1
|
Xiao Y, Dong M, Yang B, Wang S, Liang S, Liu D, Zhang H. Strengthening bioremediation potential: Enterobacter ludwigii ES2 for combined nicosulfuron and Cd contamination through whole genome and microbial diversity community analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135476. [PMID: 39137549 DOI: 10.1016/j.jhazmat.2024.135476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Nicosulfuron and Cd are common pollutants that pose significant threats to the environment and human health, particularly under combined stress. This study is the first to remediate environmental nicosulfuron and Cd under combined stress using microbiological techniques. Enterobacter ludwigii ES2 was isolated, characterized, and demonstrated to degrade 93.80 % of nicosulfuron and remove 59.64 % of Cd within 4 d. Potential functional genes, including nicosulfuron degradation genes gstA, gstB, glnQ, glnP, mreB, and sixA, and Cd tolerance/removal-related genes mntA, mntB, mntH, dnaK, znuA, and zupt, were predicted by sequencing the whole genome of strain ES2, and their expression was verified by qRT-PCR. Strain ES2 managed oxidative stress induced by Cd through superoxide dismutase, glutathione, catalase, peroxidase, and malondialdehyde. Furthermore, to repair compound stress, up to 90.48 % of nicosulfuron and 67.74 % of Cd were removed. The community structure analysis indicated that Enterobacteriaceae, Sphingomonadaceae, and Gemmatimonadaceae were dominant populations, with ES2 stably colonizing and becoming the dominant bacterium. In summary, ES2 demonstrated significant potential in remediating nicosulfuron and Cd pollution from various perspectives, providing a solid theoretical foundation.
Collapse
Affiliation(s)
- Yufeng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Meiqi Dong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Bingbing Yang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Siya Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, China.
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Huang M, Shen S, Meng Z, Si G, Wu X, Feng T, Liu C, Chen J, Duan C. Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115527. [PMID: 37806135 DOI: 10.1016/j.ecoenv.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.
Collapse
Affiliation(s)
- Mingyu Huang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shili Shen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xinni Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; School of Agriculture, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Zhang Y, Xu Y, Liang X, Wang L, Sun Y, Huang Q, Qin X. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98091-98105. [PMID: 37603246 DOI: 10.1007/s11356-023-29376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Mercaptosilane-modified palygorskite (MP) can immobilize Cd in acid soil and reduce the enrichment of Cd in rice. However, the immobilization effect and its durability on alkaline field were unclear. Meanwhile, whether MP could reduce Cd in different wheat parts at different stages also needs further exploration. Here, we determined the dynamic change of Cd in soil and wheat at different periods, studied the interaction mechanism at key organs, and calculated the contribution of coexisting metals on the reduction of Cd to study the effect of MP on the transfer of Cd in soil-wheat system. Results showed MP was highly effective to immobilize Cd in alkaline farmland and could take effect during the whole growing season but not change pH values. DTPA-Cd and EXE-Cd of soil were reduced by 34.88-49.71% and 49.36-84.81%, respectively, while OX-Cd was increased by 34.61-43.60% at the whole stages. Cd in grains at maturity stage was reduced from 0.118 to 0.069 mg/kg, lower than the limit standard of the China and Codex Alimentarius Commission (0.1 mg/kg). Root and nodes were critical organs influenced by MP to reduce Cd in grains, and the reduction efficiency on wheat was relatively weak at flowering and filling stage. MP regulated the antagonism or synergy effects of coexisting elements on Cd to modulate the Cd accumulation in grains. Besides, the contributions of different elements on Cd were also evaluated by path models. This will provide an important basis for the precision remediation of Cd-polluted alkaline wheat fields.
Collapse
Affiliation(s)
- Yu Zhang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lin Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| |
Collapse
|
5
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
6
|
Ge C, Huang M, Huang D, Dang F, Huang Y, Ahmad HA, Zhu C, Chen N, Wu S, Zhou D. Effect of metal cations on antimicrobial activity and compartmentalization of silver in Shewanella oneidensis MR-1 upon exposure to silver ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156401. [PMID: 35654200 DOI: 10.1016/j.scitotenv.2022.156401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Silver is an antimicrobial agent that is used extensively in consumer products, such as fabrics and humidifiers. Silver ion (Ag+) uptake in bacteria represents a crucial phase of antimicrobial activity. However, the uptake mechanism of Ag+ in bacteria remains largely unknown. The genus Shewanella drives many geochemical processes of nutrients and pollutants in soils. In the present study, Ag+ uptake by Shewanella oneidensis MR-1 was first investigated in a laboratory in defined anaerobic, oligotrophic, and inorganic media with or without cations (potassium ions [K+], magnesium ions [Mg2+], and zinc ions [Zn2+]). Our results revealed variations in antimicrobial activity of Ag+ in the presence of Mg2+ and Zn2+. First, Mg2+ significantly decreased antimicrobial activity of Ag+ in S. oneidensis MR-1 by inhibiting cellular Ag+ uptake when compared with K+. The results were consistent with that of Co2+ (Mg2+ channel blocker) decreased Ag+ uptake by S. oneidensis MR-1. Moreover, Mg2+ promoted riboflavin secretion and facilitated the formation of metallic Ag nanoparticles on bacterial surfaces, which was beneficial for extracellular electron transfer and consequently reduced antibacterial activity of Ag+. Second, Zn2+ increased the antimicrobial activity of Ag+ in S. oneidensis MR-1, although the effect on Ag+ uptake was minimal. A synergistic interaction between Zn2+ and Ag+ led to an increase in dead cells and decreased ferrihydrite reduction capacity. The findings suggest that Mg2+ could reduce the environmental risk of Ag+ to soil bacteria, while Zn2+ should be of particular concern due to its synergistic antimicrobial effect on bacteria.
Collapse
Affiliation(s)
- Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingquan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Visconti S, Astolfi ML, Battistoni A, Ammendola S. Impairment of the Zn/Cd detoxification systems affects the ability of Salmonella to colonize Arabidopsis thaliana. Front Microbiol 2022; 13:975725. [PMID: 36071967 PMCID: PMC9441889 DOI: 10.3389/fmicb.2022.975725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella capacity to colonize different environments depends on its ability to respond efficiently to fluctuations in micronutrient availability. Among micronutrients, Zn, besides playing an essential role in bacterial physiology, is a key element whose concentration can influence bacterial survival in a particular niche. Plant colonization by Salmonella enterica was described for several years, and some molecular determinants involved in this host-pathogen interaction have started to be characterized. However, it is still unclear if Zn plays a role in the outcome of this interaction, as well established for animal hosts that employ nutritional immunity strategies to counteract pathogens infections. In this study, we have investigated the involvement of Salmonella Typhimurium main effectors of zinc homeostasis in plant colonization, using Arabidopsis thaliana as a model host. The results show that to colonize plant tissues, Salmonella takes advantage of its ability to export excess metal through the efflux pumps ZntA and ZitB. In fact, the deletion of these Zn/Cd detoxification systems can affect bacterial persistence in the shoots, depending on metal availability in the plant tissues. The importance of Salmonella ability to export excess metal was enhanced in the colonization of plants grown in high Zn conditions. On the contrary, the bacterial disadvantage related to Zn detoxification impairment can be abrogated if the plant cannot efficiently translocate Zn to the shoots. Overall, our work highlights the role of Zn in Salmonella-plant interaction and suggests that modulation of plant metal content through biofortification may be an efficient strategy to control pathogen colonization.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Serena Ammendola,
| |
Collapse
|
8
|
Bi SS, Talukder M, Jin HT, Lv MW, Ge J, Zhang C, Li JL. Cadmium Through Disturbing MTF1-Mediated Metal Response Induced Cerebellar Injury. Neurotox Res 2022; 40:1127-1137. [PMID: 35895249 PMCID: PMC9326427 DOI: 10.1007/s12640-022-00474-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is a toxic environmental contaminant, which bio-accumulate in animals through the food chain. Cerebellum is one of the primary target organs for Cd exposure. In this study, we established a chronic Cd exposure model; 60 chickens were treated with Cd (0 mg/kg, 35 mg/kg, 70 mg/kg) for 90 days. Clinical manifestations indicated that the chicken was depressed and has unstable gait under Cd exposure. Histopathological results indicated that Cd induced neuronal shrunken and indistinct nucleoli, and the number of Purkinje cells decreased significantly. Cerebellar metal contents were analyzed by ICP-MS. We found that Cd caused Cd and Cu accumulation and decreased the content of Se, Fe, and Zn, suggesting that Cd disturbed metal homeostasis. Besides, Cd treatment group also showed high levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and inhibited selenoprotein transcriptome, suggesting that Cd exposure resulted in oxidative stress. Notably, low-dose Cd exposure activated MTF1 mRNA and protein expression and its target metal-responsive genes, including MT1, MT2, DMT1, ZIP8, ZIP10, TF, and ATP7B which indicate cellular adaptive response against Cd-induced damage. On the other hand, 70 mg/kg Cd downregulated MTF1-mediated metal response, which was involved in Cd-induced cerebellar injury in chicken. In conclusion, our data demonstrated that molecular mechanisms are associated with Cd-induced cerebellar injury due to disturbing MTF1-mediated metal response.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an , 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Faculty of Animal Science and Veterinary Medicine, Department of Physiology and Pharmacology, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Wu S, Zhou Z, Zhu L, Zhong L, Dong Y, Wang G, Shi K. Cd immobilization mechanisms in a Pseudomonas strain and its application in soil Cd remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127919. [PMID: 34894511 DOI: 10.1016/j.jhazmat.2021.127919] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
In this study, we isolated a highly cadmium (Cd)-resistant bacterium, Pseudomonas sp. B7, which immobilized 100% Cd(II) from medium. Culturing strain B7 with Cd(II) led to the change of functional groups, mediating extracellular Cd(II) adsorption. Proteomics showed that a carbonic anhydrase, CadW, was upregulated with Cd(II). CadW expression in Escherichia coli conferred resistance to Cd(II) and increased intracellular Cd(II) accumulation. Fluorescence assays demonstrated that CadW binds Cd(II) and the His123 residue affected Cd(II) binding activity, indicating that CadW participates in intracellular Cd(II) sequestration. Chinese cabbage pot experiments were performed using strain B7 and silicate [Si(IV)]. Compared with the control, Cd content in aboveground parts significantly decreased by 21.3%, 29.4% and 32.9%, and nonbioavailable Cd in soil significantly increased by 129.4%, 45.0% and 148.7% in B7, Si(IV) and B7 +Si(IV) treatments, respectively. The application of Si(IV) alone reduced chlorophyll content by 20.8% and arylsulfatase activity in soil by 33.9%, and increased malonaldehyde activity by 15.0%. The application of strain B7 alleviated the negative effect of Si(IV) on plant and soil enzymes. Overall, application of Si(IV) is most conducive to the decreased Cd accumulation in plant, and strain B7 is beneficial to maintaining soil and plant health.
Collapse
Affiliation(s)
- Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Limin Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Essential role of extracytoplasmic proteins in the resistance of Gluconacetobacter diazotrophicus to cadmium. Res Microbiol 2022; 173:103922. [DOI: 10.1016/j.resmic.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
11
|
The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Appl Environ Microbiol 2021; 87:e0171821. [PMID: 34495707 DOI: 10.1128/aem.01718-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acinetobacter species are ubiquitous Gram-negative bacteria that can be found in water, in soil, and as commensals of the human skin. The successful inhabitation of Acinetobacter species in diverse environments is primarily attributable to the expression of an arsenal of stress resistance determinants, which includes an extensive repertoire of metal ion efflux systems. Metal ion homeostasis in the hospital pathogen Acinetobacter baumannii contributes to pathogenesis; however, insights into its metal ion transporters for environmental persistence are lacking. Here, we studied the impact of cadmium stress on A. baumannii. Our functional genomics and independent mutant analyses revealed a primary role for CzcE, a member of the cation diffusion facilitator (CDF) superfamily, in resisting cadmium stress. We also show that the CzcCBA heavy metal efflux system contributes to cadmium efflux. Collectively, these systems provide A. baumannii with a comprehensive cadmium translocation pathway from the cytoplasm to the periplasm and subsequently the extracellular space. Furthermore, analysis of the A. baumannii metallome under cadmium stress showed zinc depletion, as well as copper enrichment, both of which are likely to influence cellular fitness. Overall, this work provides new knowledge on the role of a broad arsenal of membrane transporters in A. baumannii metal ion homeostasis. IMPORTANCE Cadmium toxicity is a widespread problem, yet the interaction of this heavy metal with biological systems is poorly understood. Some microbes have evolved traits to proactively counteract cadmium toxicity, including Acinetobacter baumannii, which is notorious for persisting in harsh environments. Here, we show that A. baumannii utilizes a dedicated cadmium efflux protein in concert with a system that is primarily attuned to zinc efflux to efficiently overcome cadmium stress. The molecular characterization of A. baumannii under cadmium stress revealed how active cadmium efflux plays a key role in preventing the dysregulation of bacterial metal ion homeostasis, which appeared to be a primary means by which cadmium exerts toxicity upon the bacterium.
Collapse
|
12
|
Salmonella Typhimurium and Pseudomonas aeruginosa Respond Differently to the Fe Chelator Deferiprone and to Some Novel Deferiprone Derivatives. Int J Mol Sci 2021; 22:ijms221910217. [PMID: 34638558 PMCID: PMC8508819 DOI: 10.3390/ijms221910217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to obtain Fe is critical for pathogens to multiply in their host. For this reason, there is significant interest in the identification of compounds that might interfere with Fe management in bacteria. Here we have tested the response of two Gram-negative pathogens, Salmonella enterica serovar Typhimurium (STM) and Pseudomonas aeruginosa (PAO1), to deferiprone (DFP), a chelating agent already in use for the treatment of thalassemia, and to some DFP derivatives designed to increase its lipophilicity. Our results indicate that DFP effectively inhibits the growth of PAO1, but not STM. Similarly, Fe-dependent genes of the two microorganisms respond differently to this agent. DFP is, however, capable of inhibiting an STM strain unable to synthesize enterochelin, while its effect on PAO1 is not related to the capability to produce siderophores. Using a fluorescent derivative of DFP we have shown that this chelator can penetrate very quickly into PAO1, but not into STM, suggesting that a selective receptor exists in Pseudomonas. Some of the tested derivatives have shown a greater ability to interfere with Fe homeostasis in STM compared to DFP, whereas most, although not all, were less active than DFP against PAO1, possibly due to interference of the added chemical tails with the receptor-mediated recognition process. The results reported in this work indicate that DFP can have different effects on distinct microorganisms, but that it is possible to obtain derivatives with a broader antimicrobial action.
Collapse
|
13
|
Liu H, Zhang Y, Wang Y, Xie X, Shi Q. The Connection between Czc and Cad Systems Involved in Cadmium Resistance in Pseudomonas putida. Int J Mol Sci 2021; 22:ijms22189697. [PMID: 34575861 PMCID: PMC8469834 DOI: 10.3390/ijms22189697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is widespread and persistent, and causes serious harm to the environment. Pseudomonas putida, a representative environmental microorganism, has strong resistance to heavy metals due to its multiple efflux systems. Although the functions of many efflux systems have been well-studied, the relationship between them remains unclear. Here, the relationship between the Czc and Cad systems that are predominantly responsible for cadmium efflux in P. putida KT2440 is identified. The results demonstrated that CzcR3, the response regulator of two-component system CzcRS3 in the Czc system, activates the expression of efflux pump genes czcCBA1 and czcCBA2 by directly binding to their promoters, thereby helping the strain resist cadmium stress. CzcR3 can also bind to its own promoter, but it has only a weak regulatory effect. The high-level expression of czcRS3 needs to be induced by Cd2+, and this relies on the regulation of CadR, a key regulator in the Cad system, which showed affinity to czcRS3 promoter. Our study indicates that the Cad system is involved in the regulation of the Czc system, and this relationship is important for maintaining the considerable resistance to cadmium in P. putida.
Collapse
|
14
|
Xia X, Wu S, Zhou Z, Wang G. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123685. [PMID: 33113721 DOI: 10.1016/j.jhazmat.2020.123685] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
The heavy metals cadmium (Cd) and chromium (Cr) are extensively used in industry and result in water and soil contamination. The highly toxic Cd(II) and Cr(VI) are the most common soluble forms of Cd and Cr, respectively. They enter the human body through the food chain and drinking water and then cause serious illnesses. Microorganisms can adsorb metals or transform Cd(II) and Cr(VI) into insoluble or less bioavailable forms, and such strategies are applicable in Cd and Cr bioremediation. This review focuses on the highlighting of novel achievements on microbial Cd(II) and Cr(VI) resistance mechanisms and their bioremediation applications. In addition, the knowledge gaps and research perspectives are also discussed in order to build a bridge between the theoretical breakthrough and the resolution of Cd(II) and Cr(VI) contamination problems.
Collapse
Affiliation(s)
- Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, National Experimental Teaching Demonstrating Center, College of Life Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
15
|
Wang X, Zhang X, Liu X, Huang Z, Niu S, Xu T, Zeng J, Li H, Wang T, Gao Y, Huang M, Cao L, Zhu Y. Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress. Metallomics 2020; 11:1252-1264. [PMID: 31173023 DOI: 10.1039/c9mt00054b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endophytic bacterium YG-3 with high cadmium (Cd) resistance was isolated from poplar grown in a composite mine tailing. It was identified as Burkholderia cenocepacia based on genomic, physiological and biochemical analyses. The Cd removal rate by YG-3 could reach about 60.0% in Cd aqueous solution with high concentrations of both 100 and 500 mg L-1. Meanwhile, various absorption and adsorption strategies were found in the two different Cd concentrations. The global resistance mechanisms of YG-3 were investigated in several levels, i.e., physiological observation, such as scanning electron microscopy and transmission electron microscopy; biochemical detection for active compound production and infrared spectroscopy; label-free quantitative proteomic profile analysis. The results indicated that YG-3 possesses a complex mechanism to adapt to Cd stress: (1) binding of Cd to prevent it from entering the cell by the cell wall components, as well as secreted siderophores and exopolysaccharides; (2) intracellular sequestration of Cd by metalloproteins; (3) excretion of Cd from the cell by efflux pumps; (4) alleviation of Cd toxicity by antioxidants. Our results demonstrate that endophyte YG-3 is well adjusted to largely remove Cd and has potential to cooperate with its host to improve phytoremediation efficiency in heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | | | - Shuqi Niu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Hui Li
- Hunan Academy of Forestry, Changsha 410000, Hunan, P. R. China
| | - Tengfei Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Lidan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
16
|
Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00314-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe effects of cadmium (Cd) contamination on the microbial community structure, soil physicochemistry and heavy metal resistome of a tropical agricultural soil were evaluated in field-moist soil microcosms. A Cd-contaminated agricultural soil (SL5) and an untreated control (SL4) were compared over a period of 5 weeks. Analysis of the physicochemical properties and heavy metals content of the two microcosms revealed a statistically significant decrease in value of the soil physicochemical parameters (P < 0.05) and concentration of heavy metals (Cd, Pb, Cr, Zn, Fe, Cu, Se) content of the agricultural soil in SL5 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the predominance of the phyla, classes, genera and species of Proteobacteria (37.38%), Actinobacteria (35.02%), Prevotella (6.93%), and Conexibacter woesei (8.93%) in SL4, and Proteobacteria (50.50%), Alphaproteobacteria (22.28%), Methylobacterium (9.14%), and Methylobacterium radiotolerans (12,80%) in SL5, respectively. Statistically significant (P < 0.05) difference between the metagenomes was observed at genus and species delineations. Functional annotation of the two metagenomes revealed diverse heavy metal resistome for the uptake, transport, efflux and detoxification of various heavy metals. It also revealed the exclusive detection in SL5 metagenome of members of RND (resistance nodulation division) protein czcCBA efflux system (czcA, czrA, czrB), CDF (cation diffusion facilitator) transporters (czcD), and genes for enzymes that protect the microbial cells against cadmium stress (sodA, sodB, ahpC). The results obtained in this study showed that Cd contamination significantly affects the soil microbial community structure and function, modifies the heavy metal resistome, alters the soil physicochemistry and results in massive loss of some autochthonous members of the community not adapted to the Cd stress.
Collapse
|
17
|
Ammendola S, Ciavardelli D, Consalvo A, Battistoni A. Cobalt can fully recover the phenotypes related to zinc deficiency in Salmonella Typhimurium. Metallomics 2020; 12:2021-2031. [PMID: 33165471 DOI: 10.1039/d0mt00145g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cobalt is an essential element for living systems, which, however, make very limited use of this metal, using it mainly in cobalamin-containing enzymes. The reduced use of cobalt compared to other transition metals is generally attributed to the potential toxicity of this element. In this work, we demonstrate that cobalt not only does not have an obvious toxic effect on Salmonella Typhimurium, but that it can efficiently compensate for zinc deficiency in a znuABC deleted strain. In fact, cobalt, but not cobalamin supplementation, rescued all major phenotypic defects of the znuABC strain, including the reduced ability to grow and swim in zinc-deficient media and the high susceptibility to hydrogen peroxide stress. Growth in a cobalt-supplemented defined medium led to the accumulation of large amounts of cobalt both in the wild type and in the znuABC strain. These data suggest that atoms of cobalt may be incorporated in bacterial proteins in place of zinc, ensuring their functionality. In support of this hypothesis we have shown that, in vivo, cobalt can accumulate in ribosomes and replace zinc in a periplasmic Cu,Zn superoxide dismutase (SodCII). Finally, we provide evidence of the ability of cobalt to modulate the intracellular concentration of zinc-regulated proteins (ZnuA, ZinT, and SodCII). Although some observations suggest that in some proteins the replacement of zinc with cobalt can lead to subtle structural changes, the data reported in this study indicate that Salmonella has the ability to use cobalt instead of zinc, without evident harmful effects for cell physiology.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Biology, University of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
18
|
Liang L, Ngwenya BT. Metal internalization by bacterial cells depends on metal biotoxicity and metal to biomass ratio. CHEMOSPHERE 2018; 212:585-593. [PMID: 30172040 DOI: 10.1016/j.chemosphere.2018.08.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED The traditional view of metal adsorption to bacterial surfaces is that it can act as a protective mechanism by externalizing the metal outside the cell. However, numerous studies focussing on the biodynamics of metal uptake using biotic ligand models consider metal adsorption to cell surfaces as an important first step in metal uptake and internalization. In order to resolve these conflicting views, we adsorbed two metals (copper and cadmium) with contrasting metal biotoxicity on E. coli JM109, and quantified the distribution of each metal amongst surface sites, periplasmic space and the cytoplasm. Distribution of each metal depended on biotoxicity and metal to biomass ratio. For both metals, low metal to biomass ratio led to most of the metal being associated with the periplasmic space, with less Cd being taken up by cells overall. At high metal to biomass ratios, most of the Cd was associated with surface sites, whereas Cu also increased in surface sites but remained below periplasmic concentrations. These observations are consistent with metal internalization being the dominant process at low metal to biomass ratios, whereas was active efflux when metal to biomass was high, leading to equilibrium between cytoplasm and surface concentrations. Significantly, efflux was more intense for high biotoxicity Cd, consistent with active enzymatic regulation of Cu internalization/homeastasis, which is essential at low concentrations. Moreover, metal internalization increases as surface-bound metal increases, the maximum being constrained by maximum adsorption consistent with Langmuir adsorption behaviour. SUMMARIZE OF PAPER Bacterial metal internalization is a function of metal biotoxicity and metal loading.
Collapse
Affiliation(s)
- Lili Liang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
| |
Collapse
|
19
|
Zhao WJ, Zhang ZJ, Zhu ZY, Song Q, Zheng WJ, Hu X, Mao L, Lian HZ. Time-dependent response of A549 cells upon exposure to cadmium. J Appl Toxicol 2018; 38:1437-1446. [PMID: 30051583 DOI: 10.1002/jat.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 01/15/2023]
Abstract
Cadmium is considered one of the most harmful carcinogenic heavy metals in the human body. Although many scientists have performed research on cadmium toxicity mechanism, the toxicokinetic process of cadmium toxicity remains unclear. In the present study, the kinetic response of proteome in/and A549 cells to exposure of exogenous cadmium was profiled. A549 cells were treated with cadmium sulfate (CdSO4 ) for different periods and expressions of proteins in cells were detected by two-dimensional gel electrophoresis. The kinetic expressions of proteins related to cadmium toxicity were further investigated by reverse transcription-polymerase chain reaction and western blotting. Intracellular cadmium accumulation and content fluctuation of several essential metals were observed after 0-24 hours of exposure by inductively coupled plasma mass spectrometry. Fifty-four protein spots showed significantly differential responses to CdSO4 exposure at both 4.5 and 24 hours. From these proteins, four expression patterns were concluded. Their expressions always exhibited a maximum abundance ratio after CdSO4 exposure for 24 hours. The expression of metallothionein-1 and ZIP-8, concentration of total protein, and contents of cadmium, zinc, copper, cobalt and manganese in cells also showed regular change. In synthesis, the replacement of the essential metals, the inhibition of the expression of metal storing protein and the activation of metal efflux system are involved in cadmium toxicity.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of E-Waste Recycling, College of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Mastropasqua MC, Lamont I, Martin LW, Reid DW, D'Orazio M, Battistoni A. Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung. J Trace Elem Med Biol 2018; 48:74-80. [PMID: 29773197 DOI: 10.1016/j.jtemb.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/31/2018] [Accepted: 03/08/2018] [Indexed: 02/03/2023]
Abstract
We have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease. All three genes were expressed in all the analyzed sputum samples to a level much higher than that of bacteria grown in zinc-containing laboratory medium, supporting the hypothesis that P. aeruginosa is under zinc starvation during lung infections. We also found that the expression of several virulence traits that play a central role in the ability of P. aeruginosa to colonize the lung is affected by disruption of the most important zinc importing systems. Virulence features dependent on zinc intake include swarming and swimming motility and the ability to form biofilms. Furthermore, alterations in zinc assimilation interfere with the synthesis of the siderophore pyoverdine, suggesting that zinc recruitment could modulate iron uptake and affect siderophore-mediated cell signaling. Our results reveal that zinc uptake is likely to play a key role in the ability of P. aeruginosa to cause chronic lung infections and strongly modulates critical virulence traits of the pathogen. Taking into account the recent discovery that zinc uptake in P. aeruginosa is promoted by the release of a small molecular weight molecule showing high affinity for zinc, our data suggest novel and effective possibilities to control lung infections by these bacteria.
Collapse
Affiliation(s)
| | - Iain Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David W Reid
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Melania D'Orazio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
21
|
Mastrorilli E, Pietrucci D, Barco L, Ammendola S, Petrin S, Longo A, Mantovani C, Battistoni A, Ricci A, Desideri A, Losasso C. A Comparative Genomic Analysis Provides Novel Insights Into the Ecological Success of the Monophasic Salmonella Serovar 4,[5],12:i:. Front Microbiol 2018; 9:715. [PMID: 29719530 PMCID: PMC5913373 DOI: 10.3389/fmicb.2018.00715] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Over the past decades, Salmonella 4,[5],12:i:- has rapidly emerged and it is isolated with high frequency in the swine food chain. Although many studies have documented the epidemiological success of this serovar, few investigations have tried to explain this phenomenon from a genetic perspective. Here a comparative whole-genome analysis of 50 epidemiologically unrelated S. 4,[5],12:i:-, isolated in Italy from 2010 to 2016 was performed, characterizing them in terms of genetic elements potentially conferring resistance, tolerance and persistence characteristics. Phylogenetic analyses indicated interesting distinctions among the investigated isolates. The most striking genetic trait characterizing the analyzed isolates is the widespread presence of heavy metals tolerance gene cassettes: most of the strains possess genes expected to confer resistance to copper and silver, whereas about half of the isolates also contain the mercury tolerance gene merA. A functional assay showed that these genes might be useful for preventing the toxic effects of metals, thus supporting the hypothesis that they can contribute to the success of S. 4,[5],12:i:- in farming environments. In addition, the analysis of the distribution of type II toxin-antitoxin families indicated that these elements are abundant in this serovar, suggesting that this is another factor that might favor its successful spread.
Collapse
Affiliation(s)
- Eleonora Mastrorilli
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Lisa Barco
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sara Petrin
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alessandra Longo
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudio Mantovani
- Science Communication Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Antonia Ricci
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Carmen Losasso
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
22
|
Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics 2017; 8:679-91. [PMID: 27172123 DOI: 10.1039/c6mt00063k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Ammendola S, D'Amico Y, Chirullo B, Drumo R, Ciavardelli D, Pasquali P, Battistoni A. Zinc is required to ensure the expression of flagella and the ability to form biofilms in Salmonella enterica sv Typhimurium. Metallomics 2017; 8:1131-1140. [PMID: 27730246 DOI: 10.1039/c6mt00108d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc is known to play a central role in bacterial physiology and pathogenesis. Here, we report that the accumulation of FliC, the structural subunit of Salmonella phase 1 flagella, is sharply reduced in a znuABC Salmonella enterica sv. Typhimurium strain grown in zinc-poor media. Consequently, this mutant strain lacks motility, unless it grows in zinc-replete environments. This phenotype is the consequence of a general downregulation of all the genes involved in the biosynthesis of flagella, suggesting that zinc is the cofactor of proteins involved in the initiation of the transcriptional regulatory cascade leading to flagella assembly. Competition experiments in mice demonstrated that aflagellated (fliBfljC) and znuABC strains are outcompeted by the wild type strain in the gastrointestinal tract. The fliBfljC strain overgrows a fliCfljBznuABC mutant strain, but the difference in gut colonization between these two strains is less striking than that between the wild type and the znuABC strains, suggesting that the downregulation of flagella contributes to the loss of virulence of Salmonella znuABC. The absence of either flagella or ZnuABC also impairs the ability of S. Typhimurium to produce biofilms. Zinc suppresses this defect in the znuABC mutant but not in the aflagellated strains, highlighting the role of flagella in biofilm organization. We have also observed an increased production of the quorum sensing signal AI-2 in the znuABC strain sensing zinc deprivation, that may further contribute to the reduced ability to form biofilms. On the whole, our study reveals novel roles of zinc in Salmonella motility and intercellular communication.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Ylenia D'Amico
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Barbara Chirullo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Rosanna Drumo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Battistoni
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy. and Interuniversity Consortium, National Institute Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
24
|
Thornhill SG, Kumar M, Vega LM, McLean RJC. Cadmium ion inhibition of quorum signalling in Chromobacterium violaceum. MICROBIOLOGY-SGM 2017; 163:1429-1435. [PMID: 28895513 DOI: 10.1099/mic.0.000531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-celled bacteria are capable of acting as a community by sensing and responding to population density via quorum signalling. Quorum signalling in Chromobacterium violaceum, mediated by the luxI/R homologue, cviI/R, regulates a variety of phenotypes including violacein pigmentation, virulence and biofilm formation. A number of biological and organic molecules have been described as quorum signalling inhibitors but, to date, metal-based inhibitors have not been widely tested. In this study, we show that quorum sensing is inhibited in C. violaceum in the presence of sub-lethal concentrations of cadmium salts. Notable Cd2+-inhibition was seen against pigmentation, motility, chitinase production and biofilm formation. Cd-inhibition of quorum-signalling genes occurred at the level of transcription. There was no direct inhibition of chitinase activity by Cd2+ at the concentrations tested. Addition of the cognate quorum signals, N-hexanoyl homoserine lactone or N-decanoyl homoserine lactone, even at concentrations in excess of physiological levels, did not reverse the inhibition, suggesting that Cd-inhibition of quorum signaling is irreversible. This study represents the first description of heavy metal-based quorum inhibition in C. violaceum.
Collapse
Affiliation(s)
- Starla G Thornhill
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Manish Kumar
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Leticia M Vega
- NASA Human Research Program (HRP) NASA-Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
25
|
Rishi P, Thakur R, Kaur UJ, Singh H, Bhasin KK. Potential of 2, 2'-dipyridyl diselane as an adjunct to antibiotics to manage cadmium-induced antibiotic resistance in Salmonella enterica serovar Typhi Ty2 strain. J Microbiol 2017; 55:737-744. [PMID: 28779338 DOI: 10.1007/s12275-017-7040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
One of the reasons for increased antibiotic resistance in Salmonella enterica serovar Typhi Ty2 is the influx of heavy metal ions in the sewage, from where the infection is transmitted. Therefore, curbing these selective agents could be one of the strategies to manage the emergence of multidrug resistance in the pathogen. As observed in our earlier study, the present study also confirmed the links between cadmium accumulation and antibiotic resistance in Salmonella. Therefore, the potential of a chemically-synthesised compound 2, 2'-dipyridyl diselane (DPDS) was explored to combat the metal-induced antibiotic resistance. Its metal chelating and antimicrobial properties were evidenced by fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and microbroth dilution method. Owing to these properties of DPDS, further, this compound was evaluated for its potential to be used in combination with conventional antibiotics. The data revealed effective synergism at much lower concentrations of both the agents. Thus, it is indicated from the study that the combination of these two agents at their lower effective doses might reduce the chances of emergence of antibiotic resistance, which can be ascribed to the multi-pronged action of the agents.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harjit Singh
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Kuldip K Bhasin
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
26
|
A novel antimicrobial approach based on the inhibition of zinc uptake in Salmonella enterica. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this review we discuss evidences suggesting that bacterial zinc homeostasis represents a promising target for new antimicrobial strategies. The ability of the gut pathogen Salmonella enterica sv Typhimurium to withstand the host responses aimed at controlling growth of the pathogen critically depends on the zinc importer ZnuABC. Strains lacking a functional ZnuABC or its soluble component ZnuA display a dramatic loss of pathogenicity, due to a reduced ability to express virulence factors; withstand the inflammatory response; and compete with other gut microbes. Based on this data, ZnuA was chosen as a candidate for the rational design of novel antibiotics. Through a combination of structural and functional investigations, we have provided a proof of concept of the potential of this approach.
Collapse
|
27
|
Osman D, Piergentili C, Chen J, Chakrabarti B, Foster AW, Lurie-Luke E, Huggins TG, Robinson NJ. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells. J Biol Chem 2015; 290:19806-22. [PMID: 26109070 PMCID: PMC4528141 DOI: 10.1074/jbc.m115.663427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells.
Collapse
Affiliation(s)
- Deenah Osman
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cecilia Piergentili
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Junjun Chen
- Procter and Gamble, Mason Business Centre, Cincinnati, Ohio 45040, and
| | - Buddhapriya Chakrabarti
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Andrew W Foster
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Elena Lurie-Luke
- Life Sciences Open Innovation, London Innovation Centre, Procter and Gamble Technical Centres, Ltd., Egham TW20 9NW, United Kingdom
| | - Thomas G Huggins
- Procter and Gamble, Mason Business Centre, Cincinnati, Ohio 45040, and
| | - Nigel J Robinson
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom,
| |
Collapse
|