exotic plant invasions may be alteration of the soil microbial community, which may cause changes to the diversity, richness and function of these communities. In order to explore to what extent invasive plants affect the soil microbial community, we performed a meta-analysis based on 46 scientific articles to document the effect of invasive plants on species richness and diversity of bacteria and fungi. We conducted our study across a range of invaded ecosystems including native communities, and evaluated biomass, richness and diversity. We use a random effects model to determine the increase or decrease in the values of the response variables in the presence of invasive plants. Results The results indicated that the response variable that changed with the invasion of plants was the diversity of bacteria. Bacterial diversity in the soil increases with the presence of invasive plants, specifically herbaceous plants producing allelopathic substances growing in forest ecosystems of temperate zones. Conclusions We provide evidence that invasive plants affect the soil biota differentially; however, it is important to consider more variables such as the N and C cycles, since these processes are mediated by soil biota and litter, and chemical compounds released by plants influence them. Changes in bacterial diversity have consequences for the nutrient cycle, enzymatic activity, mineralization rates and soil carbon and nitrogen content. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01899-2.
Collapse
Affiliation(s)
- Nardi Torres
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), A.P. 20632, Caracas, 1020-A, Venezuela
| | - Ileana Herrera
- Universidad Espíritu Santo, Escuela de Ciencias Ambientales, Samborondón, 091650, Ecuador. .,Sección Botánica, Instituto Nacional de Biodiversidad (INABIO), 170501, Quito, Ecuador.
| | - Laurie Fajardo
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), A.P. 20632, Caracas, 1020-A, Venezuela.
| | - Ramiro O Bustamante
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Las Palmeras No 3425, Santiago, Chile
| |
Collapse
|
19
|
Perez L, Gundel P, García Parisi P, Moyano J, Fiorenza J, Omacini M, Nuñez M. Can seed-borne endophytes promote grass invasion by reducing host dependence on mycorrhizas? FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Benning JW, Moeller DA. Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant's range. THE NEW PHYTOLOGIST 2021; 229:2886-2900. [PMID: 33225448 DOI: 10.1111/nph.17102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 05/28/2023]
Abstract
Interactions between plants and soil fungi and bacteria are ubiquitous and have large effects on individual plant fitness. However, the degree to which spatial variation in soil microbial communities modulates plant species' distributions remains largely untested. Using the California native plant Clarkia xantiana ssp. xantiana we paired glasshouse and field reciprocal transplants of plant populations and soils to test whether plant-microbe interactions affect the plant's geographic range limit and whether there is local adaptation between plants and soil microbe communities. In the field and glasshouse, one of the two range interior inocula had a positive effect on plant fitness. In the field, this benefit was especially pronounced at the range edge and beyond, suggesting possible mutualist limitation. In the glasshouse, soil inocula from beyond-range tended to increase plant growth, suggesting microbial enemy release beyond the range margin. Amplicon sequencing revealed stark variation in microbial communities across the range boundary. Plants dispersing beyond their range limit are likely to encounter novel microbial communities. In C. x. xantiana, our results suggest that range expansion may be facilitated by fewer pathogens, but could also be hindered by a lack of mutualists. Both negative and positive plant-microbe interactions will likely affect contemporary range shifts.
Collapse
Affiliation(s)
- John W Benning
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
21
|
Aguirre F, Nouhra E, Urcelay C. Native and non-native mammals disperse exotic ectomycorrhizal fungi at long distances from pine plantations. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Řezáčová V, Řezáč M, Gryndlerová H, Wilson GWT, Michalová T. Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Sci Rep 2020; 10:20287. [PMID: 33219310 PMCID: PMC7679399 DOI: 10.1038/s41598-020-77030-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/04/2022] Open
Abstract
In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic.
| | - Milan Řezáč
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Hana Gryndlerová
- Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| |
Collapse
|
23
|
Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA. Climate Disruption of Plant-Microbe Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-090819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Jennifer A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Michelle E. Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida 33157, USA
| | - Lukas Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Y. Anny Chung
- Departments of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Stephanie N. Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael A. Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET/Universidad Nacional del Comahue, Bariloche 8400, Argentina
| |
Collapse
|
24
|
Gryzenhout M, Cason ED, Vermeulen M, Kloppers GA, Bailey B, Ghosh S. Fungal community structure variability between the root rhizosphere and endosphere in a granite catena system in Kruger National Park, South Africa. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2020. [DOI: 10.4102/koedoe.v62i2.1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
25
|
Milani T, Jobbágy EG, Nuñez MA, Ferrero ME, Baldi G, Teste FP. Stealth invasions on the rise: rapid long-distance establishment of exotic pines in mountain grasslands of Argentina. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P. Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. THE ISME JOURNAL 2020; 14:2336-2346. [PMID: 32499492 PMCID: PMC7608243 DOI: 10.1038/s41396-020-0692-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Alien plants represent a potential threat to environment and society. Understanding the process of alien plants naturalization is therefore of primary importance. In alien plants, successful establishment can be constrained by the absence of suitable fungal partners. Here, we used 42 independent datasets of ectomycorrhizal fungal (EcMF) communities associated with alien Pinaceae and Eucalyptus spp., as the most commonly introduced tree species worldwide, to explore the strategies these plant groups utilize to establish symbioses with EcMF in the areas of introduction. We have also determined the differences in composition of EcMF communities associated with alien ectomycorrhizal plants in different regions. While alien Pinaceae introduced to new regions rely upon association with co-introduced EcMF, alien Eucalyptus often form novel interactions with EcMF species native to the region where the plant was introduced. The region of origin primarily determines species composition of EcMF communities associated with alien Pinaceae in new areas, which may largely affect invasion potential of the alien plants. Our study shows that alien ectomycorrhizal plants largely differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in sites of introduction, which may potentially affect their invasive potential.
Collapse
Affiliation(s)
- Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Department of Biology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tomáš Antl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Jan Pergl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jana Albrechtová
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Petr Pyšek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic.
| |
Collapse
|
27
|
Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P. Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. THE NEW PHYTOLOGIST 2020; 227:1289-1293. [PMID: 32215923 DOI: 10.1111/nph.16557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Lukáš Vlk
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Institute of Ecology and Earth Science, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Tomáš Antl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Tomáš Větrovský
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Kessy Abarenkov
- Institute of Ecology and Earth Science, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Jan Pergl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jana Albrechtová
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Petr Pyšek
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| |
Collapse
|
28
|
Sapsford SJ, Brandt AJ, Davis KT, Peralta G, Dickie IA, Gibson RD, Green JL, Hulme PE, Nuñez MA, Orwin KH, Pauchard A, Wardle DA, Peltzer DA. Towards a framework for understanding the context dependence of impacts of non‐native tree species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13544] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah J. Sapsford
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | | | - Kimberley T. Davis
- Department of Ecosystem and Conservation Sciences University of Montana Missoula MT USA
| | - Guadalupe Peralta
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Manaaki Whenua Landcare Research Lincoln New Zealand
| | - Ian A. Dickie
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Robert D. Gibson
- Bio‐Protection Research Centre Lincoln University Lincoln New Zealand
| | - Joanna L. Green
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Philip E. Hulme
- Bio‐Protection Research Centre Lincoln University Lincoln New Zealand
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones INIBIOMA CONICET‐Universidad Nacional del Comahue Bariloche Argentina
| | - Kate H. Orwin
- Manaaki Whenua Landcare Research Lincoln New Zealand
| | - Anibal Pauchard
- Laboratorio de Invasiones Biológicas (LIB) Facultad de Ciencias Forestales Universidad de Concepción Concepción Chile
- Institute of Ecology and Biodiversity (IEB) Santiago Chile
| | - David A. Wardle
- Asian School of the Environment Nanyang Technological University Singapore
| | | |
Collapse
|
29
|
Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00446-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Vargas N, Gonçalves SC, Franco-Molano AE, Restrepo S, Pringle A. In Colombia the Eurasian fungus Amanita muscaria is expanding its range into native, tropical Quercus humboldtii forests. Mycologia 2019; 111:758-771. [PMID: 31408397 DOI: 10.1080/00275514.2019.1636608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To meet a global demand for timber, tree plantations were established in South America during the first half of the 20th century. Extensive plantings of non-native species now are found in Brazil, Chile, Argentina, and Uruguay. In Colombia, miscellaneous plantations were established in the 1950s, during a period of intensive local logging, when policies to limit deforestation in native Quercus humboldtii forests were established. One unforeseen consequence of planting non-native trees was the simultaneous introduction and subsequent persistence of ectomycorrhizal fungi. We sought to document the origins and spread of the introduced Amanita muscaria found in Colombian plantations of the Mexican species Pinus patula, North American species P. taeda, and Australian species Acacia melanoxylon and Eucalyptus globulus. In Colombia, Amanita muscaria is establishing a novel association with native Q. humboldtii and has spread to local Q. humboldtii forests. According to a Bayesian phylogeny and haplotype analysis based on the nuclear rDNA internal transcribed spacer region ITS1-5.8-ITS2 (ITS barcode), A. muscaria individuals found in four exotic plant species, and those colonizing Q. humboldtii roots, have a Eurasian origin and belong to two Eurasian haplotypes. This is the first time the spread of an introduced mutualist fungus into native Colombian Q. humboldtii forests is reported. To arrest its spread, we suggest the use of local inocula made up of native fungi, instead of inocula of introduced fungi.
Collapse
Affiliation(s)
- Natalia Vargas
- Laboratory of Mycology and Plant Pathology, Universidad de Los Andes , Bogotá , Colombia
| | - Susana C Gonçalves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra , 3000-456 Coimbra, Portugal
| | | | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology, Universidad de Los Andes , Bogotá , Colombia
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison , Madison , Wisconsin 53706.,Department of Bacteriology, University of Wisconsin-Madison , Madison , Wisconsin 53706
| |
Collapse
|
31
|
Li J, Oduor AMO, Yu F, Dong M. A native parasitic plant and soil microorganisms facilitate a native plant co-occurrence with an invasive plant. Ecol Evol 2019; 9:8652-8663. [PMID: 31410269 PMCID: PMC6686308 DOI: 10.1002/ece3.5407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co-occurring native plants. Here, we used an invasive plant Mikania micrantha, a co-occurring native plant Coix lacryma-jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co-occurring native plant. In a factorial setup, M. micrantha and C. lacryma-jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co-occurring native plant C. lacryma-jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.
Collapse
Affiliation(s)
- Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Ayub M. O. Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
- Department of Applied and Technical BiologyTechnical University of KenyaNairobiKenya
| | - Feihai Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
32
|
DeBellis T, Kembel SW, Lessard JP. Shared mycorrhizae but distinct communities of other root-associated microbes on co-occurring native and invasive maples. PeerJ 2019; 7:e7295. [PMID: 31392089 PMCID: PMC6677121 DOI: 10.7717/peerj.7295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Biological invasions are major drivers of environmental change that can significantly alter ecosystem function and diversity. In plants, soil microbes play an important role in plant establishment and growth; however, relatively little is known about the role they might play in biological invasions. A first step to assess whether root microbes may be playing a role in the invasion process is to find out if invasive plants host different microbes than neighbouring native plant species. METHODS In this study we investigated differences in root associated microbes of native sugar maple (Acer saccharum Marsh.) and exotic Norway maple (A. platanoides L.) collected from a forested reserve in eastern Canada. We used microscopy to examine root fungi and high-throughput sequencing to characterize the bacterial, fungal and arbuscular mycorrhizal communities of both maple species over one growing season. RESULTS We found differences in root associated bacterial and fungal communities between host species. Norway maple had a higher bacterial and fungal OTU (operational taxonomic units) richness compared to sugar maple, and the indicator species analysis revealed that nine fungal OTUs and three bacterial OTUs had a significant preference for sugar maple. The dominant bacterial phyla found on the roots of both maple species were Actinobacteria and Proteobacteria. The most common fungal orders associated with the Norway maple roots (in descending order) were Helotiales, Agaricales, Pleosporales, Hypocreales, Trechisporales while the Agaricales, Pleosporales, Helotiales, Capnodiales and Hypocreales were the dominant orders present in the sugar maple roots. Dark septate fungi colonization levels were higher in the sugar maple, but no differences in arbuscular mycorrhizal fungal communities and colonization rates were detected between maple species. DISCUSSION Our findings show that two congeneric plant species grown in close proximity can harbor distinct root microbial communities. These findings provide further support for the importance of plant species in structuring root associated microbe communities. The high colonization levels observed in Norway maple demonstrates its compatibility with arbuscular mycorrhizal fungi in the introduced range. Plant-associated microbial communities can affect host fitness and function in many ways; therefore, the observed differences suggest a possibility that biotic interactions can influence the dynamics between native and invasive species.
Collapse
Affiliation(s)
- Tonia DeBellis
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Dawson College, Montreal, Quebec, Canada
| | - Steven W. Kembel
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
33
|
Benucci GMN, Bonito V, Bonito G. Fungal, Bacterial, and Archaeal Diversity in Soils Beneath Native and Introduced Plants in Fiji, South Pacific. MICROBIAL ECOLOGY 2019; 78:136-146. [PMID: 30288545 DOI: 10.1007/s00248-018-1266-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The Fiji Islands is an archipelago of more than 330 islands located in the tropics of the South Pacific Ocean. Microbial diversity and biogeography in this region is still not understood. Here, we present the first molecular characterization of fungal, bacterial, and archaeal communities in soils from different habitats within the largest Fijian island, Viti Levu. Soil samples were collected from under native vegetation in maritime-, forest-, stream-, grassland-, and casuarina-dominated habitats, as well as from under the introduced agricultural crops sugarcane, cassava, pine, and mahogany. Soil microbial diversity was analyzed through MiSeq amplicon sequencing of 16S (for prokaryotes), ITS, LSU ribosomal DNA (for fungi). Prokaryotic communities were dominated by Proteobacteria (~ 25%), Acidobacteria (~ 19%), and Actinobacteria (~ 17%), and there were no indicator species associated with particular habitats. ITS and LSU were congruent in β-diversity patterns of fungi, and fungal communities were dominated by Ascomycota (~ 57-64%), followed by Basidiomycota (~ 20-23%) and Mucoromycota (~ 10%) according to ITS, or Chytridiomycota (~ 9%) according to LSU. Indicator species analysis of fungi found statistical associations of Cenococcum, Wilcoxina, and Rhizopogon to Pinus caribaea. We hypothesize these obligate biotrophic fungi were co-introduced with their host plant. Entoloma was statistically associated with grassland soils, and Fusarium and Lecythophora with soils under cassava. Observed richness varied from 65 (casuarina) to 404 OTUs (cassava) for fungi according to ITS region, and from 1268 (pine) to 2931 OTUs (cassava) for bacteria and archaea. A major finding of this research is that nearly 25% of the fungal OTUs are poorly classified, indicative of novel biodiversity in this region. This preliminary survey provides important baseline data on fungal, bacterial, and archaeal diversity and biogeography in the Fiji Islands.
Collapse
Affiliation(s)
- Gian Maria Niccolò Benucci
- Department of Plants, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Gregory Bonito
- Department of Plants, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Context dependency, co-introductions, novel mutualisms, and host shifts shaped the ectomycorrhizal fungal communities of the alien tree Eucalyptus globulus. Sci Rep 2019; 9:7121. [PMID: 31073194 PMCID: PMC6509251 DOI: 10.1038/s41598-019-42550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The identity and relevance of the ectomycorrhizal (ECM) fungal partners of Eucalyptus globulus was investigated in NW Spain, to detect which symbionts mainly support its invasiveness. Root tips of E. globulus and of three common native plant species (Quercus robur, Pinus pinaster and Halimium lasianthum) were collected in eucalypt plantations, Q. robur forests, P. pinaster plantations and shrublands. Fungal taxonomical identity was ascertained by use of rDNA and direct sequencing. We studied diversity, composition and colonization rate of the ECM fungal communities of E. globulus to determine if fungal assemblages are host specific (i.e. similar in different habitats) or more dependent on the neighbourhood context. We also identified the type of associations formed (i.e. co-introductions, familiar or novel associations). Twenty-six ECM taxa were associated with E. globulus. Most of them engaged in novel associations with eucalypts, whereas only three fungal species were co-introduced Australian aliens. Eucalypt fungal richness, diversity and colonization rate differed between habitats, being higher in native oak forests, whereas in shrublands E. globulus showed the lowest colonization rate and diversity. The Australian fungus Descolea maculata dominated the eucalypt fungal assemblage and also spread to the native host plants, in all the habitats, posing the risk of further co-invasion.
Collapse
|
35
|
Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. THE NEW PHYTOLOGIST 2019; 222:714-725. [PMID: 30586169 DOI: 10.1111/nph.15660] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
Belowground biota can deeply influence plant invasion. The presence of appropriate soil mutualists can act as a driver to enable plants to colonize new ranges. We reviewed the species of ectomycorrhizal fungi (EMF) that facilitate pine establishment in both native and non-native ranges, and that are associated with their invasion into nonforest settings. We found that one particular group of EMF, suilloid fungi, uniquely drive pine invasion in the absence of other EMF. Although the association with other EMF is variable, suilloid EMF are always associated with invasive pines, particularly at early invasion, when invasive trees are most vulnerable. We identified five main ecological traits of suilloid fungi that may explain their key role at pine invasions: their long-distance dispersal capacity, the establishment of positive biotic interactions with mammals, their capacity to generate a resistant spore bank, their rapid colonization of roots and their long-distance exploration type. These results suggest that the identity of mycorrhizal fungi and their ecological interactions, rather than simply the presence of compatible fungi, are key to the understanding of plant invasion processes and their success or failure. Particularly for pines, their specific association with suilloid fungi determines their invasion success in previously uninvaded ecosystems.
Collapse
Affiliation(s)
- Nahuel Policelli
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue (UNCo), Avenida de los Pioneros 2350, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Thomas D Bruns
- Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Rytas Vilgalys
- Biology Department, Duke University, 130 Science Drive, Durham, NC, 27708-0338, USA
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue (UNCo), Avenida de los Pioneros 2350, San Carlos de Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
36
|
Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations. FORESTS 2019. [DOI: 10.3390/f10030263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exotic non-native Pinus species have been widely planted or become naturalized in many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome barriers to establishment, yet the degree to which host specificity and edaphic preferences influence ECM community composition remains poorly understood. In this study, we used high-throughput sequencing coupled with soil analyses to investigate the effect of host plant identity, spatial distance and edaphic factors on ECM community composition in young (30-year-old) native (Pinus massoniana Lamb.) and exotic (Pinus elliottii Engelm.) pine plantations in China. The ECM fungal communities comprised 43 species with the majority belonging to the Thelephoraceae and Russulaceae. Most species were found associated with both host trees while certain native ECM taxa (Suillus) showed host specificity to the native P. massoniana. ECM fungi that are known to occur exclusively with Pinus (e.g., Rhizopogon) were uncommon. We found no significant effect of host identity on ECM communities, i.e., phylogenetically related pines shared similar ECM fungal communities. Instead, ECM fungal community composition was strongly influenced by site-specific abiotic factors and dispersal. These findings reinforce the idea that taxonomic relatedness might be a factor promoting ECM colonization in exotic pines but that shifts in ECM communities may also be context-dependent.
Collapse
|
37
|
Wang CJ, Li QF, Wan JZ. Potential invasive plant expansion in global ecoregions under climate change. PeerJ 2019; 7:e6479. [PMID: 30863672 PMCID: PMC6407507 DOI: 10.7717/peerj.6479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/20/2019] [Indexed: 12/27/2022] Open
Abstract
Climate change is increasing the risk of invasive plant expansion worldwide. However, few studies have specified the relationship between invasive plant expansion and ecoregions at the global scale under climate change. To address this gap, we provide risk maps highlighting the response of invasive plant species (IPS), with a focus on terrestrial and freshwater ecoregions to climate change, and further explore the climatic features of ecosystems with a high potential for invasive plant expansion under climate change. We use species distribution modelling to predict the suitable habitats of IPS with records at the global scale. Hotspots with a potential risk of IPS (such as aquatic plants, trees, and herbs) expanding in global ecoregions were distributed in Northern Europe, the UK, South America, North America, southwest China, and New Zealand. Temperature changes were related to the potential of IPS expansion in global ecoregions under climate change. Coastal and high latitude ecoregions, such as temperate forests, alpine vegetation, and coastal rivers, were severely infiltrated by IPS under climate change. Monitoring strategies should be defined for climate change for IPS, particularly for aquatic plants, trees, and herbs in the biomes of regions with coastal or high latitudes. The role of climate change on the potential for IPS expansion should be taken into consideration for biological conservation and risk evaluation of IPS at ecoregional scales.
Collapse
Affiliation(s)
- Chun-Jing Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Qiang-Feng Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ji-Zhong Wan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
38
|
Urcelay C, Longo S, Geml J, Tecco PA. Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees? MYCORRHIZA 2019; 29:39-49. [PMID: 30443805 DOI: 10.1007/s00572-018-0874-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
It is generally assumed that recruitment and expansion of alien species along elevation gradients are constrained by climate. But, if plants are not fully constrained by climate, their expansion could be facilitated or hindered by other factors such as biotic interactions. Here, we assessed the composition of arbuscular mycorrhizal fungi (AMF) in soils along an elevation gradient (i.e. 900 m, 1600 m, 2200 m and 2700 m a.s.l.) through a fungal DNA meta-barcoding approach. In addition, we studied in the greenhouse the effects of AMF on growth and phosphorous (P) nutrition of seedlings of the alien trees Gleditsia triacanthos, Ligustrum lucidum and Pyracantha angustifolia cultivated in soils from those elevations, spanning the elevation at which they already form monospecific stands (below 1450 m a.s.l.) and higher elevations, above their current range of distribution in montane ecosystems of Central Argentina. For comparison, we also included in the experiment the dominant native tree Lithraea molleoides that historically occurs below 1300 m a.s.l. Arbuscular mycorrhizal fungal community composition showed strong community turnover with increasing elevation. The effects of these AMF communities on plant growth and nutrition differed among native and alien trees. While P nutrition in alien species' seedlings was generally enhanced by AMF along the whole gradient, the native species benefited only from AMF that occur in soils from the elevation corresponding to its current altitudinal range of distribution. These results suggest that AMF might foster upper range expansion of these invasive trees over non-invaded higher elevations.
Collapse
Affiliation(s)
- Carlos Urcelay
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Casilla de Correo 495, X5000, Córdoba, Argentina.
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Silvana Longo
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Casilla de Correo 495, X5000, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - József Geml
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Paula A Tecco
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Casilla de Correo 495, X5000, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
39
|
Latitudinal Distribution of Mycorrhizal Types in Native and Alien Trees in Montane Ecosystems from Southern South America. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Awaydul A, Zhu W, Yuan Y, Xiao J, Hu H, Chen X, Koide RT, Cheng L. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. MYCORRHIZA 2019; 29:29-38. [PMID: 30421153 DOI: 10.1007/s00572-018-0873-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Invasive species often reduce ecosystem services and lead to a serious threat to native biodiversity. Roots of invasive plants are often linked to roots of native plants by common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi, but whether and how CMNs mediate interactions between invasive and native plant species remains largely uninvestigated. We conducted two microcosm experiments, one in which we amended the soil with mineral N and another in which we amended the soil with mineral P. In each experiment, we grew a pair of test plants consisting of Kummerowia striata (native to our research site) and Solidago canadensis (an invasive species). CMNs were established between the plants, and these were either left intact or severed. Intact CMNs increased growth and nutrient acquisition by S. canadensis while they decreased nutrient acquisition by K. striata in comparison with severed CMNs. 15N and P analyses indicated that compared to severed CMNs, intact CMNs preferentially transferred mineral nutrients to S. canadensis. CMNs produced by different species of AM fungi had slightly different effects on the interaction between these two plant species. These results highlight the role of CMNs in the understanding of interactions between the invasive species S. canadensis and its native neighbor.
Collapse
Affiliation(s)
- Awagul Awaydul
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wanying Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongge Yuan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Jing Xiao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Lei Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Pither J, Pickles BJ, Simard SW, Ordonez A, Williams JW. Below-ground biotic interactions moderated the postglacial range dynamics of trees. THE NEW PHYTOLOGIST 2018; 220:1148-1160. [PMID: 29770964 DOI: 10.1111/nph.15203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/03/2018] [Indexed: 05/05/2023]
Abstract
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing.
Collapse
Affiliation(s)
- Jason Pither
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 6AS, UK
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Alejandro Ordonez
- Department of Bioscience - Section for Ecoinformatics and Biodiversity, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
- Queen's University Belfast - School of Biological Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - John W Williams
- Department of Geography and Center for Climatic Research, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
42
|
Arancibia NB, Solans M, Mestre MC, Chaia EE. Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina. Symbiosis 2018. [DOI: 10.1007/s13199-018-0538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Rudawska M, Leski T, Wilgan R, Karliński L, Kujawska M, Janowski D. Mycorrhizal associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. MYCORRHIZA 2018; 28:549-560. [PMID: 29934745 PMCID: PMC6182374 DOI: 10.1007/s00572-018-0846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
We studied mycorrhizal associations of North American Carya laciniosa and Carya cordiformis trees, successfully acclimated to local habitat conditions of the historic Kórnik Arboretum in Poland, in order to better understand mycorrhizal host range extensions in new environments. The root systems of Carya seedlings (1-3 years old), regenerated under a canopy of mature hickory trees, were analyzed using microscopic, morphological, and molecular techniques. Our results, for the first time, indicate that C. laciniosa and C. cordiformis have both arbuscular and ectomycorrhizal associations. In the cleared and stained roots of both Carya species, typical structures of arbuscular mycorrhizae (vesicles, arbuscules, hyphal coils, and intercellular nonseptate hyphae) were detected. On the basis of ITS rDNA sequencing, 40 ectomycorrhizal fungal taxa were revealed, with 25 on C. laciniosa and 19 on C. cordiformis. Only four fungal species (Cenococcum geophilum sensu lato, Russula recondita, Xerocomellus cisalpinus, Humaria hemisphaerica) were shared by both Carya species. The high number of infrequent fungal taxa found, as well as the calculated richness estimator, indicates that the real ectomycorrhizal community of C. laciniosa and C. cordiformis is probably richer. The ability of the exotic Carya species to form arbuscular and ectomycorrhizal linkages with native fungi could be a factor in the successful establishment of these tree species under the conditions of Kórnik Arboretum.
Collapse
Affiliation(s)
- Maria Rudawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Tomasz Leski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Robin Wilgan
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Leszek Karliński
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Marta Kujawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Daniel Janowski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
44
|
Nuñez MA, Paritsis J. How are monospecific stands of invasive trees formed? Spatio-temporal evidence from Douglas fir invasions. AOB PLANTS 2018; 10:ply041. [PMID: 30034679 PMCID: PMC6049007 DOI: 10.1093/aobpla/ply041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Invasive plant species can produce many impacts on native communities. Impacts can be especially important when the non-natives reach high densities, producing monospecific stands where little grows besides the non-native species. We propose three basic pathways by which monospecific stands of invasive tree species are formed: (i) gradually from the propagule source, (ii) via synchronous establishment and (iii) following several pulses of synchronous establishment. Different patterns can produce different impacts through time and may require different management techniques. This study aims to further our understanding of how monotypic stands of invasive species arise. We documented how monospecific stands are formed during invasion processes by studying patterns of spatio-temporal establishment of several monospecific stands of Douglas fir in Patagonia. We obtained data on tree density, year of establishment, size, distance to the seed source and other related measurements for this tree species along transects from the original seed source (80-year-old plantations) to the edge of the monospecific stand. We found that these monospecific stands arose in a more complex way than expected. While individuals established on average simultaneously over all distances from the seed source, there was substantial variation in time of establishment at all distances. Also, tree density was higher near the source than far from it. Different factors can account for the observed pattern of tree establishment, including seed dispersal, mycorrhizal facilitation and herbivory. Our results elucidate the complexities of spatio-temporal pattern of formation in monospecific stands. This understanding can improve management strategies and techniques for this invasion and other plant invasions in different regions.
Collapse
Affiliation(s)
- Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET–Universidad Nacional del Comahue, Bariloche, Argentina
| | - Juan Paritsis
- Laboratorio Ecotono, INIBIOMA, CONICET–Universidad Nacional del Comahue, Quintral, Bariloche, Argentina
| |
Collapse
|
45
|
Marcora PI, Ferreras AE, Zeballos SR, Funes G, Longo S, Urcelay C, Tecco PA. Context-dependent effects of fire and browsing on woody alien invasion in mountain ecosystems. Oecologia 2018; 188:479-490. [PMID: 30062564 DOI: 10.1007/s00442-018-4227-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
Anthropogenic activities have increased disturbances and alien woody invasion in mountain ecosystems worldwide. Whether disturbances promote or counteract upward movement of woody aliens is poorly understood. We assessed if the most successful woody invader of low mountains of central Argentina (Gleditsia triacanthos) might expand its elevational distribution in response to the principal disturbances of these ecosystems (fire and livestock browsing) across increasing climatic severity. We assessed seedling emergence, growth and mycorrhizal colonization on sown plots distributed in burned and unburned sites, with and without browsing at the lower and upper elevation belts (i.e. 1000 and 2400 m a.s.l.). Additionally, several abiotic variables were measured to relate their influence on the seedling establishment. Disturbances reduced seedling emergence at both elevations. Burned conditions increased seedling growth and arbuscular colonization only in the lower belt. Seedling success (total seedling biomass per plot) was not modified by disturbances at the upper elevation, but was reduced by browsing and enhanced by fire in the lower elevation. The overall reduction in seedling emergence and growth in the upper elevation despite the higher soil nutrient content places climate as the strongest regulator of G. triacanthos seedling establishment. Accordingly, climate rather than disturbances would be the main limiting factor of upward expansion of this woody alien. Our findings differ from general patterns described for mountain invasion by herbaceous species, highlighting that mountain invasibility is highly growth-form dependent, and that upper range expansion by woody aliens interacting with multiple disturbances should be assessed worldwide.
Collapse
Affiliation(s)
- P I Marcora
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
| | - A E Ferreras
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina.
| | - S R Zeballos
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
| | - G Funes
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000HVA, Córdoba, Argentina
| | - S Longo
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000HVA, Córdoba, Argentina
| | - C Urcelay
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000HVA, Córdoba, Argentina
| | - P A Tecco
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Av. Vélez Sársfield, 1611, 5000, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, X5000HVA, Córdoba, Argentina
| |
Collapse
|
46
|
What happens to the mycorrhizal communities of native and exotic seedlings when Pseudotsuga menziesii invades Nothofagaceae forests in Patagonia, Argentina? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Effects of Arbuscular Mycorrhizal Fungi on the Vegetative Vigor of Ailanthus altissima (Mill.) Swingle Seedlings under Sustained Pot Limitation. FORESTS 2018. [DOI: 10.3390/f9070409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Secondary Invasions Hinder the Recovery of Native Communities after the Removal of Nonnative Pines Along a Precipitation Gradient in Patagonia. FORESTS 2018. [DOI: 10.3390/f9070394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
terHorst CP, Wirth C, Lau JA. Genetic variation in mutualistic and antagonistic interactions in an invasive legume. Oecologia 2018; 188:159-171. [DOI: 10.1007/s00442-018-4211-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022]
|
50
|
Brewer JS, Souza FM, Callaway RM, Durigan G. Impact of invasive slash pine (Pinus elliottii) on groundcover vegetation at home and abroad. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|