1
|
Li Z, Tian SY. A new alkaline pectin lyase with novel thermal and pH stability from Bacilus velezensis. Protein Expr Purif 2024; 224:106564. [PMID: 39111349 DOI: 10.1016/j.pep.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Pectin lyases are important in various industries, including tobacco leaves processing. In this paper, a novel pectin lyase Pel04 from Bacillus velezensis was characterized. Pel04 molecular weight (Mw) and isoelectric point (pI) of the protein sequence after removing the signal peptide are 43.0 kDa. The optimal temperature and pH of Pel04 is 50 °C and 9.0, respectively. Pel04 was stable in the range of 30-50 °C, and pH 9.5-11. Ca2+ can significantly stimulate the enzyme activity, while Cu2+, Co2+, Fe3+, and Mn2+ have inhibitory effects on Pel04. By Pel04 treatment, the overall content of acids, alcohols, esters and other aromas in tobacco leaves increased, while the contents of phenolic and heterocyclic substances decreased. Pel04 has important potential for industrial application particularly in improving quality of tobacco leaves.
Collapse
Affiliation(s)
- Ze Li
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| | - Su-Yan Tian
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| |
Collapse
|
2
|
Liu S, Qin Y, Wang Q, Zhang J, Zhou J, He B, Liang X, Xian L, Wu J. A novel pectate lyase with high specific activity from Bacillus sp. B58-2: Gene cloning, heterologous expression and use in ramie degumming. Enzyme Microb Technol 2024; 175:110395. [PMID: 38237242 DOI: 10.1016/j.enzmictec.2024.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
Pectinase plays a crucial role in ramie degumming. A gene encoding a putative pectate lyase from Bacillus sp. strain B58-2 was cloned and heterologously expressed in Escherichia coli. The amplified gene BvelPL1 encoded a mature protein of 400 amino acids. BvelPL1 shared the highest amino acid sequence identity (78.75%) with the enzymatically characterized pectate lyase Pel from Bacillus subtilis strain RCK (GenBank: AFH66771.1). The purified recombinant enzyme rBvelPL1-Ec exhibited a maximum specific activity of 2433.26 U/mg at pH 8.5 and 50 °C towards polygalacturonic acid. This specific activity was higher than that of most reported pectate lyases. Remarkably, the enzymatic activity of rBvelPL1-Ec increased by 23.28 times in the presence of 0.4 mM calcium ion. The effect of calcium ion on promoting the enzymatic activity of rBvelPL1-Ec was greater than that for all reported pectate lyases. After degumming with rBvelPL1-Ec, a weight loss of 21.27 ± 1.17% of circled ramie fibers was obtained, and the surfaces of the ramie fibers became smoother. Moreover, a weight loss of 30.47 ± 0.46% was obtained through enzymatic treated and subsequent NaOH treated circled ramie fibers. The excellent performance in degumming suggests that rBvelPL1-Ec may serve as a promising biocatalyst in the textile industry.
Collapse
Affiliation(s)
- Sijia Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, Guangxi, PR China
| | - Yan Qin
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Jing Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, Guangxi, PR China
| | - Jin Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, Guangxi, PR China
| | - Baoxiang He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, Guangxi, PR China
| | - Xinquan Liang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, Guangxi, PR China.
| | - Liang Xian
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530007, PR China.
| | - Junhua Wu
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530007, PR China.
| |
Collapse
|
3
|
Bai Y, Tian D, Chen P, Wu D, Du K, Zheng B, Shi X. A Pectate Lyase Gene Plays a Critical Role in Xylem Vascular Development in Arabidopsis. Int J Mol Sci 2023; 24:10883. [PMID: 37446058 DOI: 10.3390/ijms241310883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
As a major component of the plant primary cell wall, structure changes in pectin may affect the formation of the secondary cell wall and lead to serious consequences on plant growth and development. Pectin-modifying enzymes including pectate lyase-like proteins (PLLs) participate in the remodeling of pectin during organogenesis, especially during fruit ripening. In this study, we used Arabidopsis as a model system to identify critical PLL genes that are of particular importance for vascular development. Four PLL genes, named AtPLL15, AtPLL16, AtPLL19, and AtPLL26, were identified for xylem-specific expression. A knock-out T-DNA mutant of AtPLL16 displayed an increased amount of pectin, soluble sugar, and acid-soluble lignin (ASL). Interestingly, the atpll16 mutant exhibited an irregular xylem phenotype, accompanied by disordered xylem ray cells and an absence of interfascicular phloem fibers. The xylem fiber cell walls in the atpll16 mutant were thicker than those of the wild type. On the contrary, AtPLL16 overexpression resulted in expansion of the phloem and a dramatic change in the xylem-to-phloem ratios. Altogether, our data suggest that AtPLL16 as a pectate lyase plays an important role during vascular development in Arabidopsis.
Collapse
Affiliation(s)
- Yun Bai
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongdong Tian
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kebing Du
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueping Shi
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Structure of an Alkaline Pectate Lyase and Rational Engineering with Improved Thermo-Alkaline Stability for Efficient Ramie Degumming. Int J Mol Sci 2022; 24:ijms24010538. [PMID: 36613981 PMCID: PMC9820310 DOI: 10.3390/ijms24010538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed β-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.
Collapse
|
5
|
Gheorghita AA, Wolfram F, Whitfield GB, Jacobs HM, Pfoh R, Wong SSY, Guitor AK, Goodyear MC, Berezuk AM, Khursigara CM, Parsek MR, Howell PL. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis. J Biol Chem 2022; 298:101560. [PMID: 34990713 PMCID: PMC8829089 DOI: 10.1016/j.jbc.2021.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francis Wolfram
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Holly M Jacobs
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven S Y Wong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Allison K Guitor
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mara C Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Zheng X, Zhang Y, Liu X, Li C, Lin Y, Liang S. High-Level Expression and Biochemical Properties of A Thermo-Alkaline Pectate Lyase From Bacillus sp. RN1 in Pichia pastoris With Potential in Ramie Degumming. Front Bioeng Biotechnol 2020; 8:850. [PMID: 32850721 PMCID: PMC7396651 DOI: 10.3389/fbioe.2020.00850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pectate lyases play an essential role in textiles, animal feed, and oil extraction industries. Pichia pastoris can be an ideal platform for pectate lyases production, and BspPel (a thermo-alkaline pectate lyase from Bacillus sp. RN1) was overexpressed by combined strategies, reaching 1859 U/mL in a 50 L fermentator. It displayed the highest activity at 80°C, and maintained more than 60% of the activity between 30 and 70°C for 1 h. It showed an optimal pH of 10.0, and exhibited remarkable stability over a wider pH range (3.0-11.0), retaining more than 80.0% of enzyme activity for 4 h. The Km and kcat of BspPel on PGA (polygalacturonic acid) was 2.19 g L–1 and 116.1 s–1, respectively. The activity was significantly enhanced by Ca2+, Mn2+, and Cu2+, and a slight increase was observed with the addition of Ba2+ and Mg2+. Scanning electron microscope was used to show the degumming efficiency of BspPel on ramie fibers. The loss weight was 9.2% when treated with crude enzyme supernatant and 20.8% when treated with the enzyme-chemical method, which was higher than the 14.2% weight loss in the positive control treated with 0.5% (w/v) NaOH alone. In conclusion, BspPel could be a good candidate for the ramie degumming industry.
Collapse
Affiliation(s)
- Xueyun Zheng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxiao Liu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuli Liang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Wu P, Yang S, Zhan Z, Zhang G. Origins and features of pectate lyases and their applications in industry. Appl Microbiol Biotechnol 2020; 104:7247-7260. [PMID: 32666183 DOI: 10.1007/s00253-020-10769-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
Abstract
Pectate lyase treatment can be an alternative strategy of the chemical processing, which causes severe environmental pollution, and has been broadly studied and applied for diverse industrial applications including textile industry, beverage industry, pulp processing, pectic wastewater pretreatment, and oil extraction. This review gave a brief description of the origins, enzymatic characterizations, structure, and applications of pectate lyases (Pels). Most of the reported pectate lyases are originated from microorganisms with a small number of them from plants and animals. Due to the diverse environments that these microorganisms exist, Pels present diversified features, especially for the range of optimal pH and temperature. The diversified biochemical properties of Pels define their applications in different industries, and the applications of alkaline Pels on cotton bioscouring and ramie degumming in textile industry were focused in this review. This review also discussed the perspectives of the development and applications of Pels. KEY POINTS: • The first review on pectate lyase focusing on biotechnological applications. • Origins, features, structures, applications of pectate lyases reviewed. • Applications of alkaline Pels in textile industry demonstrated. • Perspectives on future development and applications of Pels discussed.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Singh A, Varghese LM, Battan B, Patra AK, Mandhan RP, Mahajan R. Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6701-6710. [PMID: 31873900 DOI: 10.1007/s11356-019-07424-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to demonstrate the biotechnological potential of xylano-pectinolytic enzymes on scouring of ramie fibers. Optimization of bioscouring process showed a maximum effect of enzymes with 50-mM strength of buffer, pH 8.5, fibers to liquid ratio of 1 : 20 (g:ml). Xylanase and pectinase dosage of 7.5 and 3.0 IU, respectively, was found to be best for removal of xylan and pectin impurities, after treatment time of 1.5 h, at 50 °C temperature and 55 rpm agitation rate. EDTA and Tween 80 at concentration of 1.5 mM and 1.25 %, respectively, were found to be the best for effective removal of impurities, in order to improve hydrophilicity of the fibers. After bioscouring, brightness and whiteness values of bioscoured fibers were increased by 9.72 and 7.10% in comparison with control fibers. After enzymatic scouring, a reduction of 14.45 % in yellowness was also seen in ramie fibers. Enzymatic treatment resulted in 6.97% increased brightness, 10.64% increased whiteness, and 4.11% decreased yellowness as compared with scoured ramie fibers. The results indicated that scouring using xylanase and pectinase enzymes could be a substitute for chemical scouring technique. Enzymatic scouring is, therefore, environmentally sustainable and saves energy, also decreases the consumption of harmful chemicals used in alkaline scouring. This is the first report showing the effect of xylanase and pectinase enzymes, produced by a bacterial isolate, on physico-chemical and various optical properties of ramie fibers.
Collapse
Affiliation(s)
- Avtar Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | | | - Bindu Battan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | | | - Rishi Pal Mandhan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
9
|
Screening of a Novel Polysaccharide Lyase Family 10 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression and Characterization. Molecules 2018; 23:molecules23112774. [PMID: 30373112 PMCID: PMC6278402 DOI: 10.3390/molecules23112774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Pectate lyase (EC 4.2.2.2) catalyzes the cleavage of α-1,4-glycosidic bonds of pectin polymers, and it has potential uses in the textile industry. In this study, a novel pectate lyase belonging to polysaccharide lyase family 10 was screened from the secreted enzyme extract of Paenibacillus polymyxa KF-1 and identified by liquid chromatography-MS/MS. The gene was cloned from P. polymyxa KF-1 genomic DNA and expressed in Escherichia coli. The recombinant enzyme PpPel10a had a predicted Mr of 45.2 kDa and pI of 9.41. Using polygalacturonic acid (PGA) as substrate, the optimal conditions for PpPel10a reaction were determined to be 50 °C and pH 9.0, respectively. The Km, vmax and kcat values of PpPel10a with PGA as substrate were 0.12 g/L, 289 μmol/min/mg, and 202.3 s−1, respectively. Recombinant PpPel10a degraded citrus pectin, producing unsaturated mono- and oligogalacturonic acids. PpPel10a reduced the viscosity of PGA, and weight loss of ramie (Boehmeria nivea) fibers was observed after treatment with the enzyme alone (22.5%) or the enzyme in combination with alkali (26.3%). This enzyme has potential for use in plant fiber processing.
Collapse
|
10
|
Zhou C, Xue Y, Ma Y. Characterization and overproduction of a thermo-alkaline pectate lyase from alkaliphilic Bacillus licheniformis with potential in ramie degumming. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zhou C, Xue Y, Ma Y. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 2017; 101:3663-3676. [DOI: 10.1007/s00253-017-8110-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
12
|
Liang C, Gui X, Zhou C, Xue Y, Ma Y, Tang SY. Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Appl Microbiol Biotechnol 2014; 99:2673-82. [PMID: 25287558 DOI: 10.1007/s00253-014-6091-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 °C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 °C, was observed, which was 10 °C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry.
Collapse
Affiliation(s)
- Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, 100101, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
A Novel Alkaliphilic Xylanase from the Newly Isolated Mesophilic Bacillus sp. MX47: Production, Purification, and Characterization. Appl Biochem Biotechnol 2012; 168:899-909. [DOI: 10.1007/s12010-012-9828-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022]
|
14
|
Mukhopadhyay A, Dasgupta AK, Chattopadhyay D, Chakrabarti K. Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. BIORESOURCE TECHNOLOGY 2012; 116:348-354. [PMID: 22541951 DOI: 10.1016/j.biortech.2012.03.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
The activity and half-life of pectate lyase (PL) from Bacillus megaterium were nine- and 60-fold, respectively, higher at 90 °C in the presence of hydroxyapatite nanoparticles (NP-PLs) than in the presence of 1mM CaCl(2). Thermodynamic analysis of the nanoparticle-induced stability revealed an enhanced entropy-enthalpy compensation by the NP-PLs since a reciprocal linearity of the enthalpy-entropy change to 90 °C was observed. Without nanoparticles, the linearity range was 70 °C. Such compensation reflected the maintenance of the native structure of proteins. The remarkable enhancement of activity and stability of the NP-PL system at high temperatures may be utilized commercially e.g. in the food industry or the processing of natural fibers that may require a thermotolerant enzyme.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemistry, University College of Science, Calcutta University, 35 Ballygunge Circular Road, West Bengal, Kolkata 700 019, India
| | | | | | | |
Collapse
|
15
|
Fu J, Li X, Gao W, Wang H, Cavaco-Paulo A, Silva C. Bio-processing of bamboo fibres for textile applications: a mini review. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.650450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
A novel low-temperature active alkaline pectate lyase from Klebsiella sp. Y1 with potential in textile industry. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|