1
|
Hidalgo KJ, Cueva LG, Giachini AJ, Schneider MR, Soriano AU, Baessa MP, Martins LF, Oliveira VM. Long-term microbial functional responses in soil contaminated with biofuel/fossil fuel blends triggered by different bioremediation treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125685. [PMID: 39826606 DOI: 10.1016/j.envpol.2025.125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/25/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
The use of biofuel blends with fossil fuels is widespread globally, raising concerns over novel contamination types in environments impacted by these mixtures. This study investigates the microbial functional in soils contaminated by biofuel and fossil fuel blends and subjected to various bioremediation treatments. Using metagenomic analysis, it was compared hydrocarbon degradation functional profiles across areas polluted with ethanol/gasoline and biodiesel/diesel blends. Results indicate that long-term natural attenuation areas exhibited distinct functional profiles compared to actively bioremediated areas. However, same hydrocarbon degradation genes were enriched across all areas, highlighting functional redundancy despite taxonomic variation in hydrocarbon-degrading microbes. Finally, several of the keystone species found were hydrocarbon degraders, such as members of the families Clostridiaceae and Comamonadaceae, representing potential targets for biostimulation in future remediation efforts. This long-term, field-scale study uniquely focuses on the functional profiles of microbial communities, offering new insights into the bioremediation of complex biofuel/fossil fuel contaminants in situ.
Collapse
Affiliation(s)
- K J Hidalgo
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil.
| | - L G Cueva
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil
| | - A J Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - M R Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - A U Soriano
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - L F Martins
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - V M Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil
| |
Collapse
|
2
|
Xia F, Fan T, Wang M, Yang L, Ding D, Wei J, Zhou Y, Jiang D, Deng S. Biodegradation of CAHs and BTEX in groundwater at a multi-polluted pesticide site undergoing natural attenuation: Insights from identifying key bioindicators using machine learning methods based on microbiome data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117609. [PMID: 39893882 DOI: 10.1016/j.ecoenv.2024.117609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025]
Abstract
Groundwater pollution, particularly in retired pesticide sites, is a significant environmental concern due to the presence of chlorinated aliphatic hydrocarbons (CAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX). These contaminants pose serious risks to ecosystems and human health. Natural attenuation (NA) has emerged as a sustainable solution, with microorganisms playing a crucial role in pollutant biodegradation. However, the interpretation of the diverse microbial communities in relation to complex pollutants is still challenging, and there is limited research in multi-polluted groundwater. Advanced machine learning (ML) algorithms help identify key microbial indicators for different pollution types (CAHs, BTEX plumes, and mixed plumes). The accuracy and Area Under the Curve (AUC) achieved by Support Vector Machines (SVM) were impressive, with values of 0.87 and 0.99, respectively. With the assistance of model explanation methods, we identified key bioindicators for different pollution types which were then analyzed using co-occurrence network analysis to better understand their potential roles in pollution degradation. The identified key genera indicate that oxidation and co-metabolism predominantly drive dechlorination processes within the CAHs group. In the BTEX group, the primary mechanism for BTEX degradation was observed to be anaerobic degradation under sulfate-reducing conditions. However, in the CAHs&BTEX groups, the indicative genera suggested that BTEX degradation occurred under iron-reducing conditions and reductive dechlorination existed. Overall, this study establishes a framework for harnessing the power of ML alongside co-occurrence network analysis based on microbiome data to enhance understanding and provide a robust assessment of the natural attenuation degradation process at multi-polluted sites.
Collapse
Affiliation(s)
- Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. TOXICS 2024; 12:913. [PMID: 39771128 PMCID: PMC11728489 DOI: 10.3390/toxics12120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5-C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5-C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- João Paulo Silva Monteiro
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Rubens Tadeu Delgado Duarte
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - Admir José Giachini
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| |
Collapse
|
4
|
Hidalgo-Martinez K, Giachini AJ, Schneider M, Soriano A, Baessa MP, Martins LF, de Oliveira VM. Shifts in structure and dynamics of the soil microbiome in biofuel/fuel blend-affected areas triggered by different bioremediation treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33663-33684. [PMID: 38687451 DOI: 10.1007/s11356-024-33304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The use of biofuels has grown in the last decades as a consequence of the direct environmental impacts of fossil fuel use. Elucidating structure, diversity, species interactions, and assembly mechanisms of microbiomes is crucial for understanding the influence of environmental disturbances. However, little is known about how contamination with biofuel/petrofuel blends alters the soil microbiome. Here, we studied the dynamics in the soil microbiome structure and composition of four field areas under long-term contamination with biofuel/fossil fuel blends (ethanol 10% and gasoline 90%-E10; ethanol 25% and gasoline 75%-E25; soybean biodiesel 20% and diesel 80%-B20) submitted to different bioremediation treatments along a temporal gradient. Soil microbiomes from biodiesel-polluted areas exhibited higher richness and diversity index values and more complex microbial communities than ethanol-polluted areas. Additionally, monitored natural attenuation B20-polluted areas were less affected by perturbations caused by bioremediation treatments. As a consequence, once biostimulation was applied, the degradation was slower compared with areas previously actively treated. In soils with low diversity and richness, the impact of bioremediation treatments on the microbiomes was greater, and as a result, the hydrocarbon degradation extent was higher. The network analysis showed that all abundant keystone taxa corresponded to well-known degraders, suggesting that the abundant species are core targets for biostimulation in soil remediation processes. Altogether, these findings showed that the knowledge gained through the study of microbiomes in contaminated areas may help design and conduct optimized bioremediation approaches, paving the way for future rationalized and efficient pollutant mitigation strategies.
Collapse
Affiliation(s)
- Kelly Hidalgo-Martinez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil.
- Programa de Pós-Graduação de Genética E Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil.
| | - Admir José Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Marcio Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Adriana Soriano
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Marcus Paulus Baessa
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Luiz Fernando Martins
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil
| |
Collapse
|
5
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
6
|
Semerád J, Lhotský O, Filipová A, Urban O, Šírová K, Boháčková J, Komárek M, Cajthaml T. Remedial trial of sequential anoxic/oxic chemico-biological treatment for decontamination of extreme hexachlorocyclohexane concentrations in polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130199. [PMID: 36279651 DOI: 10.1016/j.jhazmat.2022.130199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
During production of γ-hexachlorocyclohexane (γ-HCH), thousands of tons of other isomers were synthesized as byproducts, and after dumping represent sources of contamination for the environment. Several microbes have the potential for aerobic and anaerobic degradation of HCHs, and zero-valent iron is an effective remediation agent for abiotic dechlorination of HCHs, whereas the combination of the processes has not yet been explored. In this study, a sequence of anoxic/oxic chemico-biological treatments for the degradation of HCHs in a real extremely contaminated soil (10-30 g/kg) was applied. Approximately 1500 kg of the soil was employed, and various combinations of reducing and oxygen-releasing chemicals were used for setting up the aerobic and anaerobic phases. The best results were obtained with mZVI/nZVI, grass cuttings, and oxygen-releasing compounds. In this case, 80 % removal of HCHs was achieved in 129 days, and 98 % degradation was achieved after 1106 days. The analysis of HCHs and their transformation products proved active degradation when slight accumulation of the transformation product during the anaerobic phase was followed by aerobic degradation. The results document that switching between aerobic and anaerobic phases, together with the addition of grass, also created suitable conditions for the biodegradation of HCHs and monochlorobenzene/benzene by microbes.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Lhotský
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Dekonta a.s., Dřetovice 109, CZ-27342 Stehelčeves, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Urban
- Dekonta a.s., Dřetovice 109, CZ-27342 Stehelčeves, Czech Republic
| | - Kateřina Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jana Boháčková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, CZ-165 00, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
7
|
Mitter EK, Germida JJ, de Freitas JR. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci Rep 2021; 11:10856. [PMID: 34035323 PMCID: PMC8149423 DOI: 10.1038/s41598-021-89637-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Soil contamination as a result of oil spills is a serious issue due to the global demand for diesel fuel. As an alternative to diesel, biodiesel has been introduced based on its high degradability rates and potential for reducing of greenhouse gases emissions. This study assessed the impacts diesel and biodiesel contamination on soil microbial community activity and structure. Our results suggest higher microbial activity in biodiesel contaminated soils and analysis of PLFA profiles confirmed shifts in microbial community structure in response to contamination. High-throughput 16S rRNA amplicon sequencing also revealed a lower bacterial richness and diversity in contaminated soils when compared to control samples, supporting evidence of the detrimental effects of hydrocarbons on soil microbiota. Control samples comprised mostly of Actinobacteria, whereas Proteobacteria were predominantly observed in diesel and biodiesel contaminated soils. At genus level, diesel and biodiesel amendments highly selected for Rhodococcus and Pseudomonas spp., respectively. Moreover, predicted functional profiles based on hydrocarbon-degrading enzymes revealed significant differences between contaminated soils mostly due to the chemical composition of diesel and biodiesel fuel. Here, we also identified that Burkholderiaceae, Novosphingobium, Anaeromyxobacter, Pseudomonas and Rhodococcus were the main bacterial taxa contributing to these enzymes. Together, this study supports the evidence of diesel/biodiesel adverse effects in soil microbial community structure and highlights microbial taxa that could be further investigated for their biodegradation potential.
Collapse
Affiliation(s)
- Eduardo K Mitter
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| | - James J Germida
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - J Renato de Freitas
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
8
|
Teramoto EH, Vogt C, Martins Baessa MP, Polese L, Soriano AU, Chang HK, Richnow HH. Dynamics of hydrocarbon mineralization characterized by isotopic analysis at a jet-fuel-contaminated site in subtropical climate. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103684. [PMID: 32711211 DOI: 10.1016/j.jconhyd.2020.103684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Release of benzene, toluene, ethylbenzene, and xylene (BTEX) as components of the light non-aqueous phase liquids (LNAPL) contaminates soil and groundwater. Assessing the mechanisms of degradation and mineralization of BTEX in groundwater helps understand the migration of the dissolved plume, enabling the reduction of risks to humans. Here, we studied the fate of ethylbezene, m,p-xylenes and o-xylenes and the accompanying formation of methane in a Cenozoic lateritic aquifer in Brazil by compound-specific carbon stable isotope analysis (CSIA), to gain insights into the complex dynamics of release and biodegradation of BTEX in the LNAPL source zone. The enrichment of ∂13C in aromatic compounds dissolved in groundwater compared to the corresponding compounds in LNAPL indicate that CSIA can provide valuable information regarding biodegradation. The isotopic analysis of methane provides direct indication of oxidation mediated by aquifer oxygenation. The ∂13C-CO2 values indicate methanogenesis prevailing at the border and aerobic biodegradation in the center of the LNAPL source zone. Importantly, the isotopic results allowed major improvements in the previously developed conceptual model, supporting the existence of oxic and anoxic environments within the LNAPL source zone.
Collapse
Affiliation(s)
- Elias Hideo Teramoto
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | - Carsten Vogt
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Luciana Polese
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | | | - Hung Kiang Chang
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil; São Paulo State University, UNESP, Dept. of Applied Geology, Rio Claro, Brazil.
| | | |
Collapse
|
9
|
Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, de Oliveira VM. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front Microbiol 2020; 11:561506. [PMID: 33072021 PMCID: PMC7530279 DOI: 10.3389/fmicb.2020.561506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023] Open
Abstract
Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.
Collapse
Affiliation(s)
- Kelly J. Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabel N. Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bruna M. Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| |
Collapse
|
10
|
Sonthiphand P, Ruangroengkulrith S, Mhuantong W, Charoensawan V, Chotpantarat S, Boonkaewwan S. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26765-26781. [PMID: 31300992 DOI: 10.1007/s11356-019-05905-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Microbial communities in groundwater are diverse and each may respond differently to environmental change. The goal of this study was to investigate the diversity, abundance, and dynamics of microbial communities in impacted groundwater and correlate them to the corresponding land use and groundwater geochemistry, using an Illumina MiSeq platform targeting the V3 and V4 regions of the 16S rRNA gene. The resulting MiSeq sequencing revealed the co-occurrence patterns of both abundant and rare microbial taxa within an impacted groundwater basin. Proteobacteria were the most common groundwater-associated bacterial phylum, mainly composed of the classes Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The phyla detected at less abundances were the Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, OD1, and Nitrospirae. The members of detected groundwater microorganisms involved in natural biogeochemical processes such as nitrification, anammox, methane oxidation, sulfate reduction, and arsenic transformation. Some of the detected microorganisms were able to perform anaerobic degradation of organic pollutants. The resulting PCA indicates that major land usage within the sampling area seemed to be significantly linked to the groundwater microbial distributions. The distinct microbial pattern was observed in the groundwater collected from a landfill area. This study suggests that the combinations of anthropogenic and natural effects possibly led to a unique pattern of microbial diversity across different locations at the impacted groundwater basin.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Satika Boonkaewwan
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
11
|
Li Y, Han Y, Song X, Li T, Liu G, Chen Z, Dong Z, Liu Y. Sized dependence and microstructural defects on highly photocatalytic activity based on multisized CdTe quantum dots sensitized TiO
2. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yuesheng Li
- Non‐power Nuclear Technology Collaborative Innovation CenterHubei University of Science and Technology Hubei Xianning 437100 PR China
| | - Yan Han
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 PR China
| | - Xiaofang Song
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology Wuhan 430081 PR China
| | - Tingting Li
- Non‐power Nuclear Technology Collaborative Innovation CenterHubei University of Science and Technology Hubei Xianning 437100 PR China
| | - Guo Liu
- Non‐power Nuclear Technology Collaborative Innovation CenterHubei University of Science and Technology Hubei Xianning 437100 PR China
| | - Zhiyuan Chen
- Non‐power Nuclear Technology Collaborative Innovation CenterHubei University of Science and Technology Hubei Xianning 437100 PR China
| | - Zhibing Dong
- School of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 PR China
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology Wuhan 430081 PR China
| |
Collapse
|
12
|
Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 2019; 30:127-145. [PMID: 30820709 DOI: 10.1007/s10532-019-09871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Galloway
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Lu H, Wang W, Li F, Zhu L. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:658-666. [PMID: 30759591 DOI: 10.1016/j.scitotenv.2018.10.385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
The present study was conducted to explore the mechanisms of surfactant-enhanced phytoremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), focusing on the bioavailability of PAHs and microbial diversity. We investigated the remediation efficiencies of phenanthrene and pyrene after the addition of mixed surfactants (sodium dodecyl benzene sulfonate (SDBS) and Tween 80) of different ratios (1:1, 1:2, and 2:1) at the concentration of 100 mg/kg to soils cultured with ryegrass (Lolium multiflorum L.). The fractions of phenanthrene and pyrene were determined using a sequential extraction method, and the microbial diversity was evaluated using 16S rRNA gene high-throughput sequencing. The results showed that mixed surfactants could enhance the remediation efficiencies of PAHs, and mainly occurred in the initial 21 days. Mixed surfactants at the ratio of 1:1 (HM1) showed the best remediation efficiency in enhancing the dissipation of pyrene in 21 days. Mixed surfactants showed little effects on the removal of phenanthrene. In general, HM1 significantly decreased the bioavailable, bound and residual fractions of pyrene; additionally, higher abundances of PAH-degradation bacteria and degradation-related genes were observed. Pearson correlation analysis among PAH degraders, degradation-related genes and bioavailable fraction of PAHs was performed. Our results indicated that mixed surfactants could promote the transformation of pyrene from the bound and residual fractions to bioavailable fractions and enhance the abundances of PAH degradation bacteria and PAH degradation-related genes, thereby enhancing the degradation of pyrene.
Collapse
Affiliation(s)
- Hainan Lu
- Dept Environm Sci, Zhejiang Univ, Hangzhou 310058, Zhejiang, China; Zhejiang Prov Key Lab Organ Pollut Proc Control, Hangzhou 310058, Zhejiang, China
| | - Wei Wang
- Dept Environm Sci, Zhejiang Univ, Hangzhou 310058, Zhejiang, China; Zhejiang Prov Key Lab Organ Pollut Proc Control, Hangzhou 310058, Zhejiang, China
| | - Feng Li
- Dept Environm Sci & Engn, Xiangtan Univ, Xiangtan 411105, China
| | - Lizhong Zhu
- Dept Environm Sci, Zhejiang Univ, Hangzhou 310058, Zhejiang, China; Zhejiang Prov Key Lab Organ Pollut Proc Control, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
14
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
15
|
Froehner S, Sánez J, Dombroski LF, Gracioto MP. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20747-20758. [PMID: 28718020 DOI: 10.1007/s11356-017-9593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SOx, mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.
Collapse
Affiliation(s)
- Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba, PR, 81531-980, Brazil.
| | - Juan Sánez
- Department of Hydraulics and Sanitation, Federal University of Parana, Curitiba, PR, 81531-980, Brazil
| | - Luiz Fernando Dombroski
- Department of Hydraulics and Sanitation, Federal University of Parana, Curitiba, PR, 81531-980, Brazil
| | - Maria Paula Gracioto
- Graduate Program in Oceanography, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
16
|
Müller JB, Ramos DT, Larose C, Fernandes M, Lazzarin HSC, Vogel TM, Corseuil HX. Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2017; 326:229-236. [PMID: 28033549 DOI: 10.1016/j.jhazmat.2016.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/22/2023]
Abstract
The use of biodiesel as a transportation fuel and its growing mandatory blending percentage in diesel increase the likelihood of contaminating groundwater with diesel/biodiesel blends. A 100L-field experiment with B20 (20% biodiesel and 80% diesel, v/v) was conducted to assess the potential for the combined biostimulation of iron and sulfate reducing bacteria to enhance BTEX and PAH biodegradation in a diesel/biodiesel blend-contaminated groundwater. A B20 field experiment under monitored natural attenuation (MNA) was used as a baseline control. Ammonium acetate and a low-cost and sustainable product recovered from acid mine drainage treatment were used to stimulate iron and sulfate-reducing conditions. As a result, benzene and naphthalene concentrations (maximum concentrations were 28.1μgL-1 and 10.0μgL-1, respectively) remained lower than the MNA experiment (maximum concentrations were 974.7μgL-1 and 121.3μgL-1, respectively) over the whole experiment. Geochemical changes were chronologically consistent with the temporal change of the predominance of Geobacter and GOUTA19 which might be the key players responsible for the rapid attenuation of benzene and naphthalene. To the best of our knowledge, this is the first field experiment to demonstrate the potential for the combined iron and sulfate biostimulation to enhance B20 source-zone biodegradation.
Collapse
Affiliation(s)
- Juliana B Müller
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| | - Débora T Ramos
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| | - Catherine Larose
- Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
| | - Marilda Fernandes
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| | - Helen S C Lazzarin
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| | - Timothy M Vogel
- Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
| | - Henry X Corseuil
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Fedrizzi F, Ramos DT, Lazzarin HSC, Fernandes M, Larose C, Vogel TM, Corseuil HX. A Modified Approach for in Situ Chemical Oxidation Coupled to Biodegradation Enhances Light Nonaqueous Phase Liquid Source-Zone Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:463-472. [PMID: 27935684 DOI: 10.1021/acs.est.6b03604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Field and batch experiments were conducted to assess whether a modified approach for in situ chemical oxidation (ISCO) (with MgO2 and Fe2O3 particles recovered from acid mine drainage treatment) can enhance LNAPL (light nonaqueous phase liquid) dissolution and produce bioavailable soluble compounds. This modified ISCO approach was coupled to biodegradation to further remove residual compounds by microbially mediated processes. Pure palm biodiesel (B100) was chosen to represent a poorly water-soluble compound that behaves like LNAPLs, and 100 L was released to a 2 m2 area excavated down to the water table. A past adjacent B100-field experiment under natural attenuation was conducted as a baseline control. Results demonstrated the enhancement of organic compound dissolution and production of soluble compounds due to the modified in situ chemical oxidation. The slow release of H2O2 by MgO2 decomposition (termed partial chemical oxidation) and production of soluble compounds allowed the stimulation of microbial growth and promoted a beneficial response in microbial communities involved in oxidized biodiesel compound biodegradation. This is the first field experiment to demonstrate that this modified ISCO approach coupled to biodegradation could be a feasible strategy for the removal of poorly water-soluble compounds (e.g., biodiesel) and prevent the long-term effects generally posed in source zones.
Collapse
Affiliation(s)
- Franciele Fedrizzi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| | - Débora T Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| | - Helen S C Lazzarin
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| | - Marilda Fernandes
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampere, CNRS, École Centrale de Lyon, Université de Lyon , Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampere, CNRS, École Centrale de Lyon, Université de Lyon , Ecully, France
| | - Henry X Corseuil
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Andrade MVF, Sakamoto IK, Corbi JJ, Silva EL, Varesche MBA. Effects of hydraulic retention time, co-substrate and nitrogen source on laundry wastewater anionic surfactant degradation in fluidized bed reactors. BIORESOURCE TECHNOLOGY 2017; 224:246-254. [PMID: 27847235 DOI: 10.1016/j.biortech.2016.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/12/2023]
Abstract
The aim of this study was to evaluate the influence of hydraulic retention time (HRT) on linear alkylbenzene sulfonate (LAS) removal in fluidized bed reactors (FBRs). FBR1 (HRT of 8h) and FBR2 (HRT of 12h) were fed laundry wastewater with 18.6±4.1 to 27.1±5.6mg/L of LAS in the following conditions: ethanol and nitrate addition (Phases I, II and III), nitrate (Phase IV), ethanol (Phase V) and laundry wastewater (Phase VI). LAS removal was 93±12% (FBR1) and 99±2% (FBR2). In FBR1, nitrate influenced significantly on LAS removal (99±3% - Phase IV) compared to the phase without nitrate (90±15% - Phase V). In FBR1 the absence of ethanol was more favourable for LAS removal (99±3% - Phase IV) compared to ethanol addition (87±16% - Phase II). In FBR2, 99±2% LAS removal was found up to 436days. By microbial characterization were identified bacteria as Acinetobacter, Dechloromonas, Pseudomonas and Zoogloea.
Collapse
Affiliation(s)
- Marcus Vinicius Freire Andrade
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Juliano José Corbi
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Ramos DT, Lazzarin HSC, Alvarez PJJ, Vogel TM, Fernandes M, do Rosário M, Corseuil HX. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 193:48-53. [PMID: 27636988 DOI: 10.1016/j.jconhyd.2016.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/15/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈22mgL-1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.
Collapse
Affiliation(s)
- Débora Toledo Ramos
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Helen Simone Chiaranda Lazzarin
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, MS-317, 6100 Main St, Houston, TX 77005, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | - Marilda Fernandes
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Mário do Rosário
- Petróleo Brasileiro Petrobras, Research Centre (CENPES), Rio de Janeiro, Rio de Janeiro, PO Box 21941598, Brazil
| | - Henry Xavier Corseuil
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|