1
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
2
|
Li S, Wei H, Qi D, Li W, Dong Y, Duan FA, Ni SQ. Continuous planting American ginseng (Panax quinquefolius L.) caused soil acidification and bacterial and fungal communities' changes. BMC Microbiol 2024; 24:473. [PMID: 39538174 PMCID: PMC11559190 DOI: 10.1186/s12866-024-03616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND American ginseng is an important herb crop and is widely cultivated in China. However, continuous cropping seriously affects the production of American ginseng, and the reason is still unclear and needs more research. We analyzed the soil microbial alpha diversity and community composition as well as soil physicochemical properties in bulk soils to assess the changes in soil associated with planting American ginseng. RESULTS The cultivation of American ginseng resulted in a significant decrease in soil pH value. The alpha diversity of soil bacteria and fungi was significantly reduced with the increase of American ginseng planting years. Planting American ginseng also largely altered the community composition of soil bacteria and fungi, in particularly, increased the relative abundance of the pathogenic fungus Fusarium, and reduced the relative abundance of some beneficial microorganisms, such as KD4-96, RB41 and Sphingomonas. CONCLUSIONS Soil acidification, reduction of beneficial taxa and accumulation of fungal pathogens, therefore, may lead to the replantation problem of American ginseng.
Collapse
Affiliation(s)
- Shaoyong Li
- The Second Prospecting Team of Shandong Coal Geology Bureau, Jining, Shandong, 272000, China
| | - Haiwei Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
- Shenyang Academy of Environmental Sciences, Shenyang, Liaoning, 110167, China
| | - Daqian Qi
- The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, Shandong, 250215, China
| | - Wenwen Li
- The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, Shandong, 250215, China
| | - Yan Dong
- Physical Exploration and Survey Team of Shandong Coal Geology Bureau, Jinan, Shandong, 250215, China
| | - Fu-Ang Duan
- The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, Shandong, 250215, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Ghazanfar S, Hussain A, Dar A, Ahmad M, Anwar H, Al Farraj DA, Rizwan M, Iqbal R. Prospects of iron solubilizing Bacillus species for improving growth and iron in maize (Zea mays L.) under axenic conditions. Sci Rep 2024; 14:26342. [PMID: 39487290 PMCID: PMC11530623 DOI: 10.1038/s41598-024-77831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Iron (Fe) deficiency in calcareous soils is a significant agricultural challenge, affecting crop productivity and nutritional quality. This study aimed to isolate, characterize, and evaluate Fe solubilizing rhizobacterial isolates from maize rhizosphere in calcareous soils as potential biofertilizers. Forty bacterial isolates coded as SG1, SG2, …, SG40 were isolated and screened for siderophore production, with ten showing significant Fe solubilizing capabilities. These isolates were further assessed for phosphate solubilization and exopolysaccharides production. The selected bacterial isolates were also screened under axenic conditions for their ability to improve maize growth. The isolates SG8, SG13, SG24, SG30 and SG33 significantly enhanced growth parameters of maize. Notably, SG30 showed highest increment in shoot length (58%), root length (54%), root fresh and dry biomass (67% and 76%), SPAD value (67%), relative water contents (69%), root surface area (61%), and Fe concentration in shoots (79%) as compared to control. The biochemical characterization of these strains showed that all these strains have capability to solubilize insoluble phosphorus, produce indole-3-acetic acid (IAA), and ammonia with catalase, urease and protease activity. Molecular identification through 16s rRNA gene sequencing confirmed high similarity (99.7-100%) of the selected isolates to various Bacillus species, including B. pyramidoids, B. firmicutes, and B. cereus. The study provides a strong base for developing eco-friendly, cost-effective biofertilizers to address Fe deficiency in crops and promote sustainable agriculture.
Collapse
Affiliation(s)
- Sammia Ghazanfar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Abubakar Dar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Hammad Anwar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
4
|
Zhang M, Liu X, Zhu W, Hu S, Yan X, Hong Q. Remediation of isoproturon-contaminated soil by Sphingobium sp. strain YBL2: Bioaugmentation, detoxification and community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134968. [PMID: 38901263 DOI: 10.1016/j.jhazmat.2024.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The widely used phenylurea herbicide isoproturon (IPU) and its residues can inhibit the growth of subsequently planted crops. However, reports on bioremediation of IPU-contaminated soil are scarce. In this study, Sphingobium sp. strain YBL2-gfp (a derivative of the IPU-degrading Sphingobium sp. strain YBL2 isolated by our lab) was constructed to bioremediate IPU-contaminated soil. In pot experiments, strain YBL2-gfp colonized the roots of wheat and eliminated IPU residues in the soil within 21 d, effectively alleviating its toxicity and restoring wheat growth. IPU treatment reduced the richness and diversity of soil bacteria, while inoculation YBL2-gfp mainly affected richness with less impact on diversity. The high concentrations of IPU and inoculation of YBL2-gfp alone reduced the soil microbial community connections, while bioaugmentation treatment enhanced the soil microbial community connections. Additionally, strain YBL2-gfp stimulated the metabolic capacity of the indigenous microbes, promoting the degradation of IPU and reducing the negative impact of high concentrations of IPU on microbial community. Taken together, this study offers relatively comprehensive insights into the practical application of bioaugmentation, demonstrating that strain YBL2 has the potential to remediate IPU-contaminated soils.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Weihao Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
5
|
Malik N, Ahmad M, Malik Z, Hussain A, Waseem M, Ali A, Rizwan M. Isolation and characterization of chromium-resistant bacteria and their effects on germination, growth, and Cr accumulation in Capsicum annum (L.) under Cr stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108955. [PMID: 39053317 DOI: 10.1016/j.plaphy.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Chromium (Cr) is a well-known environmental pollutant while less information is available on the role of Cr-resistant bacteria in the alleviation of Cr-stress in chili (Capsicum annum L.) plants. Effect of Cr-resistant bacterial strains on growth and Cr uptake by chili plants was investigated. The results revealed that Cr-stress showed a negative effect on germination, photosynthesis, and relative water content but the inoculation ameliorated the plant stress. Chromium-resistant bacterial strains enhanced the shoot and root growth (33% SL, 19.7% RL), shoot and root dry weight (35%, 32.9%), relative water content (32.25%), membrane stability index (46.52%) SPAD value (50.76%), Cr concentration in shoots and roots (19.87 and 18.52 mg kg-1), bioaccumulation and translocation factor (0.396 mgkg-1), and seedling vigor index (40.8%) of plants. Chromium-resistant bacterial strains enhanced the NPK uptake while reduced Cr uptake by plants. The morphological and biochemical examination of rhizobacterial strains (and NM28) resistant to Cr-stress revealed smooth, off-white colonies of bacteria composed of rod-shaped cells which are Gram positive in reaction while negative in catalase activity. High quantities of malic acid were produced by bacterial strains under study i.e. NM8 (926.12 μgmL-2) and NM28 (992.25 μgmL-2). These strains were identified as Bacillus cereus strain NM8 and Bacillus subtilis strain NM28 through 16S rRNA sequencing. Results showed that B. cereus strain NM28 is more effective than B. cereus strain NM8 in promoting the growth of Cr-stressed Chili that might be suitable to develop biofertilizer for sustainable production of vegetables under metal stress.
Collapse
Affiliation(s)
- Natasha Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Shahid S, Dar A, Hussain A, Khalid I, Latif M, Ahmad HT, Mehmood T, Aloud SS. Enhancing cauliflower growth under cadmium stress: synergistic effects of Cd-tolerant Klebsiella strains and jasmonic acid foliar application. Front Microbiol 2024; 15:1444374. [PMID: 39220045 PMCID: PMC11363903 DOI: 10.3389/fmicb.2024.1444374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 μmol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.
Collapse
Affiliation(s)
- Shumila Shahid
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azhar Hussain
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khalid
- Department of Extension Education, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Latif
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Tanvir Ahmad
- National Cotton Breeding Institute, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Mehmood
- Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Saud S. Aloud
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Elarabi NI, Abdelhadi AA, Nassrallah AA, Mohamed MSM, Abdelhaleem HAR. Biodegradation of isoproturon by Escherichia coli expressing a Pseudomonas putida catechol 1,2-dioxygenase gene. AMB Express 2023; 13:101. [PMID: 37751014 PMCID: PMC10522561 DOI: 10.1186/s13568-023-01609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The phenylurea herbicides are persistent in soil and water, necessitating the creation of methods for removing them from the environment. This study aimed to examine the soil microbial diversity, searching for local bacterial isolates able to efficiently degrade the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1, 1-dimethylurea (IPU). The best isolates able to effectively degrade IPU were selected, characterized, and identified as Pseudomonas putida and Acinetobacter johnsonii. The catechol 1, 2-dioxygenase enzyme's catA gene was amplified, cloned, and expressed in E. coli M15. The Expressed E. coli showed high degradation efficiency (44.80%) as analyzed by HPLC after 15 days of inoculation in comparison to P. putida (21.60%). The expression of the catA gene in P. putida and expressed E. coli was measured using quantitative polymerase chain reaction (qPCR). The results displayed a significant increase in the mRNA levels of the catA gene by increasing the incubation time with IPU. Hydrophilic interaction chromatography (HILIC) mass spectrometry analysis revealed that three intermediate metabolites, 1-(4-isopropylphenyl)-3-methylurea (MDIPU), 4-Isopropylaniline (4-IA) and 1-(4-isopropylphenyl) urea (DDIPU) were generated by both P. putida and expressed E. coli. In addition, IPU-induced catA activity was detected in both P. putida and expressed E. coli. The supernatant of both P. putida and expressed E. coli had a significant influence on weed growth. The study clearly exhibited that P. putida and expressed E. coli were capable of metabolizing IPU influentially and thus could be utilized for bioremediation and biodegradation technology development.
Collapse
Affiliation(s)
- Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Amr A Nassrallah
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Basic Applied Science institute, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El- Arab City, 21934, Alexandria, Egypt
| | - Mahmoud S M Mohamed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6(th) October City, Egypt
| |
Collapse
|
8
|
Ha DD. Degradation of isoproturon in vitro by a mix of bacterial strains isolated from arable soil. Can J Microbiol 2022; 68:605-613. [PMID: 35896041 DOI: 10.1139/cjm-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoproturon (IPU) is widely used to control annual grasses and broad leaf weeds in cereal crops. In this study, four IPU-degrading bacterial strains, i.e., Sphingomonas sp. ISP1, Arthrobacter sp. ISP2, Acinetobacter baumannii 4IA and Pseudomonas sp. ISP3, were isolated from agricultural soil. The mixed culture of four isolates completely degraded the herbicide at 100 mg/L within 10 days. During IPU degradation, several transient accumulations of the metabolites, including 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, 4-isopropylaniline, and 4-toluidine, were also identified. Moreover, the inoculation of the isolated mixed culture into the soil from a mountain with no previous herbicide application increased the degradation rate by 51% of the herbicide on average. Furthermore, bioaugmentation with isolated bacteria in the soil resulted in short term variations in bacterial structure compared to the unaugmented soil. The findings of this study were instrumental in understanding the mechanisms of pesticide breakdown and bioremediation in liquid media and soil.
Collapse
Affiliation(s)
- Duc Danh Ha
- Dong Thap University, 457959, Cao Lanh, Viet Nam;
| |
Collapse
|
9
|
Salem AB, Chaabane H, Ghazouani T, Caboni P, Coroneo V, Devers M, Béguet J, Martin-Laurent F, Fattouch S. Evidence for enhanced dissipation of chlorpyrifos in an agricultural soil inoculated with Serratia rubidaea strain ABS 10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29358-29367. [PMID: 34988809 DOI: 10.1007/s11356-021-17772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The insecticide 14C-chlorpyrifos was found mineralized in a Tunisian soil with repeated exposure to it. From this soil, a bacterial strain was isolated that was able to grow in a minimal salt medium (MSM) supplemented with 25 mg L-1 of chlorpyrifos. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In a liquid culture, the S. rubidaea strain ABS 10 was able to dissipate chlorpyrifos almost entirely within 48 h of incubation. Although the S. rubidaea strain ABS 10 was able to grow in an MSM supplemented with chlorpyrifos and dissipate it in a liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, it can be concluded that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. It can also be ascribed to other reasons such as the formation of biogenic non-extractable residues. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in controls with DT50 of 1.38 and 1.05 days, respectively.
Collapse
Affiliation(s)
- Asma Ben Salem
- Laboratory of Food and Molecular Biochemistry, National Institute of Applied Sciences and Technology (INSAT), University Of Carthage, Urban North center Bp676, Charguia, 1080, Tunis, Tunisia.
| | - Hanene Chaabane
- Laboratory of Bioagressor and Integrated Protection in Agriculture, Department of Plant Health and Environment, National Institute of Agronomy of Tunisia, University of Carthage, 43 Street Charles Nicolle, 1082, Mahragene City, Tunisia
| | - Tessnime Ghazouani
- Laboratory of Food and Molecular Biochemistry, National Institute of Applied Sciences and Technology (INSAT), University Of Carthage, Urban North center Bp676, Charguia, 1080, Tunis, Tunisia
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09126, Cagliari, Italy
| | - Valentina Coroneo
- Laboratory of Food, Hygiene University of Cagliari, Via Ospedale 72, 09126, Cagliari, Italy
| | - Marion Devers
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Jérémie Béguet
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Sami Fattouch
- Laboratory of Food and Molecular Biochemistry, National Institute of Applied Sciences and Technology (INSAT), University Of Carthage, Urban North center Bp676, Charguia, 1080, Tunis, Tunisia
| |
Collapse
|
10
|
Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. PHYSIOLOGIA PLANTARUM 2021; 172:463-476. [PMID: 32949405 DOI: 10.1111/ppl.13212] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/15/2020] [Indexed: 05/25/2023]
Abstract
Rhizobacteria containing 1-aminocyclopropane-1-carboxylic acid-deaminase (ACC-deaminase) and exopolysaccharides (EPS) activity are important to induce stress tolerance in plants. The present study was conducted to screen and characterize plant growth-promoting rhizobacteria (PGPR) with ACC-deaminase and EPS-producing activity for improving maize growth under drought stress. Eighty-five rhizobacterial strains were isolated from the rain-fed areas, among those 69 isolates were able to utilize ACC and 31 strains were found positive for EPS production. These strains containing ACC-deaminase and/or EPS-producing activity were subjected to drought tolerance assay by inducing water stress in media using polyethylene glycol 6000. Based on results of the drought tolerance bioassay, 12 most prominent strains were selected to evaluate their growth-promoting abilities in maize under water-stressed conditions by conducting jar trial. The impact of strains on maize growth parameters was variable. Strains with co-existence of ACC-deaminase and EPS-producing activity showed comparatively better results than those with either ACC-deaminase or EPS-producing activity only. These strains were also significantly better in improving the plant physiological parameters including photosynthesis rate, stomatal conductance, vapor pressure, water-use efficiency and transpiration rate. The strain D3 with co-existence of ACC-deaminase and EPS-producing activity was significantly better in colonizing maize roots, improving plant growth and physiological parameters. The strain was named as Bacillus velezensis strain D3 (accession number MT367633) as confirmed through results of 16S rRNA partial gene sequencing. It is concluded that the strains with co-existence of ACC-deaminase and EPS-producing activity could be better suited for improving crop growth and physiology under drought stress.
Collapse
Affiliation(s)
- Sajid M Nadeem
- Sub-campus Burewala, University of Agriculture Faisalabad, Vehari, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad A Tufail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz N Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Farheen Nazli
- Pesticide Quality Control Laboratory, Punjab Agriculture Department, Bahawalpur, Government of Punjab, Pakistan
| | - Zahir A Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
Mehta R, Brahmbhatt H, Bhojani G, Bhattacharya A. Polypyrrole as the interlayer for thin‐film poly(piperazine‐amide) composite membranes: Separation behavior of salts and pesticides. J Appl Polym Sci 2021. [DOI: 10.1002/app.50356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Romil Mehta
- Membrane Science and Separation Technology Division Council of Scientific and Industrial Research—Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar, Gujarat India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research—Human Resource Development Centre Campus Ghaziabad Uttar Pradesh India
| | - Harshad Brahmbhatt
- Analytical and Environmental Science Division and Centralized Instrument Facility Council of Scientific and Industrial Research—Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar, Gujarat India
| | - Gopal Bhojani
- Membrane Science and Separation Technology Division Council of Scientific and Industrial Research—Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar, Gujarat India
| | - Amit Bhattacharya
- Membrane Science and Separation Technology Division Council of Scientific and Industrial Research—Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar, Gujarat India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research—Human Resource Development Centre Campus Ghaziabad Uttar Pradesh India
| |
Collapse
|
12
|
Varga M, Žurga P, Brusić I, Horvatić J, Moslavac M. Growth inhibition and recovery patterns of common duckweed Lemna minor L. after repeated exposure to isoproturon. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1538-1551. [PMID: 32797394 DOI: 10.1007/s10646-020-02262-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic non-targeted organisms are more likely to be exposed to herbicides in multiple pulse events then long continuous exposure. The potential of an organism to recover between exposures has an important role in the overall effects of the toxicant. Common duckweeds show high potential for recovery after a single exposure to isoproturon. To evaluate the growth patterns and recovery potential between multiple exposures, L. minor plants were exposed to isoproturon in three repetitive 7-day treatment cycles in three time-variable exposure scenarios with equivalent time-weighted average concentrations. The growth was significantly inhibited during each exposure phase with significant cumulative effects in every subsequent treatment cycle resulting in a cumulative decrease in biomass production. However, inhibitory effects were reversible upon transferring plants to a herbicide-free nutrient solution. These results indicate that L. minor plants have a high recovery potential even after multiple exposures to isoproturon. Observed cumulative decrease in biomass production, as well as the potential for fast and efficient recovery from repeated herbicide exposure, might affect the competitiveness of L. minor in surface water communities. The observations made during each exposure period, recovery patterns, and the resulting cumulative effects over time may contribute to further development, calibration and validation of mechanistic toxicokinetic/toxicodynamic models for simulating the effects of pesticides on aquatic plants populations in the laboratory and environmental conditions.
Collapse
Affiliation(s)
- Martina Varga
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000, Rijeka, Croatia
| | - Iva Brusić
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000, Rijeka, Croatia
| | - Janja Horvatić
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Marko Moslavac
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| |
Collapse
|
13
|
Nazli F, Jamil M, Hussain A, Hussain T. Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:738. [PMID: 33128189 DOI: 10.1007/s10661-020-08715-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/26/2020] [Indexed: 05/10/2023]
Abstract
Microbial population of soils irrigated with industrial wastewater may contain certain exopolysaccharides (EPS) and indole-3-acetic acid (IAA) producing bacterial strains having the ability to tolerate heavy metals along with plant growth-promoting (PGP) traits. As cadmium is one of the most toxic heavy metals for soils, plants, animals, and human beings, the present study was planned to isolate and characterize EPS- and IAA-producing, Cd-tolerant bacterial strains having tolerance against heavy metals along with plant growth-promoting traits. A total of 30 rhizobacterial strains (FN1-FN30) were isolated from rhizosphere soil collected from fields around industrial areas and roadsides irrigated with industrial wastewater. Out of these, eight isolates with the combined ability of IAA production and EPS production were characterized for PGP traits. On the basis of multifarious PGP traits and the results of root colonization assay, three most efficient EPS- and IAA-producing, Cd-tolerant plant growth-promoting strains, i.e., FN13, FN14, and FN16, were selected for multiple metal (Cd, Pb, Ni, and Cu) tolerance test along with quantification of growth, and IAA and EPS production abilities under Cd stress. Increasing levels of Cd stress negatively affected the tested characteristics of these strains, but FN13 showed more stability in growth, IAA production (18.24 μg mL-1), and EPS production (148.99 μg mL-1) compared to other strains under Cd stress. The morphological and biochemical analysis confirmed FN13 as Gram-positive, rod-shaped bacteria with smooth colonies of yellow appearance. The strain FN13 has strong root colonization (3.36 × 106 CFU g-1) ability for mustard seedlings and can solubilize Zn and phosphate along with the production of HCN, ammonia, and siderophores. The 16S rRNA sequencing confirmed it as the Bacillus safensis strain FN13. It can be explored as potential phytostabilizing biofertilizer for heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Farheen Nazli
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Moazzam Jamil
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tanveer Hussain
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
14
|
Ahmad I, Ahmad M, Hussain A, Jamil M. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: a promising approach for improving cotton growth. Folia Microbiol (Praha) 2020; 66:115-125. [PMID: 33099750 DOI: 10.1007/s12223-020-00831-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Mineral nutrition of crop plants is one of the major challenges faced by modern agriculture, particularly in arid and semi-arid regions. In alkaline calcareous soils, the availability of phosphorus and zinc is critically less due to their fixation and precipitation as complexes. Farmers use fertilizers to fulfill crop requirements, but their efficacy is less, which increases production costs. Plant growth-promoting rhizobacteria (PGPR) can improve the availability of crop nutrients through solubilizing the insoluble compounds of phosphorus and zinc in soil. In the present study, a total of 40 rhizobacterial isolates were isolated from cotton rhizosphere and screened for improving cotton growth through the solubilization of phosphorus and zinc. Out of these 40 isolates, seven isolates (IA2, IA3, IA6, IA7, IA8, IA13, and IA14) efficiently solubilized insoluble rock phosphate while seven isolates (IA10, IA16, IA20, IA23, IA24, IA28, and IA30) were more efficient in solubilizing insoluble zinc oxide. In liquid media, strain IA7 (2.75 μg/mL) solubilized the highest amount of phosphate while the highest concentration of soluble zinc was observed in the broth inoculated with strain IA20 (3.94 μg/mL). Seven phosphate-solubilizing and seven zinc-solubilizing strains were evaluated using jar trial to improve the growth of cotton seedlings, and the results were quite promising. All the inoculated treatments showed improvement in growth parameters in comparison with control. Best results were shown by the combined application of IA6 and IA16, followed by the combination of strains IA7 and IA20. Based on the jar trial, the selected isolates were further characterized by plant growth-promoting characters such as siderophores production, HCN production, ammonia production, and exopolysaccharides production. These strains were identified through 16S rRNA sequencing as Bacillus subtilis IA6 (accession # MN005922), Paenibacillus polymyxa IA7 (accession # MN005923), Bacillus sp. IA16 (accession # MN005924), and Bacillus aryabhattai IA20 (accession # MN005925). It is hence concluded that the integrated use of phosphate-solubilizing and zinc-solubilizing strains as potential inoculants can be a promising approach for improving cotton growth under semi-arid conditions.
Collapse
Affiliation(s)
- Iqra Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Moazzam Jamil
- Department of Soil Science, University College of Agriculture and Environmental Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
15
|
Storck V, Gallego S, Vasileiadis S, Hussain S, Béguet J, Rouard N, Baguelin C, Perruchon C, Devers-Lamrani M, Karpouzas DG, Martin-Laurent F. Insights into the Function and Horizontal Transfer of Isoproturon Degradation Genes ( pdmAB) in a Biobed System. Appl Environ Microbiol 2020; 86:e00474-20. [PMID: 32414799 PMCID: PMC7357488 DOI: 10.1128/aem.00474-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.
Collapse
Affiliation(s)
- Veronika Storck
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sara Gallego
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College, University of Faisalabad, Faisalabad, Pakistan
| | - Jérémie Béguet
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Baguelin
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
- Hydreka Enoveo, Lyon, France
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
16
|
Torabi E, Wiegert C, Guyot B, Vuilleumier S, Imfeld G. Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses. J Environ Sci (China) 2020; 92:163-175. [PMID: 32430119 DOI: 10.1016/j.jes.2020.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/11/2023]
Abstract
The soil dissipation of the widely used herbicides S-metolachlor (SM) and butachlor (BUT) was evaluated in laboratory microcosms at two environmentally relevant doses (15 and 150 μg/g) and for two agricultural soils (crop and paddy). Over 80% of SM and BUT were dissipated within 60 and 30 days, respectively, except in experiments with crop soil at 150 μg/g. Based on compound-specific isotope analysis (CSIA) and observed dissipation, biodegradation was the main process responsible for the observed decrease of SM and BUT in the paddy soil. For SM, biodegradation dominated over other dissipation processes, with changes of carbon isotope ratios (Δδ13C) of up to 6.5‰ after 60 days, and concomitant production of ethane sulfonic acid (ESA) and oxanilic acid (OXA) transformation products. In crop soil experiments, biodegradation of SM occurred to a lesser extent than in paddy soil, and sorption was the main driver of apparent BUT dissipation. Sequencing of the 16S rRNA gene showed that soil type and duration of herbicide exposure were the main determinants of bacterial community variation. In contrast, herbicide identity and spiking dose had no significant effect. In paddy soil experiments, a high (4:1, V/V) ESA to OXA ratio for SM was observed, and phylotypes assigned to anaerobic Clostridiales and sulfur reducers such as Desulfuromonadales and Syntrophobacterales were dominant for both herbicides. Crop soil microcosms, in contrast, were associated with a reverse, low (1:3, V/V) ratio of ESA to OXA for SM, and Alphaproteobacteria, Actinobacteria, and Bacillales dominated regardless of the herbicide. Our results emphasize the variability in the extent and modes of SM and BUT dissipation in agricultural soils, and in associated changes in bacterial communities.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Daneshkadeh St., P.O. Box #3158711167-4111, Karaj, Iran; Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France; Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, 4 Allée Konrad Roentgen, 67000, Strasbourg, France
| | - Charline Wiegert
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France
| | - Benoît Guyot
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, 4 Allée Konrad Roentgen, 67000, Strasbourg, France
| | - Gwenaël Imfeld
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France.
| |
Collapse
|
17
|
Zhang J, Fan S, Qin J, Dai J, Zhao F, Gao L, Lian X, Shang W, Xu X, Hu X. Changes in the Microbiome in the Soil of an American Ginseng Continuous Plantation. FRONTIERS IN PLANT SCIENCE 2020; 11:572199. [PMID: 33365038 PMCID: PMC7750500 DOI: 10.3389/fpls.2020.572199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/30/2020] [Indexed: 05/22/2023]
Abstract
American ginseng is an important herbal medicinal crop in China. In recent years, there has been an increasing market demand for ginseng, but the production area has been shrinking due to problems associated with continuous monocropping. We analyzed the microbiome in bulk soils to assess whether and, if so, what changes in the bulk soil microbiome are associated with continuous American ginseng cropping. The alpha diversity of fungi and bacteria was significantly lower in the soils planted with American ginseng than the virgin (non-planted) land. The relative abundance of Fusarium spp. and Ilyonectria spp., known plant root pathogens, was much higher in the soils cropped with American ginseng than the non-planted. On the other hand, a number of bacteria with biodegradation function, such as Methylibium spp., Sphingomonas spp., Variovorax spp., and Rubrivivax spp., had lower abundance in the soils cropped with American ginseng than the non-cropped. In addition, soil pH was lower in the field planted with American ginseng than the non-planted. Accumulation of fungal root pathogens and reduction of soil pH may, therefore, have contributed to the problems associated with continuous monocropping of American ginseng.
Collapse
Affiliation(s)
- Jiguang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Sanhong Fan
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jichen Dai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fangjie Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liqiang Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xihong Lian
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiangming Xu
- NIAB East Malling Research (EMR), Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Xiaoping Hu
| |
Collapse
|
18
|
Varga M, Horvatić J, Žurga P, Brusić I, Moslavac M. Phytotoxicity assessment of isoproturon on growth and physiology of non-targeted aquatic plant Lemna minor L. - A comparison of continuous and pulsed exposure with equivalent time-averaged concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105225. [PMID: 31220755 DOI: 10.1016/j.aquatox.2019.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Phenylurea herbicides are often present in the aquatic ecosystems and may be accumulated by the non-targeted organisms and impose a negative effect on the organism and the community. This study aims to investigate and compare the effects of two different isoproturon (IPU) pulse exposure scenarios on the non-targeted aquatic plant Lemna minor with effects observed in the standard test with continuous exposure. The obtained results showed that continuous IPU treatment causes significant reduction of photosynthetic pigment concentration and proteins as well as inhibition of L. minor growth. The activities of CAT, G-POX, and APX were significantly induced to diminish the accumulation of ROS under IPU treatment, but the induction of antioxidant enzymes was not sufficient to protect the plants from herbicide-induced oxidative stress. The growth of L. minor under pulse exposure to IPU recovers fast, but pulse treatment results in significant physiological changes in treated plants. The accumulation of H2O2 and lipid peroxidation products, alongside the reduced concentration of proteins and photosynthetic pigments in pulse treatment after a recovery period, indicates that IPU causes prolonged oxidative stress in L. minor plants. The recovery potential of L. minor plants after treatment with herbicides may have an important role in maintaining the population of essential primary producers in aquatic ecosystems, but IPU-induced physiological changes could potentially have a significant role in modulating the response of the plants to the next exposure event.
Collapse
Affiliation(s)
- Martina Varga
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Janja Horvatić
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000 Rijeka, Croatia
| | - Iva Brusić
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52, 51000 Rijeka, Croatia
| | - Marko Moslavac
- University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| |
Collapse
|
19
|
Zhang L, Hang P, Hu Q, Chen XL, Zhou XY, Chen K, Jiang JD. Degradation of Phenylurea Herbicides by a Novel Bacterial Consortium Containing Synergistically Catabolic Species and Functionally Complementary Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12479-12489. [PMID: 30407808 DOI: 10.1021/acs.jafc.8b03703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenylurea herbicides (PHs) are frequently detected as major water contaminants in areas where there is extensive use. In this study, Diaphorobacter sp. strain LR2014-1, which initially hydrolyzes linuron to 3,4-dichloroanaline, and Achromobacter sp. strain ANB-1, which further mineralizes the produced aniline derivatives, were isolated from a linuron-mineralizing consortium despite being present at low abundance in the community. The synergistic catabolism of linuron by the consortium containing these two strains resulted in more efficient catabolism of linuron and growth of both strains. Strain LR2014-1 harbors two evolutionary divergent hydrolases from the amidohydrolase superfamily Phh and the amidase superfamily TccA2, which functioned complementarily in the hydrolysis of various types of PHs, including linuron ( N-methoxy- N-methyl-substituted), diuron, chlorotoluron, fluomethuron ( N, N-dimethyl-substituted), and siduron. These findings show that a bacterial consortium can contain catabolically synergistic species for PH mineralization, and one strain could harbor functionally complementary hydrolases for a broadened substrate range.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Ping Hang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xiao-Long Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xi-Yi Zhou
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
20
|
Vanraes P, Wardenier N, Surmont P, Lynen F, Nikiforov A, Van Hulle SWH, Leys C, Bogaerts A. Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:180-190. [PMID: 29751174 DOI: 10.1016/j.jhazmat.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.
Collapse
Affiliation(s)
- Patrick Vanraes
- PLASMANT, Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; RUPT, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Niels Wardenier
- RUPT, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; LIWET, Department of Industrial Biological Sciences, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| | - Pieter Surmont
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Gent, Belgium.
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Gent, Belgium.
| | - Anton Nikiforov
- RUPT, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Stijn W H Van Hulle
- LIWET, Department of Industrial Biological Sciences, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| | - Christophe Leys
- RUPT, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Annemie Bogaerts
- PLASMANT, Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
21
|
Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M, Hussain A, Zahir ZA. Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 2018; 6:e5122. [PMID: 30013829 PMCID: PMC6035724 DOI: 10.7717/peerj.5122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background Low phosphorus availability limits crop production in alkaline calcareous soils in semi-arid regions including Pakistan. Phosphate solubilizing bacteria may improve crop growth on alkaline calcareous soils due to their ability to enhance P availability. Methods Twenty rhizobacterial isolates (Q1–Q20) were isolated from rhizosphere of cotton and characterized for their growth promoting attributes in vitro. The selected phosphate solubilizing isolates were further screened for their ability to improve cotton growth under axenic conditions (jar trial). The phosphorus solubilization capacities of selected strains were quantified and these strains were identified through 16S rDNA sequencing. Results Isolates Q2, Q3, Q6, Q7, Q8, Q13 and Q14 were able to solubilize phosphate from insoluble sources. Most of these isolates also possessed other traits including catalase activity and ammonia production. The growth promotion assay showed that Q3 was significantly better than most of the other isolates followed by Q6. Maximum root colonization (4.34 × 106 cfu g−1) was observed in case of isolate Q6 followed by Q3. The phosphorus solubilization capacities of these strains were quantified, showing a maximum phosphorus solubilization by Q3 (optical density 2.605 ± 0.06) followed by the Q6 strain. The strain Q3 was identified as Bacillus subtilis (accession # KX788864) and Q6 as Paenibacillus sp. (accession # KX788865) through 16S rDNA sequencing. Discussion The bacterial isolates varied in their abilities for different growth promoting traits. The selected PGPR Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 have multifarious growth promoting traits including ability to grow at higher EC and pH levels, and phosphorus solubilizing ability. These strains can efficiently colonize cotton roots under salt affected soils and help plants in phosphorus nutrition. It is concluded that both strains are potential candidates for promoting cotton growth under alkaline conditions, however further investigation is required to determine their potential for field application.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Iqra Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Thomas H Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg Institute), University of Hohenheim, Stuttgart, Germany
| | - Sajid M Nadeem
- Department of Soil Science, University of Agriculture Faisalabad, Sub-campus Burewala-Vehari, Pakistan, Burewala, Punjab, Pakistan
| | - Muhammad F Akhtar
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Moazzam Jamil
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Zahir A Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
22
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
23
|
Karas PA, Perruchon C, Karanasios E, Papadopoulou ES, Manthou E, Sitra S, Ehaliotis C, Karpouzas DG. Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: Bioaugmentation, risk assessment and optimized management. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:635-644. [PMID: 27501880 DOI: 10.1016/j.jhazmat.2016.07.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/02/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Wastewaters from fruit-packaging plants contain high loads of toxic and persistent pesticides and should be treated on site. We evaluated the depuration performance of five pilot biobeds against those effluents. In addition we tested bioaugmentation with bacterial inocula as a strategy for optimization of their depuration capacity. Finally we determined the composition and functional dynamics of the microbial community via q-PCR. Practical issues were also addressed including the risk associated with the direct environmental disposal of biobed-treated effluents and decontamination methods for the spent packing material. Biobeds showed high depuration capacity (>99.5%) against all pesticides with bioaugmentation maximizing their depuration performance against the persistent fungicide thiabendazole (TBZ). This was followed by a significant increase in the abundance of bacteria, fungi and of catabolic genes of aromatic compounds catA and pcaH. Bioaugmentation was the most potent decontamination method for spent packing material with composting being an effective alternative. Risk assessment based on practical scenarios (pome and citrus fruit-packaging plants) and the depuration performance of the pilot biobeds showed that discharge of the treated effluents into an 0.1-ha disposal site did not entail an environmental risk, except for TBZ-containing effluents where a larger disposal area (0.2ha) or bioaugmentation alleviated the risk.
Collapse
Affiliation(s)
- Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | | | - Evangelia S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Elena Manthou
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Stefania Sitra
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Constantinos Ehaliotis
- Agricultural University of Athens, Department of Natural Resources and Agricultural Engineering, Laboratory of Soils and Agricultural Chemistry, 75 IeraOdos Str., 11855 Athens, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece.
| |
Collapse
|
24
|
Giri K, Pandey S, Kumar R, Rai JPN. Biodegradation of isoproturon by Pseudoxanthomonas sp. isolated from herbicide-treated wheat fields of Tarai agro-ecosystem, Pantnagar. 3 Biotech 2016; 6:190. [PMID: 28330262 PMCID: PMC5010538 DOI: 10.1007/s13205-016-0505-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022] Open
Abstract
A gram-negative, rod-shaped, isoproturon (IPU) utilizing bacterium was isolated from herbicide-applied wheat fields of Tarai agro-ecosystem, Pantnagar. The phylogenetic sequence analysis based on 16S rRNA sequence revealed that the isolate could be a distinct species within the genus Pseudomonas. The isolate was a close relative of Pseudoxanthomonas japonensis (95 % similarity) and designated as K2. The bacterial isolate showed positive reaction for oxidase, catalase, and 20 carbohydrates using KB009 Part A and B HiCarbohydrate™ Kit. Degradation experiments were conducted using 200 mg l-1 initial IPU as a source of carbon at different pH and temperatures. Maximum IPU degradation by K2 was observed at pH 7.0 and 30 °C, while least degradation at 6.5 pH and 25 °C. Addition of dextrose along with IPU as an auxiliary carbon source increased IPU degradation by 4.72 %, as compared to the IPU degradation without dextrose under optimum conditions. 4-isopropylaniline was detected as a degradation by-product in the medium. The present study demonstrated the IPU metabolizing capacity of a novel bacterial isolate K2 that can be a better choice for the remediation of IPU-contaminated sites.
Collapse
Affiliation(s)
- Krishna Giri
- Rain Forest Research Institute, Jorhat, Assam, 785 001, India.
| | - Shailseh Pandey
- Rain Forest Research Institute, Jorhat, Assam, 785 001, India
| | - Rajesh Kumar
- Rain Forest Research Institute, Jorhat, Assam, 785 001, India
| | - J P N Rai
- G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
25
|
Abbas N, Hussain S, Azeem F, Shahzad T, Bhatti SH, Imran M, Ahmad Z, Maqbool Z, Abid M. Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress. World J Microbiol Biotechnol 2016; 32:181. [PMID: 27646208 DOI: 10.1007/s11274-016-2141-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L(-1) NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L(-1) NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L(-1) NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co(+2), Cr(+6), Zn(+2), Pb(+2), Cu(+2), Cd(+2)) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L(-1) NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.
Collapse
Affiliation(s)
- Naila Abbas
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | | | - Muhammad Imran
- Department of Soil Science, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
- Environmental Microbiology, Soil Science Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | - Zulfiqar Ahmad
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Zahid Maqbool
- Department of Environmental Sciences & Engineering, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakaria University, Multan, Pakistan
| |
Collapse
|
26
|
Karpouzas DG, Tsiamis G, Trevisan M, Ferrari F, Malandain C, Sibourg O, Martin-Laurent F. "LOVE TO HATE" pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18947-18951. [PMID: 27470248 DOI: 10.1007/s11356-016-7319-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.
Collapse
Affiliation(s)
- D G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou, 41221, Larissa, Greece.
| | - G Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - M Trevisan
- Instituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - F Ferrari
- Aeiforia srl, Spinoff Università Cattolica del Sacro Cuore, Fidenza, Italy
| | | | | | - F Martin-Laurent
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
27
|
Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Azeem F, Muzammil S. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16904-16925. [PMID: 27272922 DOI: 10.1007/s11356-016-7003-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.
Collapse
Affiliation(s)
- Zahid Maqbool
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan.
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Dublin 4, Ireland.
| | - Muhammad Imran
- Department of Soil Science, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Environmental Microbiology, Soil Science Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Zulfiqar Ahmed
- Department of Environmental Sciences, PMAS Arid Agricultural University, Rawalpindi, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
28
|
Yan X, Gu T, Yi Z, Huang J, Liu X, Zhang J, Xu X, Xin Z, Hong Q, He J, Spain JC, Li S, Jiang J. Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism. Environ Microbiol 2016; 18:4888-4906. [DOI: 10.1111/1462-2920.13413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Tao Gu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Zhongquan Yi
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Junwei Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Ji Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Xihui Xu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Zhihong Xin
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Jim C. Spain
- School of Civil and Environmental Engineering; Georgia Institute of Technology; Atlanta GA 30332-0512 USA
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| |
Collapse
|
29
|
Maqbool Z, Hussain S, Ahmad T, Nadeem H, Imran M, Khalid A, Abid M, Martin-Laurent F. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11224-11239. [PMID: 26920535 DOI: 10.1007/s11356-016-6275-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L(-1)) and the azo dyes (100 mg L(-1)) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L(-1) and a multi-metal mixture (Cr 13.10 mg L(-1), Pb 26.21 mg L(-1), Cd 13.10 mg L(-1), Zn 26.21 mg L(-1)), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L(-1) of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the wastewater contaminated with dyes and heavy metals.
Collapse
Affiliation(s)
- Zahid Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Tanvir Ahmad
- Department of Statistics, Government College University, Faisalabad, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Soil Science, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Soil Science Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakaria University, Multan, Pakistan
| | | |
Collapse
|
30
|
Vandermeeren P, Baken S, Vanderstukken R, Diels J, Springael D. Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: A microcosm study. CHEMOSPHERE 2016; 146:85-93. [PMID: 26714290 DOI: 10.1016/j.chemosphere.2015.11.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/10/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Riparian wetlands are proposed to mitigate diffuse pollution of surface water by pesticides in agricultural landscapes. Wetland ecosystems though are highly dynamic environments and seasonal disturbances such as freezing and drying can affect microbial population sizes in the sediment and their functionality including pesticide biodegradation, which has hardly been studied. This study examined the effect of artificially induced dry-wet or freeze-thaw events on the mineralization of the pesticides isoproturon (IPU) and 2-methoxy-4-chlorophenoxy acetic acid (MCPA) in wetland microcosms, either without or with prior enrichment of IPU/MCPA degrading populations. Without prior enrichment, mineralization of IPU and MCPA was significantly reduced after exposure to especially freeze-thaw events, as evidenced by lower mineralization rates and longer lag times compared to non-exposed microcosms. However, herbicide mineralization kinetics correlated poorly with cell numbers of herbicide mineralizers as estimated by a most probable number (MPN) approach and the number of IPU and MCPA mineralizers was unexpectedly higher in freeze-thaw and dry-wet cycle exposed setups compared to the control setups. This suggested that the observed effects of season-bound disturbances were due to other mechanisms than decay of pesticide mineralizers. In addition, in systems in which the growth of pesticide mineralizing bacteria was stimulated by amendment of IPU and MCPA, exposure to a freeze-thaw or dry-wet event only marginally affected the herbicide mineralization kinetics. Our results show that season bound environmental disturbances can affect pesticide mineralization kinetics in wetlands but that this effect can depend on the history of pesticide applications.
Collapse
Affiliation(s)
| | - Stijn Baken
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | | | - Jan Diels
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
31
|
Maqbool Z, Asghar HN, Shahzad T, Hussain S, Riaz M, Ali S, Arif MS, Maqsood M. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:343-9. [PMID: 25066609 DOI: 10.1016/j.ecoenv.2014.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/05/2014] [Accepted: 07/04/2014] [Indexed: 05/26/2023]
Abstract
Hexavalent chromium [Cr (VI)], extensively used in different industries, is one of the most toxic heavy metals. The Cr (VI) reducing bacteria could be helpful in decreasing its toxic effects. The present study was conducted to evaluate the potential of Cr (VI) reducing bacteria to improve growth and yield of okra (Hibiscus esculentus L.) in Cr-contaminated soils. Most of the selected bacterial isolates significantly increased the growth and yield of okra. Maximum response was observed in the plants inoculated with the isolate K12 where plant height, root length, fruit weight and number of fruits per plant increased up to 77.5 percent, 72.6 percent, 1.4 fold and 2.9 fold, respectively. Moreover, inoculation with bacteria caused significant decrease in Cr (VI) concentration in soil and plant parts across all treatments. The maximum decrease of 69.6, 56.1 and 40.0 percent in Cr (VI) concentrations in soil, plant vegetative parts and plant reproductive parts, respectively, was observed in the treatment inoculated with the strain K12. Based on amplification, sequencing and analysis of 16S rDNA sequence, the strain K12 was found belonging to genus Brucella and was designated as Brucella sp. K12. These findings suggest that the strain K12 may serve as a potential bioresource to improve crop production in Cr-contaminated soils.
Collapse
Affiliation(s)
- Zahid Maqbool
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan.
| | - Muhammad Riaz
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Marium Maqsood
- Department of Agronomy, Pir Mehar Ali Shah University of Arid Agriculture Rawalpindi, Pakistan
| |
Collapse
|
32
|
Gou Y, Zhang F, Zhu X, Li X. Biosynthesis and characterisation of silver nanoparticles using
Sphingomonas paucimobilis
sp. BDS1. IET Nanobiotechnol 2015; 9:53-7. [DOI: 10.1049/iet-nbt.2014.0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yujun Gou
- Faculty of Life Science and Chemical EngineeringHuaiYin Institute of TechnologyHuaian 223003The People's Republic of China
| | - Feng Zhang
- Faculty of Life Science and Chemical EngineeringHuaiYin Institute of TechnologyHuaian 223003The People's Republic of China
| | - Xiaoyan Zhu
- Faculty of Life Science and Chemical EngineeringHuaiYin Institute of TechnologyHuaian 223003The People's Republic of China
| | - Xiangqian Li
- Faculty of Life Science and Chemical EngineeringHuaiYin Institute of TechnologyHuaian 223003The People's Republic of China
- Enzyme and Biomaterials Center, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process IntegrationHuaian223003The People's Republic of China
| |
Collapse
|
33
|
Devers-Lamrani M, Pesce S, Rouard N, Martin-Laurent F. Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. CHEMOSPHERE 2014; 117:208-215. [PMID: 25061887 DOI: 10.1016/j.chemosphere.2014.06.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Diuron was found to be mineralized in buffer strip soil (BS) and in the sediments (SED) of the Morcille river in the Beaujolais vineyard repeatedly treated with this herbicide. Enrichment cultures from BS and SED samples led to the isolation of three bacterial strains transforming diuron to 3,4-dichloroaniline (3,4-DCA) its aniline derivative. 16S rRNA sequencing revealed that they belonged to the genus Arthrobacter (99% of similarity to Arthrobacter globiformis strain K01-01) and were designated as Arthrobacter sp. BS1, BS2 and SED1. Diuron-degrading potential characterized by sequencing of the puhA gene, characterizing the diuron-degradaing potential, revealed 99% similarity to A. globiformis strain D47 puhA gene isolated a decade ago in the UK. These isolates were also able to use chlorotoluron for their growth. Although able to degrade linuron and monolinuron to related aniline derivatives they were not growing on them. Enrichment cultures led to the isolation of a strain from the sediments entirely degrading 3,4-DCA. 16S rRNA sequence analysis showed that it was affiliated to the genus Achromobacter (99% of similarity to Achromobacter sp. CH1) and was designated as Achromobacter sp. SP1. The dcaQ gene encoding enzyme responsible for the transformation of 3,4-DCA to chlorocatechol was found in SP1 with 99% similarity to that of Comamonas testosteroni WDL7. This isolate also used for its growth a range of anilines (3-chloro-4-methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-chloroaniline, 4-bromoaniline). The mixed culture composed of BS2 and SP1 strains entirely mineralizes (14)C-diuron to (14)CO2. Diuron-mineralization observed in the enrichment culture could result from the metabolic cooperation between these two populations.
Collapse
Affiliation(s)
| | - Stéphane Pesce
- Irstea, Centre de Lyon-Villeurbanne, UR MALY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France
| | - Nadine Rouard
- INRA, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | |
Collapse
|
34
|
Langeron J, Blondel A, Sayen S, Hénon E, Couderchet M, Guillon E. Molecular properties affecting the adsorption coefficient of pesticides from various chemical families. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9727-9741. [PMID: 24801285 DOI: 10.1007/s11356-014-2916-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Forty pesticides were selected in function of their chemical families and their physico-chemical properties to represent a wide range of pesticide properties. Adsorption of these pesticides was studied on two soils by batch experiments. The two soils differed largely in organic matter and calcite contents. Distribution coefficient Kd was determined for each pesticide on the two soils. Adsorption was higher for the soil having the highest organic matter content and the lowest calcite content. In order to identify pesticide properties governing retention, eight molecular descriptors were determined from three-dimensional (3D) structure of molecules. Class-specific quantitative structure properties relationship (QSPR) soil adsorption models using one and two parameters were developed from experimental Kd. Three properties seemed to influence most retention of pesticides: hydrophobicity, solubility, and polarisability. Models combining these properties were suggested and discussed.
Collapse
Affiliation(s)
- Julie Langeron
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039, 51687, Reims Cedex 2, France
| | | | | | | | | | | |
Collapse
|
35
|
Hussain S, Maqbool Z, Ali S, Yasmeen T, Imran M, Mahmood F, Abbas F. Biodecolorization of Reactive Black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:331-338. [PMID: 24138897 DOI: 10.1016/j.ecoenv.2013.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Discharge of untreated azo dyes contaminated textile wastewater into soil and water bodies causes severe contamination. The present study was conducted to isolate dye degrading bacterial strains from a textile industry wastewater carrying drain in the neighborhood of Faisalabad, Pakistan. Seventy six bacterial strains were initially isolated and was screened using liquid mineral salts medium spiked with Reactive Black-5 azo dye. The strain RA20 was found to be the most efficient azo dye degrading bacterial isolate and was identified by amplifying and sequencing its 16S rRNA. Analysis indicated that this strain belonged to genus Pseudomonas and was designated as Pseudomonas sp. RA20. It had the highest decolorization activity at pH 8 and 25 °C incubation temperature under static conditions using yeast extract as an additional C source. This strain was also effective in decolorizing structurally related other reactive dyes including Reactive Orange 16, Reactive Yellow 2 and Reactive Red 120 but with varying efficacy. RA20 decolorized Reactive Black-5 significantly in the presence of up to 30 g L⁻¹ NaCl; however, the decolorization rate was significantly (p≤0.05) reduced beyond this salt concentration. Moreover, this bacterial strain also exhibited moderate tolerance to different heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), lead (Pb) and copper (Cu). RA20 also decolorized Reactive Black-5 in the presence of a mixture of the selected heavy metals depending upon their concentrations. This study highlights the importance of Pseudomonas sp. RA20 as a prospective biological resource for bioremediation of water and soils contaminated with azo dyes.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Environmental Sciences, Government College University, Allama Iqbal Road, Faisalabad, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
36
|
The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 2013; 79:7846-56. [PMID: 24123738 DOI: 10.1128/aem.02478-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase.
Collapse
|
37
|
Blondel A, Langeron J, Sayen S, Hénon E, Couderchet M, Guillon E. Molecular properties affecting the adsorption coefficient of phenylurea herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6266-6281. [PMID: 23589246 DOI: 10.1007/s11356-013-1654-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
The adsorption of 12 pesticides of the phenylurea family was studied by batch experiments in order to determine the adsorption coefficient, K d. The study was conducted in two soils chosen for their differences in organic matter and calcite contents. K d pesticide adsorption coefficients were higher for soil S1 than for soil S2 due to the presence of a higher organic matter content and a lower calcite content in soil S1. To identify pesticide properties governing retention, 18 molecular descriptors were considered. Class-specific quantitative structure-property relationship (QSPR) soil sorption models using one, two, and three descriptors were developed from our experimental data using linear regressions. One of the aims of this work was to check whether QSPR models that did not include literature values of K ow were able to predict K d coefficients in satisfactory agreement with our experimental data. The influence of the level of theory in determining K ow and polarisability predictors on the predictive performance of the model was also examined by comparing quantum chemistry and empirical (QikProp) approaches. The one-descriptor model using "quantum" polarisability α was found to perform almost as well as or better than the other models.
Collapse
Affiliation(s)
- Alodie Blondel
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039, 51687, Reims Cedex 2, France
| | | | | | | | | | | |
Collapse
|
38
|
Hussain S, Devers-Lamrani M, Spor A, Rouard N, Porcherot M, Beguet J, Martin-Laurent F. Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. CHEMOSPHERE 2013; 90:2499-2511. [PMID: 23246724 DOI: 10.1016/j.chemosphere.2012.10.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
The temporal and spatial variability of the activity of soil microorganisms able to mineralize the herbicide isoproturon (IPU) pesticide was investigated over a three-year long crop rotation between 2008 and 2010. Isoproturon mineralization was higher in 2008, when winter wheat was treated with this herbicide, than in 2009 and 2010, when rape seed and barley were treated with different herbicides. Under laboratory conditions, we showed that isoproturon mineralization was not promoted by sulfonylurea herbicide applied on barley crop in 2010. IPU mineralization was shown to be highly variable at the field scale in years 2009 and 2010. Principal component analyses and analyses of similarities revealed that soil pH and equivalent humidity, and to a lesser extent soil organic matter content and cation exchange capacity (CEC) were the main drivers of isoproturon-mineralizing activity variance. Using a rather simple model that yields the rate of isoproturon mineralization as a function of soil pH and equivalent humidity, we explained up to 85% of the variance observed. Mapping field-scale distribution of isoproturon mineralization over the three-year survey indicated higher variability in 2009 and in 2010 as compared to 2008, suggesting that isoproturon treatment applied to winter wheat promoted isoproturon mineralization activity and reduced its spatial variability. Field-scale distribution of isoproturon mineralization showed important similarity to the distribution of soil pH, equivalent humidity and to a lesser extent to soil organic matter and cation exchange capacity (CEC) thereby confirming our model.
Collapse
Affiliation(s)
- S Hussain
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - M Devers-Lamrani
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - A Spor
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - N Rouard
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - M Porcherot
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - J Beguet
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - F Martin-Laurent
- INRA, UMR 1347 Agroecologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
39
|
Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste CM, Chaabane H, Cooper JF. Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. PEST MANAGEMENT SCIENCE 2012; 68:340-7. [PMID: 21919184 DOI: 10.1002/ps.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/24/2011] [Accepted: 06/24/2011] [Indexed: 05/26/2023]
Abstract
BACKGROUND The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway. RESULTS Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles. CONCLUSION Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.
Collapse
Affiliation(s)
- Christophe Calvayrac
- Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain TTNP3. Appl Microbiol Biotechnol 2011; 93:1315-24. [DOI: 10.1007/s00253-011-3451-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|