1
|
Lintala A, Szirovicza L, Sander W, Ekström E, Kipar A, Hetzel U, Hepojoki J. Cell culture co- and superinfection experiments suggest that transmission during captivity contributes to the presence of reptarenavirus S and L segment swarms in boid inclusion body disease-positive snakes. J Gen Virol 2024; 105. [PMID: 39661435 DOI: 10.1099/jgv.0.002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Boid inclusion body disease (BIBD) caused by reptarenaviruses affects captive constrictor snake collections worldwide. The disease manifests by the formation of cytoplasmic inclusion bodies in various tissues. Curiously, a snake with BIBD nearly always carries a swarm of reptarenavirus small and large segments rather than a single pair, and the composition of the swarm can vary between tissues. The role of reptarenavirus coinfections in BIBD pathogenesis remains unknown, and it is unclear whether reptarenavirus infection affects the susceptibility to superinfection or to secondary infections. For mammarenaviruses, co- and/or superinfection can occur if the infecting viruses are genetically divergent enough, and we hypothesized reptarenaviruses to behave similarly. To study this hypothesis, we employed boa constrictor kidney- and brain-derived cell cultures to perform a set of co- and superinfection experiments with one hartmanivirus and five reptarenavirus isolates. While all tested viruses replicated well in the boid kidney cells, experiments on the brain-derived cells showed differences in the replication efficacy between the viruses, suggesting that reptarenaviruses could differ in their target cell spectra. The quantification of viral RNA released from infected cells as a proxy for virus replication did not reveal overt differences between mono- and coinfections. Passaging of coinfected cell cultures revealed that one of the reptarenavirus isolates requires a coinfecting reptarena- or hartmanivirus to establish a persistent infection. Superinfection experiments on persistently reptarenavirus-infected cell lines suggested some interference between genetically similar viruses. We hypothesized that such interference would be mediated by the viral Z protein (ZP) specifically locking the genetically similar viral polymerase in a catalytically inactive state. Curiously, experiments on ZP-expressing cell lines indicated ZP overexpression not to significantly affect the amount of released viral RNA. Our experiments showed very little co- or superinfection interference between genetically dissimilar reptarenaviruses, reflecting the naturally occurring reptarenavirus coinfections in snakes with BIBD.
Collapse
Affiliation(s)
- Annika Lintala
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leonóra Szirovicza
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem Sander
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eveliina Ekström
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
3
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
4
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Boyd BM, Chevignon G, Patel V, Oliver KM, Strand MR. Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virol J 2021; 18:219. [PMID: 34758862 PMCID: PMC8579659 DOI: 10.1186/s12985-021-01685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01685-y.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA, USA. .,Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Vilas Patel
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia Athens, Athens, GA, USA.
| |
Collapse
|
7
|
Miller RH, Zimmer A, Moutot G, Mesnard JM, Chazal N. Retroviral Antisense Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution? Viruses 2021; 13:2221. [PMID: 34835027 PMCID: PMC8622228 DOI: 10.3390/v13112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.
Collapse
Affiliation(s)
| | - Alexis Zimmer
- DHVS—Département d’Histoire des Sciences de la Vie et de la Santé, Faculté de Médecine, Université de Strasbourg, 4 Rue Kirschleger, CEDEX, F-67085 Strasbourg, France;
| | - Gilles Moutot
- Centre d’Etudes Politiques et Sociales (CEPEL), Département de Sciences Humaines et Sociales, Université de Montpellier, 34090 Montpellier, France;
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| |
Collapse
|
8
|
Gabashvili E, Kobakhidze S, Koulouris S, Robinson T, Kotetishvili M. Bi- and Multi-directional Gene Transfer in the Natural Populations of Polyvalent Bacteriophages, and Their Host Species Spectrum Representing Foodborne Versus Other Human and/or Animal Pathogens. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:179-202. [PMID: 33484405 DOI: 10.1007/s12560-021-09460-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Unraveling the trends of phage-host versus phage-phage coevolution is critical for avoiding possible undesirable outcomes from the use of phage preparations intended for therapeutic, food safety or environmental safety purposes. We aimed to investigate a phenomenon of intergeneric recombination and its trajectories across the natural populations of phages predominantly linked to foodborne pathogens. The results from the recombination analyses, using a large array of the recombination detection algorithms imbedded in SplitsTree, RDP4, and Simplot software packages, provided strong evidence (fit: 100; P ≤ 0.014) for both bi- and multi-directional intergeneric recombination of the genetic loci involved collectively in phage morphogenesis, host specificity, virulence, replication, and persistence. Intergeneric recombination was determined to occur not only among conspecifics of the virulent versus temperate phages but also between the phages with these different lifestyles. The recombining polyvalent phages were suggested to interact with fairly large host species networks, including sometimes genetically very distinct species, such as e.g., Salmonella enterica and/or Escherichia coli versus Staphylococcus aureus or Yersinia pestis. Further studies are needed to understand whether phage-driven intergeneric recombination can lead to undesirable changes of intestinal and other microbiota in humans and animals.
Collapse
Affiliation(s)
- Ekaterine Gabashvili
- School of Natural Sciences and Medicine, Ilia State University, 1 Giorgi Tsereteli exit, 0162, Tbilisi, Georgia
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Saba Kobakhidze
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia
| | - Stylianos Koulouris
- Engagement and Cooperation Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Tobin Robinson
- Scientific Committee, and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Mamuka Kotetishvili
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave., 0159, Tbilisi, Georgia.
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitation, 78 D. Uznadze St., 0102, Tbilisi, Georgia.
| |
Collapse
|
9
|
Viral speciation through subcellular genetic isolation and virogenesis incompatibility. Nat Commun 2021; 12:342. [PMID: 33436625 PMCID: PMC7804931 DOI: 10.1038/s41467-020-20575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how biological species arise is critical for understanding the evolution of life on Earth. Bioinformatic analyses have recently revealed that viruses, like multicellular life, form reproductively isolated biological species. Viruses are known to share high rates of genetic exchange, so how do they evolve genetic isolation? Here, we evaluate two related bacteriophages and describe three factors that limit genetic exchange between them: 1) A nucleus-like compartment that physically separates replicating phage genomes, thereby limiting inter-phage recombination during co-infection; 2) A tubulin-based spindle that orchestrates phage replication and forms nonfunctional hybrid polymers; and 3) A nuclear incompatibility factor that reduces phage fitness. Together, these traits maintain species differences through Subcellular Genetic Isolation where viral genomes are physically separated during co-infection, and Virogenesis Incompatibility in which the interaction of cross-species components interferes with viral production. Virus speciation cannot be fully explained by the evolution of different host specificities. Here, Chaikeeratisak et al. identify ways viruses can remain genetically isolated despite co-infecting the same cell, providing insight into how new virus species evolve.
Collapse
|
10
|
Serban G. Synthetic Compounds with 2-Amino-1,3,4-Thiadiazole Moiety Against Viral Infections. Molecules 2020; 25:E942. [PMID: 32093125 PMCID: PMC7070519 DOI: 10.3390/molecules25040942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Viral infections have resulted in millions of victims in human history. Although great efforts have been made to find effective medication, there are still no drugs that truly cure viral infections. There are currently approximately 90 drugs approved for the treatment of human viral infections. As resistance toward available antiviral drugs has become a global threat to health, there is an intrinsic need to identify new scaffolds that are useful in discovering innovative, less toxic and highly active antiviral agents. 1,3,4-Thiadiazole derivatives have been extensively studied due to their pharmacological profile, physicochemical and pharmacokinetic properties. This review provides an overview of the various synthetic compounds containing the 2-amino-1,3,4-thiadiazole moiety that has been evaluated for antiviral activity against several viral strains and could be considered possible prototypes for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania
| |
Collapse
|
11
|
Imai M, Mine K, Tomonari H, Uchiyama J, Matuzaki S, Niko Y, Hadano S, Watanabe S. Dark-Field Microscopic Detection of Bacteria using Bacteriophage-Immobilized SiO 2@AuNP Core-Shell Nanoparticles. Anal Chem 2019; 91:12352-12357. [PMID: 31464422 DOI: 10.1021/acs.analchem.9b02715] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To replace molecular biological and immunological methods, biosensors have recently been developed for the rapid and sensitive detection of bacteria. Among a wide variety of biological materials, bacteriophages have received increasing attention as promising alternatives to antibodies in biosensor applications. Thus, we herein present a rapid and highly selective detection method for pathogenic bacteria, which combines dark-field light scattering imaging with a plasmonic biosensor system. The plasmonic biosensor system employs bacteriophages as the biorecognition element and the aggregation-induced light scattering signal of gold nanoparticle-assembled silica nanospheres as a signal transducer. Using Staphylococcus aureus strain SA27 as a model analyte, we demonstrated that the plasmonic biosensor system detects S. aureus in the presence of excess Escherichia coli in a highly selective manner. After the sample and the S. aureus phage S13'-conjugated plasmon scattering probe were mixed, S. aureus detection was completed within 15-20 min with a detection limit of 8 × 104 colony forming units per milliliter.
Collapse
Affiliation(s)
| | | | | | - Jumpei Uchiyama
- School of Veterinary Medicine , Azabu University , 1-17-71 Fuchinobe , Sagamihara-shi 229-8501 , Kanagawa , Japan
| | - Shigenobu Matuzaki
- Department of Microbiology and Infection, Kochi Medical School , Kochi University , Kohasu, Okoh-cho , Nankoku-shi 780-8505 , Kochi , Japan
| | | | | | | |
Collapse
|
12
|
Puustusmaa M, Kirsip H, Gaston K, Abroi A. The Enigmatic Origin of Papillomavirus Protein Domains. Viruses 2017; 9:v9090240. [PMID: 28832519 PMCID: PMC5618006 DOI: 10.3390/v9090240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022] Open
Abstract
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Heleri Kirsip
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Kevin Gaston
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Aare Abroi
- Estonian Biocentre, Riia 23b, Tartu 51010, Estonia.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
13
|
Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol 2017; 3:vex011. [PMID: 28469939 PMCID: PMC5407056 DOI: 10.1093/ve/vex011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus–host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus–virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus–virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus–virus interactions also increased culture coinfection with ssDNA–dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of virus–virus interactions in coinfection with implications for phage therapy, microbiome dynamics, and viral infection treatments.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| |
Collapse
|
14
|
O'Malley MA. The ecological virus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:71-79. [PMID: 26972871 DOI: 10.1016/j.shpsc.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency.
Collapse
|
15
|
Pradeu T. Mutualistic viruses and the heteronomy of life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:80-8. [PMID: 26972872 PMCID: PMC7108282 DOI: 10.1016/j.shpsc.2016.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 05/04/2023]
Abstract
Though viruses have generally been characterized by their pathogenic and more generally harmful effects, many examples of mutualistic viruses exist. Here I explain how the idea of mutualistic viruses has been defended in recent virology, and I explore four important conceptual and practical consequences of this idea. I ask to what extent this research modifies the way scientists might search for new viruses, our notion of how the host immune system interacts with microbes, the development of new therapeutic approaches, and, finally, the role played by the criterion of autonomy in our understanding of living things. Overall, I suggest that the recognition of mutualistic viruses plays a major role in a wider ongoing revision of our conception of viruses.
Collapse
Affiliation(s)
- Thomas Pradeu
- ImmunoConcept, UMR5164, CNRS, University of Bordeaux, France.
| |
Collapse
|
16
|
Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:100-108. [PMID: 26996409 DOI: 10.1016/j.shpsc.2016.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Three major discoveries have recently profoundly modified our perception of the viral world: molecular ecologists have shown that viral particles are more abundant than cells in natural environments; structural biologists have shown that some viruses from the three domains of life, Bacteria, Eukarya and Archaea, are evolutionarily related, and microbiologists have discovered giant viruses that rival with cells in terms of size and gene content. I discuss here the scientific and philosophical impact of these discoveries on the debates over the definition, nature (living or not), and origin of viruses. I suggest that viruses have often been considered non-living, because they are traditionally assimilated to their virions. However, the term virus describes a biological process and should integrate all aspects of the viral reproduction cycle. It is especially important to focus on the intracellular part of this cycle, the virocell, when viral information is actively expressed and reproduced, allowing the emergence of new viral genes. The virocell concept theoretically removes roadblocks that prevent defining viruses as living organisms. However, defining a "living organism" remains challenging, as indicated by the case of organelles that evolved from intracellular bacteria. To bypass this problem, I suggest considering that all biological entities that actively participate in the process of life are living.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F-75015, Paris, France.
| |
Collapse
|
17
|
Pradeu T, Kostyrka G, Dupré J. Understanding viruses: Philosophical investigations. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:57-63. [PMID: 26975220 DOI: 10.1016/j.shpsc.2016.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy.
Collapse
Affiliation(s)
| | - Gladys Kostyrka
- IHPST, UMR8590, CNRS & Paris 1 Pantheon-Sorbonne University, France
| | | |
Collapse
|
18
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Bielecki A. The general entity of life: a cybernetic approach. BIOLOGICAL CYBERNETICS 2015; 109:401-419. [PMID: 25985758 DOI: 10.1007/s00422-015-0652-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
Life, not only in the well-known context of biochemical metabolism but also in the context of hypothetical life synthesized laboratorially or possibly found on other planets, is considered in this paper. The three-component information-energetic-structural irreducible processing in autonomous systems is the core of the proposed approach. The cybernetic organization of a general entity of life--the alivon--is postulated. The crucial properties of life and evolution are derived from the proposed approach. Information encoded in biological structures is also studied.
Collapse
Affiliation(s)
- Andrzej Bielecki
- Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, Chair of Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland,
| |
Collapse
|
20
|
Han JH, Wang MS, Das J, Sudheendra L, Vonasek E, Nitin N, Kennedy IM. Capture and detection of T7 bacteriophages on a nanostructured interface. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4758-65. [PMID: 24650205 PMCID: PMC3985741 DOI: 10.1021/am500655r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/20/2014] [Indexed: 05/25/2023]
Abstract
A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Min S. Wang
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Jayanti Das
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - L. Sudheendra
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Erica Vonasek
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Ian M. Kennedy
- Department of Mechanical and Aerospace Engineering, Food Science and Technology, and Biological and
Agricultural Engineering, University of
California, Davis, Davis, California 95616, United States
| |
Collapse
|
21
|
Yuan Y, Gao M, Peng Q, Wu D, Liu P, Wu Y. Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain. J Gen Virol 2013; 95:751-761. [PMID: 24285088 DOI: 10.1099/vir.0.058735-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages have been found to be the most abundant and also potentially most diverse biological entities on Earth. In the present study, Bacillus phages were isolated rapidly and shown to have a high degree of diversity. The genomes of a newly isolated phage, phiCM3, and a prophage, proCM3, from the Bacillus thuringiensis strain YM-03 were sequenced and characterized. Comparative genome analysis showed that the phiCM3 genome is highly similar to the genomes of eight other Bacillus phages and seven of these phages were classified as the Wβ group of phages. Analysis of the differential evolution of the genes in the Wβ-group phages indicated that the genes encoding the antirepressor and tail fibre protein were more highly conserved than those encoding the major capsid protein, DNA replication protein, and RNA polymerase σ factor, which might have diverged to acquire mechanisms suitable for survival in different microbial hosts. Genome analysis of proCM3 revealed that proCM3 might be a defective phage because of mutations in the minor structural protein, and it was not inducible by mitomycin C treatment. The proCM3 genome was similar to those of two lytic Bacillus phages in sequence, but had a different genomic structure, composed of three regions in a different order. These data suggest that the three phages might have had a common ancestor and that genome rearrangement might have occurred during evolution. The findings of this study enrich our current knowledge of Bacillus phage diversity and evolution, especially for the Wβ-group and TP21-L-like phages, and may help the development of practical applications of Bacillus phages.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qin Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
22
|
Corexit 9500 inactivates two enveloped viruses of aquatic animals but enhances the infectivity of a nonenveloped fish virus. Appl Environ Microbiol 2013; 80:1035-41. [PMID: 24271186 DOI: 10.1128/aem.03569-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of Corexit 9500, a dispersant used to clean up oil spills, on invertebrates, lower vertebrates, birds, and human health have been examined, but there is a significant lack of study of the effect of this dispersant on aquatic viruses. In this study, the effects of Corexit 9500 on four aquatic viruses of differing structural composition were examined. Corexit 9500 reduced the titer of the enveloped viral hemorrhagic septicemia virus (VHSV) at all concentrations (10% to 0.001%) examined. The titer of frog virus 3 (FV3), a virus with both enveloped and nonenveloped virions, was reduced only at the high Corexit 9500 concentrations (10% to 0.1%). Corexit 9500 was unable to reduce the titer of nonenveloped infectious pancreatic necrosis virus (IPNV) but enhanced the titer of chum salmon reovirus (CSV) by 2 to 4 logs. With the ability to inactivate enveloped viruses and possibly enhance some nonenveloped viruses, Corexit 9500 has the potential to alter the aquatic virosphere.
Collapse
|
23
|
Paz-Y-Miño-C G, Espinosa A. Galapagos III World Evolution Summit: why evolution matters. Evolution 2013; 6. [PMID: 26925190 PMCID: PMC4767162 DOI: 10.1186/1936-6434-6-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ‘Why Does Evolution Matter’, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin’s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage.
Collapse
Affiliation(s)
- Guillermo Paz-Y-Miño-C
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts 02747-2300, USA
| | - Avelina Espinosa
- Department of Biology, Roger Williams University, One Old Ferry Road, Bristol, Rhode Island 02809, USA
| |
Collapse
|