1
|
Man Y, Wang B, Wang J, Cai K, Rinklebe J, Zhang L, Feng X. New Insights into MeHg Accumulation in Rice ( Oryza sativa L.): Evidence from Cysteine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5942-5951. [PMID: 38507823 DOI: 10.1021/acs.est.3c08385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.
Collapse
Affiliation(s)
- Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Wang
- Health Management Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kai Cai
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, 42285 Wuppertal, Germany
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang L, Kang-Yun CS, Lu X, Chang J, Liang X, Pierce EM, Semrau JD, Gu B. Adsorption and intracellular uptake of mercuric mercury and methylmercury by methanotrophs and methylating bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121790. [PMID: 37187279 DOI: 10.1016/j.envpol.2023.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The cell surface adsorption and intracellular uptake of mercuric Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. Strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs generally took up 60-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 only adsorbed 20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biosystems Engineering and Soil Science, University of Tennesee, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Liu Y, Gu C, Liu H, Zhou Y, Nie Z, Wang Y, Chen L, Xia J. Fe/S Redox-Coupled Mercury Transformation Mediated by Acidithiobacillus ferrooxidans ATCC 23270 under Aerobic and/or Anaerobic Conditions. Microorganisms 2023; 11:microorganisms11041028. [PMID: 37110452 PMCID: PMC10141921 DOI: 10.3390/microorganisms11041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Bioleaching processes or microbially mediated iron/sulfur redox processes in acid mine drainage (AMD) result in mineral dissolution and transformation, the release of mercury and other heavy metal ions, and changes in the occurrence forms and concentration of mercury. However, pertinent studies on these processes are scarce. Therefore, in this work, the Fe/S redox-coupled mercury transformation mediated by Acidithiobacillus ferrooxidans ATCC 23270 under aerobic and/or anaerobic conditions was studied by combining analyses of solution behavior (pH, redox potential, and Fe/S/Hg ion concentrations), the surface morphology and elemental composition of the solid substrate residue, the Fe/S/Hg speciation transformation, and bacterial transcriptomics. It was found that: (1) the presence of Hg2+ significantly inhibited the apparent iron/sulfur redox process; (2) the addition of Hg2+ caused a significant change in the composition of bacterial surface compounds and elements such as C, N, S, and Fe; (3) Hg mainly occurred in the form of Hg0, HgS, and HgSO4 in the solid substrate residues; and (4) the expression of mercury-resistant genes was higher in earlier stages of growth than in the later stages of growth. The results indicate that the addition of Hg2+ significantly affected the iron/sulfur redox process mediated by A. ferrooxidans ATCC 23270 under aerobic, anaerobic, and coupled aerobic-anaerobic conditions, which further promoted Hg transformation. This work is of great significance for the treatment and remediation of mercury pollution in heavy metal-polluted areas.
Collapse
Affiliation(s)
- Yue Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chenyun Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongchang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Yuhang Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhenyuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Yirong Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Barrouilhet S, Monperrus M, Tessier E, Khalfaoui-Hassani B, Guyoneaud R, Isaure MP, Goñi-Urriza M. Effect of exogenous and endogenous sulfide on the production and the export of methylmercury by sulfate-reducing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3835-3846. [PMID: 35953752 DOI: 10.1007/s11356-022-22173-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.
Collapse
Affiliation(s)
- Sophie Barrouilhet
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Mathilde Monperrus
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Anglet, France
| | - Emmanuel Tessier
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | | | - Rémy Guyoneaud
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Marie-Pierre Isaure
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Marisol Goñi-Urriza
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France.
| |
Collapse
|
5
|
The Transformation of Hg 2+ during Anaerobic S 0 Reduction by an AMD Environmental Enrichment Culture. Microorganisms 2022; 11:microorganisms11010072. [PMID: 36677364 PMCID: PMC9865316 DOI: 10.3390/microorganisms11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Mercury (Hg) is a highly toxic and persistent heavy metal pollutant. The acid mine drainage (AMD) environment in sulfide-mining areas is a typical Hg pollution source. In this paper, the transformation of Hg2+ during anaerobic S0 reduction by an AMD environmental enrichment culture was studied by multiple spectroscopic and microscopic techniques. The experimental results showed that the microbial S0 reduction of the AMD enrichment culture was significantly inhibited in the presence of Hg2+. The results of cell surface morphology and composition analysis showed that there was obvious aggregation of flocculent particles on the cell surface in the presence of Hg2+, and the components of extracellular polymeric substances on the cell surface changed significantly. The results of surface morphology and C/S/Hg speciation transformation analyses of the solid particulate showed that Hg2+ gradually transformed to mercuric sulfide and Hg0 under anaerobic S0 reduction by the AMD enrichment culture. The microbial community structure results showed that Hg2+ significantly changed the enrichment community structure by decreasing their evenness. The dominant microorganisms with S0 reduction functions are closely related to mercury transformation and are the key driving force for the transformation of substrate solid particulate and cellular substances, as well as the fixation of Hg2+.
Collapse
|
6
|
Washburn SJ, Damond J, Sanders JP, Gilmour CC, Ghosh U. Uptake Mechanisms of a Novel, Activated Carbon-Based Equilibrium Passive Sampler for Estimating Porewater Methylmercury. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2052-2064. [PMID: 35698924 PMCID: PMC9420783 DOI: 10.1002/etc.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We describe the validation of a novel polymeric equilibrium passive sampler comprised of agarose gel with embedded activated carbon particles (ag+AC), to estimate aqueous monomethylmercury (MeHg) concentrations. Sampler behavior was tested using a combination of idealized media and realistic sediment microcosms. Isotherm bottle experiments with ag+AC polymers were conducted to constrain partitioning to these materials by various environmentally relevant species of MeHg bound to dissolved organic matter (MeHgDOM) across a range of sizes and character. Log of partitioning coefficients for passive samplers (Kps ) ranged from 1.98 ± 0.09 for MeHg bound to Suwannee River humic acid to 3.15 ± 0.05 for MeHg complexed with Upper Mississippi River natural organic matter. Reversible equilibrium exchange of environmentally relevant MeHg species was demonstrated through a series of dual isotope-labeled exchange experiments. Isotopically labeled MeHgDOM species approached equilibrium in the samplers over 14 days, while mass balance was maintained, providing strong evidence that the ag+AC polymer material is capable of equilibrium measurements of environmentally relevant MeHg species within a reasonable deployment time frame. Samplers deployed across the sediment-water interface of sediment microcosms estimated both overlying water and porewater MeHg concentrations within a factor of 2 to 4 of measured values, based on the average measured Kps values for species of MeHg bound to natural organic matter in the isotherm experiments. Taken together, our results indicate that ag+AC polymers, used as equilibrium samplers, can provide accurate MeHg estimations across many site chemistries, with a simple back-calculation based on a standardized Kps. Environ Toxicol Chem 2022;41:2052-2064. © 2022 SETAC.
Collapse
Affiliation(s)
- Spencer J. Washburn
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Jada Damond
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| | - James P. Sanders
- US Environmental Protection Agency, Office of Pollution
Prevention and Toxics, Washington, DC 20460, United States
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| |
Collapse
|
7
|
Hao YY, Zhu YJ, Yan RQ, Gu B, Zhou XQ, Wei RR, Wang C, Feng J, Huang Q, Liu YR. Important Roles of Thiols in Methylmercury Uptake and Translocation by Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6765-6773. [PMID: 35483101 DOI: 10.1021/acs.est.2c00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.
Collapse
Affiliation(s)
- Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jie Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruo-Qun Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren-Rui Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Xu T, Cao J, Qian R, Song Y, Wang W, Ma J, Gao K, Xu J. Ocean acidification exacerbates copper toxicity in both juvenile and adult stages of the green tide alga Ulva linza. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105447. [PMID: 34438216 DOI: 10.1016/j.marenvres.2021.105447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of heavy metals to coastal organisms can be modulated by changes in pH due to progressive ocean acidification (OA). We investigated the combined impacts of copper and OA on different stages of the green macroalga Ulva linza, which is widely distributed in coastal waters, by growing the alga under the addition of Cu (control, 0.125 (medium, MCu), and 0.25 (high) μM, HCu) and elevated pCO2 of 1,000 μatm, predicted in the context of global change. The relative growth rates decreased significantly in both juvenile and adult thalli at HCu under OA conditions. The net photosynthetic and respiration rates, as well as the relative electron transfer rates for the adult thalli, also decreased under the combined impacts of HCu and OA, although no significant changes in the contents of photosynthetic pigments were detected. Our results suggest that Cu and OA act synergistically to reduce the growth and photosynthetic performance of U. linza, potentially prolonging its life cycle.
Collapse
Affiliation(s)
- Tianpeng Xu
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Junyang Cao
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rui Qian
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yujing Song
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wen Wang
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing Ma
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, 361005, China
| | - Juntian Xu
- Jiangsu Key Lab of Marine Bioresources and Environment/Jiangsu Key Lab of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China; State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Sanders JP, McBurney A, Gilmour CC, Schwartz GE, Washburn S, Kane Driscoll SB, Brown SS, Ghosh U. Development of a Novel Equilibrium Passive Sampling Device for Methylmercury in Sediment and Soil Porewaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:323-334. [PMID: 31692059 PMCID: PMC9188764 DOI: 10.1002/etc.4631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
We explored the concept of equilibrium passive sampling for methylmercury (MeHg) using the strategy developed for hydrophobic organic chemicals. Passive sampling should allow prediction of the concentration of the chemically labile fraction of MeHg in sediment porewaters based on equilibrium partitioning into the sampler, without modeling diffusion rates through the sampler material. Our goals were to identify sampler materials with the potential to mimic MeHg partitioning into animals and sediments and provide reversible sorption in a time frame appropriate for in situ samplers. Candidate materials tested included a range of polymers embedded with suitable sorbents for MeHg. The most promising were activated carbon (AC) embedded in agarose, thiol-self-assembled monolayers on mesoporous supports embedded in agarose, and cysteine-functionalized polyethylene terephthalate, which yielded log sampler-water partition coefficients of 2.8 to 5 for MeHgOH and MeHg complexed with dissolved organic matter (Suwannee River humic acid). Sampler equilibration time in sediments was approximately 1 to 2 wk. Investigation of the MeHg accumulation mechanism by AC embedded in agarose suggested that sampling was kinetically influenced by MeHg interactions with AC particles and not limited by diffusion through the gel for this material. Also, AC exhibited relatively rapid desorption of Hg and MeHg, indicating that this sorbent is capable of reversible, equilibrium measurements. In sediment:water microcosms, porewater concentrations made with isotherm-calibrated passive samplers agreed within a factor of 2 (unamended sediment) or 4 (AC-amended sediment) with directly measured concentrations. The present study demonstrates a potential new approach to passive sampling of MeHg. Environ Toxicol Chem 2020;39:323-334. © 2019 SETAC.
Collapse
Affiliation(s)
- James P Sanders
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Alyssa McBurney
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | - Grace E Schwartz
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Spencer Washburn
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | | | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Skrobonja A, Gojkovic Z, Soerensen AL, Westlund PO, Funk C, Björn E. Uptake Kinetics of Methylmercury in a Freshwater Alga Exposed to Methylmercury Complexes with Environmentally Relevant Thiols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13757-13766. [PMID: 31682417 DOI: 10.1021/acs.est.9b05164] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellular uptake of dissolved methylmercury (MeHg) by phytoplankton is the most important point of entry for MeHg into aquatic food webs. However, the process is not fully understood. In this study we investigated the influence of chemical speciation on rate constants for MeHg accumulation by the freshwater green microalga Selenastrum capricornutum. We used six MeHg-thiol complexes with moderate but important structural differences commonly found in the environment. Rate constants for MeHg interactions with cells were determined for the MeHg-thiol treatments and a control assay containing the thermodynamically less stable MeHgOH complex. We found both elevated amounts of MeHg associated with whole cells and higher MeHg association rate constants in the control compared to the thiol treatments. Furthermore, the association rate constants were lower when algae were exposed to MeHg complexes with thiols of larger size and more "branched" chemical structure compared to complexes with simpler structure. The results further demonstrated that the thermodynamic stability and chemical structure of MeHg complexes in the medium is an important controlling factor for the rate of MeHg interactions with the cell surface, but not for the MeHg exchange rate across the membrane. Our results are in line with uptake mechanisms involving formation of MeHg complexes with cell surface ligands prior to internalization.
Collapse
Affiliation(s)
| | - Zivan Gojkovic
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| | - Anne L Soerensen
- Stockholm University , Department of Environmental Science and Analytical Chemistry , SE-106 97 Stockholm , Sweden
| | | | - Christiane Funk
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| | - Erik Björn
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| |
Collapse
|
11
|
Lee CS, Fisher NS. Microbial generation of elemental mercury from dissolved methylmercury in seawater. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:679-693. [PMID: 31105337 PMCID: PMC6519744 DOI: 10.1002/lno.11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0 in seawater remains unquantified. A rapid radioassay method was developed using gamma-emitting 203Hg as a tracer to evaluate Hg0 production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0 in 4 d in Atlantic surface seawater containing low bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24°C to 4°C reduced Hg0 production rates cell-1 from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0 production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0 formation in subsurface waters where light penetration is diminished.
Collapse
|
12
|
Regnell O, Watras CJ. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4-19. [PMID: 30525497 DOI: 10.1021/acs.est.8b02709] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant of concern because it biomagnifies in aquatic food webs and poses a health hazard to aquatic biota, piscivorous wildlife and humans. The dominant source of MeHg to freshwater systems is the methylation of inorganic Hg (IHg) by anaerobic microorganisms; and it is widely agreed that in situ rates of Hg methylation depend on two general factors: the activity of Hg methylators and their uptake of IHg. A large body of research has focused on the biogeochemical processes that regulate these two factors in nature; and studies conducted within the past ten years have made substantial progress in identifying the genetic basis for intracellular methylation and defining the processes that govern the cellular uptake of IHg. Current evidence indicates that all Hg methylating anaerobes possess the gene pair hgcAB that encodes proteins essential for Hg methylation. These genes are found in a large variety of anaerobes, including iron reducers and methanogens; but sulfate reduction is the metabolic process most often reported to show strong links to MeHg production. The uptake of Hg substrate prior to methylation may occur by passive or active transport, or by a combination of both. Competitive inhibition of Hg uptake by Zn speaks in favor of active transport and suggests that essential metal transporters are involved. Shortly after its formation, MeHg is typically released from cells, but the efflux mechanisms are unknown. Although methylation facilitates Hg depuration from the cell, evidence suggests that the hgcAB genes are not induced or favored by Hg contamination. Instead, high MeHg production can be linked to high Hg bioavailability as a result of the formation of Hg(SH)2, HgS nanoparticles, and Hg-thiol complexes. It is also possible that sulfidic conditions require strong essential metal uptake systems that inadvertently bring Hg into the cytoplasm of Hg methylating microbes. In comparison with freshwaters, Hg methylation in open ocean waters appears less restricted to anoxic environments. It does seem to occur mainly in oxygen deficient zones (ODZs), and possibly within anaerobic microzones of settling organic matter, but MeHg (CH3Hg+) and Me2Hg ((CH3)2Hg) have been shown to form also in surface water samples from the euphotic zone. Future studies may disclose whether several different pathways lead to Hg methylation in marine waters and explain why Me2Hg is a significant Hg species in oceans but seemingly not in most freshwaters.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology , Lund University , SE-223 62 Lund , Sweden
| | - Carl J Watras
- Bureau of Water Quality , Wisconsin Department of Natural Resources , Madison , Wisconsin 53703 , United States
- Center for Limnology , University of Wisconsin-Madison , 3110 Trout Lake Station Drive , Boulder Junction , Wisconsin 54512 , United States
| |
Collapse
|
13
|
Wang Y, Yu Q, Mishra B, Schaefer JK, Fein JB, Yee N. Adsorption of Methylmercury onto Geobacter bemidijensis Bem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11564-11572. [PMID: 30207459 DOI: 10.1021/acs.est.8b01987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The anaerobic bacterium Geobacter bemidijensis Bem has the unique ability to both produce and degrade methylmercury (MeHg). While the adsorption of MeHg onto bacterial surfaces can affect the release of MeHg into aquatic environments as well as the uptake of MeHg for demethylation, the binding of MeHg to the bacterial envelope remains poorly understood. In this study, we quantified the adsorption of MeHg onto G. bemidijensis and applied X-ray absorption spectroscopy (XAS) to elucidate the mechanism of MeHg binding. The results showed MeHg adsorption onto G. bemidijensis cell surfaces was rapid and occurred via complexation to sulfhydryl functional groups. Titration experiments yielded cell surface sulfhydryl concentrations of 3.8 ± 0.2 μmol/g (wet cells). A one-site adsorption model with MeHg binding onto sulfhydryl sites provided excellent fits to adsorption isotherms conducted at different cell densities. The log K binding constant of MeHg onto the sulfhydryl sites was determined to be 10.5 ± 0.4. These findings provide a quantitative framework to describe MeHg binding onto bacterial cell surfaces and elucidate the importance of bacterial cells as possible carriers of adsorbed MeHg in natural aquatic systems.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Jeffra K Schaefer
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Nathan Yee
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
14
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Lee CS, Fisher NS. Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter. MARINE CHEMISTRY 2017; 197:70-79. [PMID: 30983685 PMCID: PMC6457661 DOI: 10.1016/j.marchem.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The largest bioconcentration step of most metals, including methylmercury (MeHg), in aquatic biota is from water to phytoplankton, but the extent to which dissolved organic matter (DOM) affects this process for MeHg largely remains unexplored in marine systems. This study investigated the influence of specific sulfur-containing organic compounds and naturally occurring DOM on the accumulation of MeHg in a marine diatom Thalassiosira pseudonana. Initial uptake rate constants and volume concentration factors (VCFs) of MeHg were calculated to evaluate MeHg enrichment in algal cells in the presence of a range of organic compound concentrations. At environmentally realistic and higher concentrations, the addition of glycine and methionine had no effect on algal MeHg uptake, but thiol-containing compounds such as cysteine and thioglycolic acid reduced MeHg accumulation in algal cells at high added concentrations (> 100 times higher than naturally occurring concentrations). However, environmentally realistic concentrations of glutathione, another thiol-containing compound as low as 10 nM, resulted in a decline of ~ 30% in VCFs, suggesting its possible importance in natural waters. Humic acid additions of 0.1 and 0.5 mg C/L also reduced MeHg VCFs by ~ 15% and ~ 25%, respectively. The bioaccumulation of MeHg for T. pseudonana in coastal waters with varying levels of dissolved organic carbon (DOC) was inversely correlated with bulk DOC concentrations. Generally, naturally occurring DOM, particularly certain thiol-containing compounds, can reduce MeHg uptake by phytoplankton.
Collapse
|
16
|
Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T, Gu B. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4366-73. [PMID: 27019098 DOI: 10.1021/acs.est.6b00401] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.
Collapse
Affiliation(s)
- Xia Lu
- School of Nuclear Science and Technology, Lanzhou University , Lanzhou, China
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Yurong Liu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, China
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Tieshan Wang
- School of Nuclear Science and Technology, Lanzhou University , Lanzhou, China
| | - Ziming Yang
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hui Lin
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Liyuan Liang
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|