1
|
Villeneuve T, Jamme T, Schwob R, Levade T, Prévot G. Advanced strategies for detecting acid sphingomyelinase deficiency type B with attenuated phenotypes. Orphanet J Rare Dis 2025; 20:252. [PMID: 40420295 DOI: 10.1186/s13023-025-03746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Acid Sphingomyelinase Deficiency (ASMD) type B is a rare lysosomal disorder caused by SMPD1 mutations. Due to its low prevalence and clinical heterogeneity, diagnosis is challenging, and detection is crucial for the initiation of enzyme replacement therapy. METHODS We conducted a retrospective study (RnIPH 2024-85) at Toulouse University Hospital, analyzing 359,802 lipid profiles (2012-2023). We identified individuals with a total cholesterol/HDL cholesterol ratio > 4.5. A regex-based extraction method screened records for consanguinity, hepatomegaly, splenomegaly, and ground-glass opacities (GGOs), while we also analyzed thrombocytopenia (< 150 × 10⁹/L). Patients meeting ≥ 4/5 criteria underwent clinical review. RESULTS Among 63,653 patients with dyslipidemia, 20.3% had thrombocytopenia, 4.93% hepatosplenomegaly, 2.29% GGOs, and 0.24% consanguinity. In total, 179 patients met ≥ 4/5 criteria. Nineteen (10.6%) were pediatric. Three previously diagnosed ASMD type B patients in our center were identified. Additionally, among other conditions, 46 cases (25.7%) had monogenic diseases, and five undiagnosed patients were flagged for ASMD screening. CONCLUSION Our hybrid screening effectively identified ASMD type B cases and potential candidates for genetic testing. This approach combining algorithmic filtering and clinical expertise, could enhance ASMD type B diagnosis.
Collapse
Affiliation(s)
- Thomas Villeneuve
- Respiratory Medicine Department, University Hospital, Toulouse, France.
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM U1291, CNRS U5282, University Toulouse III, Toulouse, France.
| | - Thibaut Jamme
- Clinical Biochemistry Laboratory, Reference Center for Inherited Metabolic Diseases, Federative Institute of Biology, University Hospital, Toulouse, France
| | - Robin Schwob
- Digital and Data Management Department University Hospital, Toulouse, France
- Institute of Research in Computer Science of Toulouse - CNRS UMR5505, University Toulouse III, Toulouse, France
| | - Thierry Levade
- Clinical Biochemistry Laboratory, Reference Center for Inherited Metabolic Diseases, Federative Institute of Biology, University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM UMR1037, University Toulouse III, Toulouse, France
| | - Grégoire Prévot
- Respiratory Medicine Department, University Hospital, Toulouse, France
| |
Collapse
|
2
|
Wang YT, Moura AK, Zuo R, Roudbari K, Hu JZ, Khan SA, Wang Z, Shentu Y, Wang M, Li PL, Hao J, Zhang Y, Li X. Cardiovascular dysfunction and altered lysosomal signaling in a murine model of acid sphingomyelinase deficiency. J Mol Med (Berl) 2025; 103:599-617. [PMID: 40232391 DOI: 10.1007/s00109-025-02542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Niemann-Pick Disease (NPD) is a rare autosomal recessive lysosomal storage disorder (LSD) caused by the deficiency of acid sphingomyelinase (ASMD), which is encoded by the Smpd1 gene. ASMD impacts multiple organ systems in the body, including the cardiovascular system. This study is the first to characterize cardiac pathological changes in ASMD mice under baseline conditions, offering novel insights into the cardiac implications of NPD. Using histological analysis, biochemical assays, and echocardiography, we assessed cardiac pathological changes and function in Smpd1-/- mice compared to Smpd1+/+ littermate controls. Immunofluorescence and biochemical assays demonstrated that ASMD induced lysosomal dysfunction, as evidenced by the accumulation of lysosomal-associated membrane proteins, lysosomal protease, and autophagosomes in pericytes and cardiomyocytes. This lysosomal dysfunction was accompanied by pericytes and cardiomyocytes inflammation, characterized by increased expression of caspase1 and inflammatory cytokines, and infiltration of inflammatory cells in the cardiac tissues of Smpd1-/- mice. In addition, histological analysis revealed increased lipid deposition and cardiac steatosis, along with pericyte-to-myofibroblast transition (PMT) and interstitial fibrosis in Smpd1-/- mice. Moreover, echocardiography further demonstrated that Smpd1-/- mice developed coronary microvascular dysfunction (CMD), as evidenced by decreased coronary blood flow velocity and increased coronary arteriolar wall thickness. Additionally, these mice exhibited significant impairments in systolic and diastolic cardiac function, as shown by a reduced ejection fraction and prolonged left ventricular relaxation time constant (Tau value). These findings suggest that ASMD induces profound pathological changes and vascular dysfunction in the myocardium, potentially driven by mechanisms involving lysosomal dysfunction as well as both pericytes and cardiac inflammation. KEY MESSAGES: Lysosomal dysfunction in ASMD leads to impaired autophagic flux in cardiac pericytes ASMD causes cardiac inflammation with leukocyte and M2 macrophage infiltration Lipid buildup in the pericytes, fibroblasts and myocardium lead to cardiac steatosis Enhanced cardiac fibrosis in ASMD links to pericyte-to-myofibroblast transition ASMD results in coronary microvascular and diastolic and systolic cardiac dysfunction.
Collapse
Affiliation(s)
- Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Saher A Khan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yangping Shentu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA.
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA.
| |
Collapse
|
3
|
Xun J, Tan JX. Lysosomal Repair in Health and Disease. J Cell Physiol 2025; 240:e70044. [PMID: 40349217 PMCID: PMC12066097 DOI: 10.1002/jcp.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Jinrui Xun
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Wang YT, Moura AK, Zuo R, Roudbari K, Hu JZ, Khan SA, Wang Z, Shentu Y, Wang M, Li PL, Hao J, Zhang Y, Li X. Cardiovascular Dysfunction and Altered Lysosomal Signaling in a Murine Model of Acid Sphingomyelinase Deficiency. RESEARCH SQUARE 2025:rs.3.rs-5154105. [PMID: 40166006 PMCID: PMC11957194 DOI: 10.21203/rs.3.rs-5154105/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Niemann-Pick Disease (NPD) is a rare autosomal recessive lysosomal storage disorder (LSD) caused by the deficiency of acid sphingomyelinase (ASMD), which is encoded by the Smpd1 gene. ASMD impacts multiple organ systems in the body, including the cardiovascular system. This study is the first to characterize cardiac pathological changes in ASMD mice under baseline conditions, offering novel insights into the cardiac implications of NPD. Using histological analysis, biochemical assays, and echocardiography, we assessed cardiac pathological changes and function in Smpd1 -/- mice compared to Smpd1 +/+ littermate controls. Immunofluorescence and biochemical assays demonstrated that ASMD induced lysosomal dysfunction, as evidenced by the accumulation of lysosomal-associated membrane proteins, lysosomal protease, and autophagosomes in pericytes and cardiomyocytes. This lysosomal dysfunction was accompanied by pericytes and cardiomyocytes inflammation, characterized by increased expression of caspase1 and inflammatory cytokines, and infiltration of inflammatory cells in the cardiac tissues of Smpd1 -/- mice. In addition, histological analysis revealed increased lipid deposition and cardiac steatosis, along with pericyte-to-myofibroblast transition (PMT) and interstitial fibrosis in Smpd1 -/- mice. Moreover, echocardiography further demonstrated that Smpd1 -/- mice developed coronary microvascular dysfunction (CMD), as evidenced by decreased coronary blood flow velocity and increased coronary arteriolar wall thickness. Additionally, these mice exhibited significant impairments in systolic and diastolic cardiac function, as shown by a reduced ejection fraction and prolonged left ventricular relaxation time constant (Tau value). These findings suggest that ASMD induces profound pathological changes and vascular dysfunction in the myocardium, potentially driven by mechanisms involving lysosomal dysfunction as well as both pericytes and cardiac inflammation.
Collapse
|
6
|
Villarrubia J, Morales M, Ceberio L, Vitoria I, Bellusci M, Quiñones I, Peña-Quintana L, Ruiz de Valbuena M, O'Callaghan M. Ecological study to estimate the prevalence of patients with acid sphingomyelinase deficiency in Spain. PREVASMD study. Rev Clin Esp 2025; 225:70-77. [PMID: 39613101 DOI: 10.1016/j.rceng.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Prevalence studies of acid sphingomyelinase deficiency (ASMD) are scarce and different in Spain. The objective of the present study was to determine the estimated prevalence of patients diagnosed with ASMD (types A/B and B) in Spain. MATERIAL AND METHODS PREVASMD was a descriptive, multicenter, and ecological study involving 21 physicians from different specialties (mainly Internal Medicine, Paediatrics and Hematology), of different autonomous communities, with experience in ASMD management. RESULTS Between March and April 2022, specialists were attending a total of 34 patients with ASMD diagnosis, 10 paediatric patients under 18 years of age (29.4%) and 24 adult patients (70.6%). The estimated prevalence of patients (paediatric and adult) diagnosed with ASMD was 0.7 per 1,000,000 inhabitants (95% confidence interval, 95% CI: 0.5-1.0), 1.2 per 1,000,000 (95% CI: 0.6-2.3) in the paediatric population and 0.6 per 1,000,000 inhabitants (95% CI: 0.4-0.9) in the adult population. The most frequent symptoms that led to suspicion of ASMD were: splenomegaly (reported by 100.0% of specialists), hepatomegaly (66.7%), interstitial lung disease (57.1%), and thrombocytopenia (57.1%). According to the specialists, laboratory and routine tests, and assistance in Primary Care were the most relevant healthcare resources in the management of ASMD. CONCLUSIONS This first study carried out in Spain shows an estimated prevalence of patients of 0.7 per 1,000,000 inhabitants: 1.2 per 1,000,000 inhabitants in the paediatric population and 0.6 per 1,000,000 inhabitants in the adult population.
Collapse
Affiliation(s)
- J Villarrubia
- Servicio de Hematología y Hemoterapia, Hospital Universitario Ramon y Cajal, Madrid, Spain.
| | - M Morales
- Servicio de Medicina Interna, Hospital Universitario 12 de Octubre, CSUR de errores Congénitos del Metabolismo, Instituto de Investigación Hospital 12 de Octubre (i+ 12), Madrid, Spain
| | - L Ceberio
- Servicio de Medicina Interna, Hospital Universitario de Cruces, CSUR de Errores Congénitos del Metabolismo, Baracaldo, Vizcaya, Spain
| | - I Vitoria
- Unidad de Nutrición y Metabolopatías, Hospital La Fe, Valencia, Spain
| | - M Bellusci
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - I Quiñones
- Servicio de Gastroenterología, Hospital Universitario de Gran Canaria Dr. Negrin (HUGCDN), Las Palmas de Gran Canaria, Spain
| | - L Peña-Quintana
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Complejo Hospitalario Universitario Insular-Materno Infantil, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - M Ruiz de Valbuena
- Sección de Neumología Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - M O'Callaghan
- Unidad de Enfermedades Metabólicas, Departamento de Neurología, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 PMCID: PMC11839463 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Grants
- MOE-T2EP30220-0008 Ministry of Education - Singapore (MOE)
- MOH-000435 MOH | National Medical Research Council (NMRC)
- MOH-001110 MOH | National Medical Research Council (NMRC)
- OT2 OD032100 NIH HHS
- OT2 OD027060 NIH HHS
- MOH-000207 MOH | National Medical Research Council (NMRC)
- R01 EY015473 NEI NIH HHS
- MOH-001329 Ministry of Health -Singapore (MOH)
- MOH-001110 Ministry of Health -Singapore (MOH)
- MOE-MOET32020-0004 Ministry of Education - Singapore (MOE)
- MOH-001072 MOH | National Medical Research Council (NMRC)
- MOH-000559 MOH | National Medical Research Council (NMRC)
- OT2 OD027852 NIH HHS
- MOE-T2EP30220-0005 Ministry of Education - Singapore (MOE)
- P30 EY014104 NEI NIH HHS
- MOH-001214 MOH | National Medical Research Council (NMRC)
- Agency for Science, Technology and Research (A*STAR)
- University of Malaya Parkinson’s Disease and Movement Disorders Research Program (PV035-2017)
- Intramural Research Program of the NIH, National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, the National Institute of Neurological Disorders and Stroke, the Office of Intramural research, Office of the director NIH, and utilized the computational resources of the NIH STRIDES Initiative (https://cloud.nih.gov) through the Other Transaction agreement - Azure: OT2OD032100, Google Cloud Platform: OT2OD027060, Amazon Web Services: OT2OD027852, and the NIH HPC Biowulf cluster (https://hpc.nih.gov).
- Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- Parkinson's Foundation (Parkinson's Foundation, Inc.)
- Silverstein Foundation
- Singapore National Research Foundation (NRF-NRFI2018-01)
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
8
|
Matza LS, Stewart KD, Fournier M, Rowen D, Lachmann R, Scarpa M, Mengel E, Obermeyer T, Ayik E, Laredo F, Pulikottil-Jacob R. Assessment of health state utilities associated with adult and pediatric acid sphingomyelinase deficiency (ASMD). THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024; 25:1437-1448. [PMID: 38409492 PMCID: PMC11442559 DOI: 10.1007/s10198-023-01667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Acid sphingomyelinase deficiency (ASMD) type B is a rare genetic disorder leading to enlargement of the spleen and liver, pulmonary dysfunction, and other symptoms. Cost-utility analyses are often conducted to quantify the value of new treatments, and these analyses require health state utilities. Therefore, the purpose of this study was to estimate utilities associated with varying levels of severity of adult and pediatric ASMD type B. METHODS Seven adult and seven child health state vignettes describing ASMD were developed based on published literature, clinical trial results, and interviews with clinicians, patients with ASMD, and parents of children with ASMD. The health states were valued in time trade-off interviews with adult general population respondents in the UK. RESULTS Interviews were completed with 202 participants (50.0% female; mean age = 41.3 years). The health state representing ASMD without impairment had the highest mean utility for both the adult and child health states (0.92/0.94), and severe ASMD had the lowest mean utility (0.33/0.45). Every child health state had a significantly greater utility than the corresponding adult health state. Differences between adult/child paired states ranged from 0.02 to 0.13. Subgroup analyses explored the impact of parenting status on valuation of child health states. DISCUSSION Greater severity of ASMD was associated with lower mean utility. Results have implications for valuation of pediatric health states. The resulting utilities may be useful in cost-utility modeling estimating the value of treatment for ASMD.
Collapse
Affiliation(s)
- Louis S Matza
- Patient-Centered Research, Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MD, 20814, USA.
| | - Katie D Stewart
- Patient-Centered Research, Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MD, 20814, USA
| | | | - Donna Rowen
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Maurizio Scarpa
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Eugen Mengel
- SphinCS-Institute of Clinical Science for Lysosomal Storage Diseases, Hochheim, Germany
| | | | | | | | | |
Collapse
|
9
|
Girard S, Pettazzoni M, Froissart R, Pagan C, Boyer T, Dulucq S, Gonçalves Monteiro V, Lechevalier N, Loosveld M, Lours C, Mayeur‐Rousse C, Pannetier M, Peillon C, Rosenthal M, Sep Hieng S, Trichet C, Baseggio L, on behalf the French‐Speaking Cellular Haematology Group (GFHC). How to diagnose acid sphingomyelinase deficiency (ASMD) and Niemann-Pick disease type C from bone marrow and peripheral blood smears. Hemasphere 2024; 8:e70042. [PMID: 39507854 PMCID: PMC11538321 DOI: 10.1002/hem3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Sandrine Girard
- Hospices Civils de Lyon, Service d'Hématologie Biologique et Hémostase CliniqueGroupement Hospitalier Lyon‐EstBronFrance
| | - Magali Pettazzoni
- Hospices Civils de Lyon, Service de Biochimie et Biologie Moléculaire, Laboratoire des maladies héréditaires du métabolismeGroupement Hospitalier EstBronFrance
| | - Roseline Froissart
- Hospices Civils de Lyon, Service de Biochimie et Biologie Moléculaire, Laboratoire des maladies héréditaires du métabolismeGroupement Hospitalier EstBronFrance
| | - Cécile Pagan
- Hospices Civils de Lyon, Service de Biochimie et Biologie Moléculaire, Laboratoire des maladies héréditaires du métabolismeGroupement Hospitalier EstBronFrance
| | | | | | | | | | - Marie Loosveld
- AP‐HM, Laboratoire d'HématologieHôpital de la TimoneMarseilleFrance
| | - Camille Lours
- Hospices Civils de Lyon, Service d'Hématologie Biologique et Hémostase CliniqueGroupement Hospitalier Lyon‐EstBronFrance
| | - Caroline Mayeur‐Rousse
- Hôpitaux Universitaires de Strasbourg, Laboratoire d'HématologieHôpital de HautepierreStrasbourgFrance
| | - Mélanie Pannetier
- CHU de RennesService d'Hématologie Cellulaire et Hémostase CliniqueRennesFrance
| | - Caroline Peillon
- Centre Hospitalier Alpes LémanLaboratoire de BiologieContamine sur ArveFrance
| | | | | | - Catherine Trichet
- AP‐HP Nord Université de Paris, Service d'Hématologie BiologiqueHôpital BeaujonClichyFrance
| | - Lucile Baseggio
- Hospices Civils de Lyon, Service d'Hématologie Biologique et Hémostase CliniqueGroupement Hospitalier SudPierre‐BéniteFrance
| | | |
Collapse
|
10
|
Mohamud Yusuf A, Zhang X, Gulbins E, Peng Y, Hagemann N, Hermann DM. Signaling roles of sphingolipids in the ischemic brain and their potential utility as therapeutic targets. Neurobiol Dis 2024; 201:106682. [PMID: 39332507 DOI: 10.1016/j.nbd.2024.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Sphingolipids comprise a class of lipids, which are composed of a sphingoid base backbone and are essential structural components of cell membranes. Beyond their role in maintaining cellular integrity, several sphingolipids are pivotally involved in signaling pathways controlling cell proliferation, differentiation, and death. The brain exhibits a particularly high concentration of sphingolipids and dysregulation of the sphingolipid metabolism due to ischemic injury is implicated in consecutive pathological events. Experimental stroke studies revealed that the stress sphingolipid ceramide accumulates in the ischemic brain post-stroke. Specifically, counteracting ceramide accumulation protects against ischemic damage and promotes brain remodeling, which translates into improved behavioral outcome. Sphingomyelin substantially influences cell membrane fluidity and thereby controls the release of extracellular vesicles, which are important vehicles in cellular communication. By modulating sphingomyelin content, these vesicles were shown to contribute to behavioral recovery in experimental stroke studies. Another important sphingolipid that influences stroke pathology is sphingosine-1-phosphate, which has been attributed a pro-angiogenic function, that is presumably mediated by its effect on endothelial function and/or immune cell trafficking. In experimental and clinical studies, sphingosine-1-phosphate receptor modulators allowed to modify clinically significant stroke recovery. Due to their pivotal roles in cell signaling, pharmacological compounds modulating sphingolipids, their enzymes or receptors hold promise as therapeutics in human stroke patients.
Collapse
Affiliation(s)
| | - Xiaoni Zhang
- Department of Neurology, University Hospital Essen, Essen, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, Essen, Germany
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
11
|
Mengel E, Scarpa M, Guffon N, Jones SA, Goriya V, Msihid J, Dyevre V, Rodriguez C, Gasparic M, Nalysnyk L, Laredo F, Pulikottil-Jacob R. Natural history of acid sphingomyelinase deficiency among European patients during childhood and adolescence: A retrospective observational study. Eur J Med Genet 2024; 70:104954. [PMID: 38852770 DOI: 10.1016/j.ejmg.2024.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare, lysosomal storage disease with limited evidence on its natural history. This retrospective, medical record abstraction study aimed to characterize the natural history of ASMD (types B and A/B) during childhood and adolescence. Recruiting sites were European centers (i.e., France, Germany, Italy, and the United Kingdom) from the ASCEND-Peds trial (NCT02292654); these sites were targeted because of the rarity of ASMD and specialized care provided at these centers. The study population comprised ASMD trial patients (before exposure to treatment) and ASMD non-trial participants who were managed at the same trial sites. Overall, 18 patients were included (11 trials; 7 non-trials; median [Q1; Q3] age at ASMD diagnosis: 2.5 [1.0; 4.0] years). Median follow-up duration was 10.0 years. Frequently reported medical conditions were hepatobiliary (17 [94.4%]) and blood and lymphatic system disorders (16 [88.9%]). Adenoidectomy (3 [16.7%]) was the most commonly reported surgical procedure; gastroenteritis (5 [27.8%]) was the most frequently reported infection, and epistaxis (6 [33.3%]) was the most commonly reported bleeding event. Abnormal spleen (16 [88.9%]) and liver (15 [83.3%]) size and respiratory function (8 [44.4%]) were commonly reported during physical examination. Overall, 11 (61.1%) patients were hospitalized; 6 (33.3%) patients had emergency room visits. Findings were consistent with published literature and support the current understanding of natural history of ASMD.
Collapse
Affiliation(s)
- Eugen Mengel
- Institute of Clinical Science for LSD, SphinCS, Hochheim, Germany
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, MetabERN, Udine University Hospital, Udine, Italy
| | - Nathalie Guffon
- Reference Center for Inherited Metabolic Disorders, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mächtel R, Dobert J, Hehr U, Weiss A, Kettwig M, Laugwitz L, Groeschel S, Schmidt M, Arnold P, Regensburger M, Zunke F. Late-onset Krabbe disease presenting as spastic paraplegia - implications of GCase and CTSB/D. Ann Clin Transl Neurol 2024; 11:1715-1731. [PMID: 38837642 PMCID: PMC11251474 DOI: 10.1002/acn3.52078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS Additionally to cerebral MRI, protein structural analyses of the β-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of β-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan‐Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Ute Hehr
- Center for Human GeneticsRegensburgGermany
| | - Alexander Weiss
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Matthias Kettwig
- Department of Pediatrics and Pediatric NeurologyUniversity Medical Center Göttingen, Georg August University GöttingenGöttingenGermany
| | - Lucia Laugwitz
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | - Samuel Groeschel
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | | | - Philipp Arnold
- Institute of Functional and Clinical AnatomyFAUErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Stem Cell BiologyFAUErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)University Hospital ErlangenErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
13
|
Giacomarra M, Colomba P, Francofonte D, Zora M, Caocci G, Diomede D, Giuffrida G, Fiori L, Montanari C, Sapuppo A, Scortechini AR, Vitturi N, Duro G, Zizzo C. Gaucher Disease or Acid Sphingomyelinase Deficiency? The Importance of Differential Diagnosis. J Clin Med 2024; 13:1487. [PMID: 38592326 PMCID: PMC10932152 DOI: 10.3390/jcm13051487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Gaucher disease is a lysosomal storage disorder caused by functional glucocerebrosidase enzyme deficiency. Hepatosplenomegaly and hematological complications are found in both Gaucher disease and Acid Sphingomyelinase Deficiency, which is caused by acid sphingomyelinase dysfunction. The possible overlap in clinical presentation can cause diagnostic errors in differential diagnosis. For this reason, in patients with an initial clinical suspicion of Gaucher disease, we aimed to carry out a parallel screening of acid sphingomyelinase and glucocerebrosidase. Methods: Peripheral blood samples of 627 patients were collected, and enzymatic activity analysis was performed on both glucocerebrosidase and acid sphingomyelinase. The specific gene was studied in samples with null or reduced enzymatic activity. Specific molecular biomarkers helped to achieve the correct diagnosis. Results: In 98.7% of patients, normal values of glucocerebrosidase activity excluded Gaucher disease. In 8 of 627 patients (1.3%), the glucocerebrosidase enzymatic activity assay was below the normal range, so genetic GBA1 analysis confirmed the enzymatic defect. Three patients (0.5%) had normal glucocerebrosidase activity, so they were not affected by Gaucher disease, and showed decreased acid sphingomyelinase activity. SMPD1 gene mutations responsible for Acid Sphingomyelinase Deficiency were found. The levels of specific biomarkers found in these patients further strengthened the genetic data. Conclusions: Our results suggest that in the presence of typical signs and symptoms of Gaucher disease, Acid Sphingomyelinase Deficiency should be considered. For this reason, the presence of hepatosplenomegaly, thrombocytopenia, leukocytopenia, and anemia should alert clinicians to analyze both enzymes by a combined screening. Today, enzyme replacement therapy is available for the treatment of both pathologies; therefore, prompt diagnosis is essential for patients to start accurate treatment and to avoid diagnostic delay.
Collapse
Affiliation(s)
- Miriam Giacomarra
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Marcomaria Zora
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Giovanni Caocci
- Ematologia e Centro Trapianto di Midollo Osseo, Ospedale Businco, Via Jenner, 09124 Cagliari, Italy;
| | - Daniela Diomede
- U.O.C. Ematologia e Trapianto, Ospedale “Mons. R. Dimiccoli”, Viale Ippocrate 15, 70051 Barletta, Italy;
| | - Gaetano Giuffrida
- Divisione Clinicizzata di Ematologia Sezione Trapianto di Midollo Osseo, Policlinico Vittorio Emanuele-Presidio Ospedaliero Ferrarotto, Via Citelli 6, 95124 Catania, Italy;
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Via Castevetro 32, 20154 Milan, Italy;
| | - Chiara Montanari
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy;
| | - Annamaria Sapuppo
- Regional Referral Centre for Inborn Errors Metabolism, Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy;
| | - Anna Rita Scortechini
- Azienda Ospedaliero Universitaria delle Marche, Clinica Ematologica, Via Conca 71, 60126 Ancona, Italy;
| | - Nicola Vitturi
- Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy; (M.G.); (P.C.); (D.F.); (M.Z.); (G.D.)
| |
Collapse
|
14
|
Doerr A, Farooq M, Faulkner C, Gould R, Perry K, Pulikottil-Jacob R, Rajasekhar P. Diagnostic odyssey for patients with acid sphingomyelinase deficiency (ASMD): Exploring the potential indicators of diagnosis using quantitative and qualitative data. Mol Genet Metab Rep 2024; 38:101052. [PMID: 38469089 PMCID: PMC10926222 DOI: 10.1016/j.ymgmr.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare, progressive, and potentially fatal lysosomal storage disease. This two-part international study aimed to understand physician, patient, and caregivers' experiences during the ASMD diagnostic journey. Qualitative interviews were conducted with patients with ASMD type B or A/B, caregivers (for patients <18 years), and physicians (January 2018-May 2019). A quantitative patient chart review was then performed by physicians (1-3 charts per physician) (April to May 2020). Overall, 12 physicians and 27 patients (self-reported, n = 11; caregiver-reported, n = 16) completed qualitative interviews. Symptoms first presented at approximately 2 years, with physician visits 2 months-1 year later. On average, diagnosis took 3 years and average age at diagnosis was 5 years. During childhood, all patients reported abdominal enlargement and 67% had respiratory issues. Adult patients frequently reported fatigue (64%) and heart problems (36%). In the quantitative study, 86 physicians reviewed 193 ASMD patient charts. At initial presentation, most patients reported abdominal enlargement (pediatric, 55%; adolescents/adults, 39%). Time to diagnosis ranged 0-10 years for patients with ASMD type A/B or type B, and most patients (85%) received an incorrect initial diagnosis. Diagnosis of ASMD can be challenging, and is often delayed due to disease heterogeneity and misdiagnoses.
Collapse
Affiliation(s)
- Andrew Doerr
- Fulcrum Research Group, Waltham, MA, United States
| | | | | | | | - Krista Perry
- Trinity Life Sciences, Waltham, MA, United States
| | | | | |
Collapse
|
15
|
Pulikottil-Jacob R, Dehipawala S, Smith B, Athavale A, Gusto G, Chandak A, Khachatryan A, Banon T, Fournier M, Guillonneau S, Pollissard L, Munoz-Rojas MV. Survival of patients with chronic acid sphingomyelinase deficiency (ASMD) in the United States: A retrospective chart review study. Mol Genet Metab Rep 2024; 38:101040. [PMID: 38188692 PMCID: PMC10767269 DOI: 10.1016/j.ymgmr.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Background Acid sphingomyelinase deficiency (ASMD), historically known as Niemann-Pick disease type A, A/B, and B, is a rare lysosomal storage pathology with multisystemic clinical manifestations. The aims of this study were to estimate the survival probability in patients in the United States with chronic ASMD (ASMD types B and A/B), and to describe the disease characteristics of these patients. Methods This observational retrospective study included medical chart records of patients with chronic ASMD with retrievable data abstracted by 69 participating physicians from 25 medical centers in the United States. Included patients had a date of ASMD diagnosis or first presentation to a physician for ASMD symptoms (whichever occurred first) between January 01, 1990, and February 28, 2021. Medical chart records were excluded if patients were diagnosed with ASMD type A. Eligible medical chart records were abstracted to collect demographic, medical and developmental history, and mortality data. Survival outcomes were analyzed using Kaplan-Meier survival analyses from birth until death. Results The overall study population (N = 110) included 69 patients with ASMD type B, nine with type A/B, and 32 with ASMD "non-type A" (ASMD subtype was unknown, but patients were confirmed as not having ASMD type A). The majority of patients were male with a median age at diagnosis of 3.8 years. Thirty-eight patients died during the study observation period, at a median age of 6.8 years. The median (95% confidence interval) survival age from birth was 21.3 (10.2; 60.4) years. At diagnosis or first presentation, 42.7% patients had ≥1 ASMD-related complication; splenic (30.0%) and hepatobiliary (20.9%) being the most common, and 40.9% required ≥1 medical visit due to complications. Conclusion Patients with chronic ASMD in the United States have poor survival and significant burden of illness.
Collapse
|
16
|
Raebel EM, Wiseman S, Donnelly C, Mathieson T, Pountney J, Crowe J, Hopkin J. Real-life impacts of olipudase alfa: The experience of patients and families taking an enzyme replacement therapy for acid sphingomyelinase deficiency. Orphanet J Rare Dis 2024; 19:36. [PMID: 38303068 PMCID: PMC10835881 DOI: 10.1186/s13023-024-03020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Acid Sphingomyelinase Deficiency (ASMD) is an ultra-rare autosomal recessive lysosomal storage disorder characterized by intracellular lipid accumulation resulting from reduced function of acid sphingomyelinase. Olipudase alfa, an enzyme replacement therapy, was recently approved in several countries for the treatment of the non-neurologic manifestations of ASMD. Studies demonstrate improvement in organomegaly, pulmonary function and lipid profiles with olipudase alfa, yet little is known about its impact on quality of life (QoL) for patients and caregivers. The purpose of this study is to better understand the real-life impact of ASMD on patients and caregivers and assess how olipudase alfa impacts QoL for pediatric patients and their caregivers. METHODS Caregivers of pediatric patients (≤ 18 years of age) with a confirmed diagnosis of ASMD that received olipudase alfa for at least 12 months were recruited in early 2022 through national patient organizations to participate in a global online questionnaire followed by semi-structured interviews. Ten caregivers of patients with ASMD who utilized olipudase alfa as an experimental therapy for pediatric patients participated in the study. Quantitative analysis of the results was undertaken, and qualitative data was analyzed using an inductive thematic approach. RESULTS Ten eligible participants completed questionnaires, and 8 of the 10 went on to participate in structured interviews. Symptom burden of ASMD and impact on symptomatology and quality of life after olipudase alfa use are reported here. Five themes emerged from analysis: (1) ASMD is a systemic disease with a wide array of manifestations that significantly impact QoL; (2) Olipudase alfa was associated with improvements in all non-neurologic manifestations of ASMD; (3) Participants perceived the risk associated with olipudase alfa to be low and the benefits to greatly outweigh any risk or burden; (4) Participants reported an unmet need to treat the neurologic manifestations of the disease despite the benefits of olipudase alfa in the management of non-neurological symptoms; (5) Participants felt all patients with ASMD need access to olipudase alfa based on the life-changing experience they perceived. CONCLUSIONS These findings highlight the sustained positive impact olipudase alfa had in many domains that are deemed important to patients and families living with ASMD and outline the extensive unmet need for patients and families living with ASMD.
Collapse
Affiliation(s)
- Eva M Raebel
- Rare Disease Research Partners, MPS House, Repton Place, White Lion Road, Amersham, HP7 9LP, UK
| | - Samantha Wiseman
- Rare Disease Research Partners, MPS House, Repton Place, White Lion Road, Amersham, HP7 9LP, UK
| | - Conan Donnelly
- International Niemann-Pick Disease Registry, Suite 2 Vermont House, Washington, Tyne and Wear, NE37 2SQ, UK.
| | - Toni Mathieson
- Niemann-Pick UK, Suite 2 Vermont House, Washington, Tyne and Wear, NE37 2SQ, UK
| | - Jackson Pountney
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | | | | |
Collapse
|
17
|
Loeck M, Placci M, Muro S. Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier. Drug Deliv Transl Res 2023; 13:3077-3093. [PMID: 37341882 DOI: 10.1007/s13346-023-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/22/2023]
Abstract
ASM deficiency in Niemann-Pick disease type A results in aberrant cellular accumulation of sphingomyelin, neuroinflammation, neurodegeneration, and early death. There is no available treatment because enzyme replacement therapy cannot surmount the blood-brain barrier (BBB). Nanocarriers (NCs) targeted across the BBB via transcytosis might help; yet, whether ASM deficiency alters transcytosis remains poorly characterized. We investigated this using model NCs targeted to intracellular adhesion molecule-1 (ICAM-1), transferrin receptor (TfR), or plasmalemma vesicle-associated protein-1 (PV1) in ASM-normal vs. ASM-deficient BBB models. Disease differentially changed the expression of all three targets, with ICAM-1 becoming the highest. Apical binding and uptake of anti-TfR NCs and anti-PV1 NCs were unaffected by disease, while anti-ICAM-1 NCs had increased apical binding and decreased uptake rate, resulting in unchanged intracellular NCs. Additionally, anti-ICAM-1 NCs underwent basolateral reuptake after transcytosis, whose rate was decreased by disease, as for apical uptake. Consequently, disease increased the effective transcytosis rate for anti-ICAM-1 NCs. Increased transcytosis was also observed for anti-PV1 NCs, while anti-TfR NCs remained unaffected. A fraction of each formulation trafficked to endothelial lysosomes. This was decreased in disease for anti-ICAM-1 NCs and anti-PV1 NCs, agreeing with opposite transcytosis changes, while it increased for anti-TfR NCs. Overall, these variations in receptor expression and NC transport resulted in anti-ICAM-1 NCs displaying the highest absolute transcytosis in the disease condition. Furthermore, these results revealed that ASM deficiency can differently alter these processes depending on the particular target, for which this type of study is key to guide the design of therapeutic NCs.
Collapse
Affiliation(s)
- Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
18
|
Voicu V, Tataru CP, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Corlatescu AD, Ciurea AV. Decoding Neurodegeneration: A Comprehensive Review of Molecular Mechanisms, Genetic Influences, and Therapeutic Innovations. Int J Mol Sci 2023; 24:13006. [PMID: 37629187 PMCID: PMC10455143 DOI: 10.3390/ijms241613006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders often acquire due to genetic predispositions and genomic alterations after exposure to multiple risk factors. The most commonly found pathologies are variations of dementia, such as frontotemporal dementia and Lewy body dementia, as well as rare subtypes of cerebral and cerebellar atrophy-based syndromes. In an emerging era of biomedical advances, molecular-cellular studies offer an essential avenue for a thorough recognition of the underlying mechanisms and their possible implications in the patient's symptomatology. This comprehensive review is focused on deciphering molecular mechanisms and the implications regarding those pathologies' clinical advancement and provides an analytical overview of genetic mutations in the case of neurodegenerative disorders. With the help of well-developed modern genetic investigations, these clinically complex disturbances are highly understood nowadays, being an important step in establishing molecularly targeted therapies and implementing those approaches in the physician's practice.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petre Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
19
|
Arslan N, Coker M, Gokcay GF, Kiykim E, Onenli Mungan HN, Ezgu F. Expert opinion on patient journey, diagnosis and clinical monitoring in acid sphingomyelinase deficiency in Turkey: a pediatric metabolic disease specialist's perspective. Front Pediatr 2023; 11:1113422. [PMID: 37435168 PMCID: PMC10330960 DOI: 10.3389/fped.2023.1113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
This review by a panel of pediatric metabolic disease specialists aimed to provide a practical and implementable guidance document to assist clinicians in best clinical practice in terms of recognition, diagnosis and management of patients with acid sphingomyelinase deficiency (ASMD). The participating experts consider the clinical suspicion of ASMD by the physician to be of utmost importance in the prevention of diagnostic delay and strongly suggest the use of a diagnostic algorithm including/starting with dried blood spots assay in the timely diagnosis of ASMD in patients presenting with hepatosplenomegaly and a need for increased awareness among physicians in this regard to consider ASMD in the differential diagnosis. In anticipation of the introduction of enzyme replacement therapy, raising awareness of the disease among physicians to prevent diagnostic delay and further investigation addressing natural history of ASMD across the disease spectrum, potential presenting characteristics with a high index of suspicion, as well as biomarkers and genotype-phenotype correlations suggestive of poor prognosis seem important in terms of implementation of best practice patterns.
Collapse
Affiliation(s)
- Nur Arslan
- Division of Pediatric Metabolism, Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Mahmut Coker
- Division of Pediatric Metabolism, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Gulden Fatma Gokcay
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Ertugrul Kiykim
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | | | - Fatih Ezgu
- Division of Pediatric Metabolism and Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
20
|
Gaudioso Á, Moreno-Huguet P, Casas J, Schuchman EH, Ledesma MD. Modulation of Dietary Choline Uptake in a Mouse Model of Acid Sphingomyelinase Deficiency. Int J Mol Sci 2023; 24:ijms24119756. [PMID: 37298714 DOI: 10.3390/ijms24119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder caused by mutations in the gene-encoding acid sphingomyelinase (ASM). ASMD impacts peripheral organs in all patients, including the liver and spleen. The infantile and chronic neurovisceral forms of the disease also lead to neuroinflammation and neurodegeneration for which there is no effective treatment. Cellular accumulation of sphingomyelin (SM) is a pathological hallmark in all tissues. SM is the only sphingolipid comprised of a phosphocholine group linked to ceramide. Choline is an essential nutrient that must be obtained from the diet and its deficiency promotes fatty liver disease in a process dependent on ASM activity. We thus hypothesized that choline deprivation could reduce SM production and have beneficial effects in ASMD. Using acid sphingomyelinase knock-out (ASMko) mice, which mimic neurovisceral ASMD, we have assessed the safety of a choline-free diet and its effects on liver and brain pathological features such as altered sphingolipid and glycerophospholipid composition, inflammation and neurodegeneration. We found that the choline-free diet was safe in our experimental conditions and reduced activation of macrophages and microglia in the liver and brain, respectively. However, there was no significant impact on sphingolipid levels and neurodegeneration was not prevented, arguing against the potential of this nutritional strategy to assist in the management of neurovisceral ASMD patients.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Geberhiwot T, Wasserstein M, Wanninayake S, Bolton SC, Dardis A, Lehman A, Lidove O, Dawson C, Giugliani R, Imrie J, Hopkin J, Green J, de Vicente Corbeira D, Madathil S, Mengel E, Ezgü F, Pettazzoni M, Sjouke B, Hollak C, Vanier MT, McGovern M, Schuchman E. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann-Pick disease types A, B and A/B). Orphanet J Rare Dis 2023; 18:85. [PMID: 37069638 PMCID: PMC10108815 DOI: 10.1186/s13023-023-02686-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acid Sphingomyelinase Deficiency (ASMD) is a rare autosomal recessive disorder caused by mutations in the SMPD1 gene. This rarity contributes to misdiagnosis, delayed diagnosis and barriers to good care. There are no published national or international consensus guidelines for the diagnosis and management of patients with ASMD. For these reasons, we have developed clinical guidelines that defines standard of care for ASMD patients. METHODS The information contained in these guidelines was obtained through a systematic literature review and the experiences of the authors in their care of patients with ASMD. We adopted the Appraisal of Guidelines for Research and Evaluation (AGREE II) system as method of choice for the guideline development process. RESULTS The clinical spectrum of ASMD, although a continuum, varies substantially with subtypes ranging from a fatal infantile neurovisceral disorder to an adult-onset chronic visceral disease. We produced 39 conclusive statements and scored them according to level of evidence, strengths of recommendations and expert opinions. In addition, these guidelines have identified knowledge gaps that must be filled by future research. CONCLUSION These guidelines can inform care providers, care funders, patients and their carers about best clinical practice and leads to a step change in the quality of care for patients with ASMD with or without enzyme replacement therapy (ERT).
Collapse
Affiliation(s)
- Tarekegn Geberhiwot
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.
| | - Melissa Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Andrea Dardis
- Regional Coordinator Centre for Rare Disease, AMC Hospital of Udine, Udine, Italy
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Olivier Lidove
- Department of Internal Medicine, Hôpital de La Croix Saint Simon, Paris, France
| | - Charlotte Dawson
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Roberto Giugliani
- BioDiscovery and DR BRASIL Research Group, HCPA, Department of Genetics and PPGBM, UFRGS, INAGEMP, DASA, and Casa Dos Raros, Porto Alegre, Brazil
| | - Jackie Imrie
- International Niemann-Pick Disease Registry, Newcastle, UK
| | - Justin Hopkin
- National Niemann-Pick Disease Foundation, Fort Atkinson, WI, USA
| | - James Green
- International Niemann-Pick Disease Registry, Newcastle, UK
| | | | - Shyam Madathil
- Department of Respiratory Medicine, University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Eugen Mengel
- Institute of Clinical Science in LSD, SphinCS, Hochheim, Germany
| | - Fatih Ezgü
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, 06560, Ankara, Turkey
| | - Magali Pettazzoni
- Biochemistry and Molecular Biology and Reference Center for Inherited Metabolic Disorders, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Barbara Sjouke
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Carla Hollak
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | | - Edward Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA
| |
Collapse
|
23
|
Krishna D, Gunasekaran PK, Kumari J, Laxmi V, Saini L, Singh K. A rare case of intermediate phenotype Niemann-Pick disease with a rare pathogenic variant of 1624C>T in SMPD1 gene. J Neurosci Rural Pract 2023; 14:189-190. [PMID: 36891108 PMCID: PMC9944668 DOI: 10.25259/jnrp-2022-6-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Deepthi Krishna
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Janki Kumari
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Veena Laxmi
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Lokesh Saini
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
24
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
25
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
26
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
27
|
Solomon M, Loeck M, Silva-Abreu M, Moscoso R, Bautista R, Vigo M, Muro S. Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases. J Control Release 2022; 349:1031-1044. [PMID: 35901858 PMCID: PMC10550198 DOI: 10.1016/j.jconrel.2022.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcelle Silva-Abreu
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ronaldo Moscoso
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Ronelle Bautista
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Marco Vigo
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA; Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain; Institute of Catalonia for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
28
|
Kang H, Zhou M, Xie C, Lu K. A 2-bp deletion mutation in SMPD1 gene leading to lysosomal acid sphingomyelinase deficiency in a Chinese consanguineous pedigree. J Pediatr Endocrinol Metab 2022; 35:1113-1116. [PMID: 35617710 DOI: 10.1515/jpem-2021-0480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Niemann-Pick disease type A (NPDA, MIM: 257200) is an autosomal recessive sphingolipidosis caused by lysosomal acid sphingomyelinase (ASM) deficiency. A cluster of genes located at chromosome 11p15 have been reported to be imprinted genes, such as TSSC5, TSSC3, and ZNF215 that flanking SMPD1 gene. It was reported by a few recent studies that SMPD1 gene was paternally imprinted and maternally preferentially expressed. CASE PRESENTATION A five-month-old boy with severe anemia, hepatosplenomegly and bone marrow foam cells was recruited from a complete cousin couple. To determine whether boy suffered from NPDA, ASM activity and SMPD1 gene sequencing were performed on available individuals of this pedigree including the proband, his parents and sister. The ASM activities of proband and parents showed deficiency (17.7 nmol/h/g-protein) and about 50% decreased (83.3 nmol/h/g-protein), respectively, compared with normal controls (204.5 nmol/h/g-protein). SMPD1 gene sequencing in the proband revealed a homozygous mutation c.1420_1421del, which leads to an open reading frameshift and a premature stop codon. The parents and some individuals of this family demonstrated heterozygous mutation at this locus. To investigate whether SMPD1 gene is imprinted as reported previously, the expression of RNA level was studied in the whole family members available. The members with heterozygous mutation for c.1420_1421del showed that both paternal and maternal inherited alleles were expressed. CONCLUSIONS This study reported a c.1420_1421del mutation in SMPD1 gene which caused ASM activity decrease and this locus was biallelically expressed in heterozygous subjects implicating SMPD1 is not imprinted in this family.
Collapse
Affiliation(s)
- Han Kang
- Prenatal Diagnosis Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Min Zhou
- Section of Hematology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Chengxiu Xie
- Prenatal Diagnosis Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Kangmo Lu
- Prenatal Diagnosis Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China.,Prenatal Diagnosis Center, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, P.R. China
| |
Collapse
|
29
|
Sanchez V, Galor A, Jensen K, Mondal K, Mandal N. Relationships between ocular surface sphingomyelinases, Meibum and Tear Sphingolipids, and clinical parameters of meibomian gland dysfunction. Ocul Surf 2022; 25:101-107. [PMID: 35714913 DOI: 10.1016/j.jtos.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Sphingolipids (SPL) are a class of lipid molecules that play important functional and structural roles in our body and are a component of meibum. Sphingomyelinases (SMases) are key enzymes in sphingolipid metabolism that hydrolyze sphingomyelin (SM) and generate ceramide (Cer). The purpose of this study was to examine relationships between ocular surface SMases, SPL composition, and parameters of Meibomian gland dysfunction (MGD). METHODS Individuals were grouped by meibum quality (n = 25 with poor-quality, MGD, and n = 25 with good-quality, control). Meibum and tears were analyzed with LC-MS to quantify SPL classes: Cer, Hexosyl-Ceramide (Hex-Cer), SM, Sphingosine (Sph), and sphingosine 1-phosphate (S1P). SMase activity in tears were quantified using a commercially available 'SMase assay'. Statistical analysis included multiple linear regression analyses to assess the impact of SMase activity on lipid composition, as well as ocular surface symptoms and signs of MGD. RESULTS Demographic characteristics were similar between the two groups. nSMase and aSMase levels were lower in the poor vs good quality group. aSMase activity in tears negatively correlated with SM in meibum and tears and positively with Sph in meibum and S1P in tears. Lower SMase activity were associated with signs of MGD, most notably Meibomian gland dropout. CONCLUSION This study suggests that individuals with MGD have reduced enzymatic activity of SMases in tears. Specifically, individuals with poor vs good meibum quality were noted to have alterations in SMase activity and SPL composition of meibum and tears which may reflect deviations from normal lipid metabolism in individuals with MGD.
Collapse
Affiliation(s)
- Victor Sanchez
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Katherine Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
30
|
Ding H, Wang J, Zhang Y, Zhao S, Han B, Cai H, Gu J. Living donor liver transplantation combined with splenectomy in a child with Niemann-Pick disease type B: single-centre experience of perioperative anticoagulation regimen. Hepatobiliary Surg Nutr 2022; 11:498-501. [PMID: 35693418 PMCID: PMC9186205 DOI: 10.21037/hbsn-21-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/10/2022] [Indexed: 08/30/2023]
Affiliation(s)
- Han Ding
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Cai
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
32
|
Muntimadugu E, Silva-Abreu M, Vives G, Loeck M, Pham V, del Moral M, Solomon M, Muro S. Comparison between Nanoparticle Encapsulation and Surface Loading for Lysosomal Enzyme Replacement Therapy. Int J Mol Sci 2022; 23:ijms23074034. [PMID: 35409394 PMCID: PMC8999373 DOI: 10.3390/ijms23074034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhance the delivery of therapeutic enzymes for replacement therapy of lysosomal storage disorders. Previous studies examined NPs encapsulating or coated with enzymes, but these formulations have never been compared. We examined this using hyaluronidase (HAse), deficient in mucopolysaccharidosis IX, and acid sphingomyelinase (ASM), deficient in types A−B Niemann−Pick disease. Initial screening of size, PDI, ζ potential, and loading resulted in the selection of the Lactel II co-polymer vs. Lactel I or Resomer, and Pluronic F68 surfactant vs. PVA or DMAB. Enzyme input and addition of carrier protein were evaluated, rendering NPs having, e.g., 181 nm diameter, 0.15 PDI, −36 mV ζ potential, and 538 HAse molecules encapsulated per NP. Similar NPs were coated with enzyme, which reduced loading (e.g., 292 HAse molecules/NP). NPs were coated with targeting antibodies (> 122 molecules/NP), lyophilized for storage without alterations, and acceptably stable at physiological conditions. NPs were internalized, trafficked to lysosomes, released active enzyme at lysosomal conditions, and targeted both peripheral organs and the brain after i.v. administration in mice. While both formulations enhanced enzyme delivery compared to free enzyme, encapsulating NPs surpassed coated counterparts (18.4- vs. 4.3-fold enhancement in cells and 6.2- vs. 3-fold enhancement in brains), providing guidance for future applications.
Collapse
Affiliation(s)
- Eameema Muntimadugu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
| | - Marcelle Silva-Abreu
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Guillem Vives
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Vy Pham
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Maria del Moral
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
33
|
Marín T, Dulcey AE, Campos F, de la Fuente C, Acuña M, Castro J, Pinto C, Yañez MJ, Cortez C, McGrath DW, Sáez PJ, Gorshkov K, Zheng W, Southall N, Carmo-Fonseca M, Marugán J, Alvarez AR, Zanlungo S. c-Abl Activation Linked to Autophagy-Lysosomal Dysfunction Contributes to Neurological Impairment in Niemann-Pick Type A Disease. Front Cell Dev Biol 2022; 10:844297. [PMID: 35399514 PMCID: PMC8985125 DOI: 10.3389/fcell.2022.844297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Niemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and progressive neurodegeneration starting at an early age. Currently, there is no effective treatment for this disease and NPA patients die between 2 and 3 years of age. NPA is characterized by an accumulation of sphingomyelin in lysosomes and dysfunction in the autophagy-lysosomal pathway. Recent studies show that c-Abl tyrosine kinase activity downregulates autophagy and the lysosomal pathway. Interestingly, this kinase is also activated in other lysosomal neurodegenerative disorders. Here, we describe that c-Abl activation contributes to the mechanisms of neuronal damage and death in NPA disease. Our data demonstrate that: 1) c-Abl is activated in-vitro as well as in-vivo NPA models; 2) imatinib, a clinical c-Abl inhibitor, reduces autophagy-lysosomal pathway alterations, restores autophagy flux, and lowers sphingomyelin accumulation in NPA patient fibroblasts and NPA neuronal models and 3) chronic treatment with nilotinib and neurotinib, two c-Abl inhibitors with differences in blood-brain barrier penetrance and target binding mode, show further benefits. While nilotinib treatment reduces neuronal death in the cerebellum and improves locomotor functions, neurotinib decreases glial activation, neuronal disorganization, and loss in hippocampus and cortex, as well as the cognitive decline of NPA mice. Our results support the participation of c-Abl signaling in NPA neurodegeneration and autophagy-lysosomal alterations, supporting the potential use of c-Abl inhibitors for the clinical treatment of NPA patients.
Collapse
Affiliation(s)
- Tamara Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Fabián Campos
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina de la Fuente
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Acuña
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Pinto
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Yañez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago, Chile
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - David W. McGrath
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo J. Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirill Gorshkov
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Wei Zheng
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular Joȧo Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Juan Marugán
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| | - Alejandra R. Alvarez
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| |
Collapse
|
34
|
Portier E, Talbot A, Nguyen Y, Royer B, Pettazzoni M, Ben Salah I, Trichet C, Vercellino L, Arnulf B, Belmatoug N. Multiple myeloma occurring in a case of Niemann-Pick disease Type B: A pathophysiological link? Br J Haematol 2022; 197:e53-e55. [PMID: 35141883 DOI: 10.1111/bjh.18050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Elodie Portier
- Department of Internal Medicine, Referral Centre of Lysosomal Diseases, APHP-Nord, Beaujon Hospital, University of Paris, Clichy, France
| | - Alexis Talbot
- Department of Immuno-Hematology, APHP, Saint Louis Hospital, University of Paris, Paris, France
| | - Yann Nguyen
- Department of Internal Medicine, Referral Centre of Lysosomal Diseases, APHP-Nord, Beaujon Hospital, University of Paris, Clichy, France
| | - Bruno Royer
- Department of Immuno-Hematology, APHP, Saint Louis Hospital, University of Paris, Paris, France
| | - Magali Pettazzoni
- Biochemical and Molecular Biology Department, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Bron, France
| | - Imen Ben Salah
- Laboratory of Hematology and Hemostasis, APHP-Nord, Beaujon Hospital, University of Paris, Clichy, France
| | - Catherine Trichet
- Laboratory of Hematology and Hemostasis, APHP-Nord, Beaujon Hospital, University of Paris, Clichy, France
| | - Laetitia Vercellino
- Department of Nuclear Medicine, APHP, Saint-Louis Hospital, University of Paris, Paris, France
| | - Bertrand Arnulf
- Department of Immuno-Hematology, APHP, Saint Louis Hospital, University of Paris, Paris, France
| | - Nadia Belmatoug
- Department of Internal Medicine, Referral Centre of Lysosomal Diseases, APHP-Nord, Beaujon Hospital, University of Paris, Clichy, France
| |
Collapse
|
35
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
36
|
Impact and burden of acid sphingomyelinase deficiency from a patient and caregiver perspective. Sci Rep 2021; 11:20972. [PMID: 34697402 PMCID: PMC8546120 DOI: 10.1038/s41598-021-99921-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD), historically known as Niemann–Pick disease (NPD) types A, A/B, and B, is a rare, progressive, potentially fatal lysosomal storage disease with a spectrum of phenotypes. Little is known about how ASMD symptoms affect the lives of patients and their caregivers. In a cross-sectional qualitative study conducted in the US and UK, and in collaboration with the National Niemann–Pick Disease Foundation (US) and Niemann–Pick UK, we investigated the symptom experience of patients with ASMD types B and A/B and explored how the disease impacts their and their caregivers’ lives. The study included 17 adult patients (mean age 38.7 years, 12 female), three caregivers of adults with ASMD, 12 pediatric/adolescent patients with ASMD (mean age 10.5 years, six female), and 12 caregivers of pediatric/adolescent patients with ASMD. The most commonly reported disease manifestations were respiratory (n = 26, 89.7%), abdominal (n = 25, 86.2%), and musculoskeletal symptoms (n = 23, 79.3%); excessive bleeding or bruising (n = 20, 69%); fatigue (n = 20, 69%); gastrointestinal symptoms (n = 18, 62.1%); and headache (n = 15, 51.7%). ASMD was reported to negatively impact patients’ physical function (n = 23, 79.3%), self-esteem (n = 18, 62.1%), emotions (n = 16, 55.2%), social function and relationships (n = 16, 55.2%), and personal care (n = 9, 31%). Providing care for individuals with ASMD negatively affected caregivers’ emotional well-being (n = 12, 80%), social function (n = 4, 26.7%), relationships (n = 6, 40%), and financial security (n = 7, 46.7%). The physical toll of providing care, the need for lifestyle changes, and the responsibility for making medical decisions added to the burden for caregivers. Alternatively, some caregivers noted that caring for a loved one enhanced their spirituality, providing them with a different outlook on life and a deeper personal resolve. This study showed that ASMD is a substantial burden for patients and caregivers, with long-term physical, emotional, social, and financial impacts. The study confirmed commonly known manifestations of ASMD, especially respiratory problems, but also identified less recognized ones, such as dermatological complications. The data collected and insight gained from this study should enhance clinical care, help evaluate new treatments, and inform health care decision making for patients with ASMD.
Collapse
|
37
|
Pająk R, Mendela E, Będkowska N, Paprocka J. Update on Neuropathies in Inborn Errors of Metabolism. Brain Sci 2021; 11:763. [PMID: 34201281 PMCID: PMC8227217 DOI: 10.3390/brainsci11060763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathies are relatively common in inborn errors of metabolism (IEMs); however, due to the early onset and severe, progressive course of many IEMs, they have not been very well researched yet. This article aims to review and compare neuropathies in inborn errors of metabolism, mostly with childhood and juvenile onset. Some of these diseases are treatable if diagnosed early and in many cases, the therapy can not only slow down disease progression, but can also reverse the changes already made by the condition.
Collapse
Affiliation(s)
- Renata Pająk
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Ewelina Mendela
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Natalia Będkowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
38
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
39
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
40
|
del Villar-Guerra P, Reig C, Irún P, Moreno B, Giraldo P, Cebolla JJ. A novel mutation in two Spanish children with Niemann Pick disease: description of genotype, sphingomyelinase activity, phenotype and review. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.anpede.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Borie R, Crestani B, Guyard A, Lidove O. Interstitial lung disease in lysosomal storage disorders. Eur Respir Rev 2021; 30:30/160/200363. [PMID: 33927007 DOI: 10.1183/16000617.0363-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/27/2020] [Indexed: 11/05/2022] Open
Abstract
Lysosomes are intracellular organelles that are responsible for degrading and recycling macromolecules. Lysosomal storage diseases (LSDs) are a group of inherited diseases caused by mutations affecting genes that encode the function of the lysosomal enzymes. Three LSDs are associated with lung involvement and/or interstitial lung disease (ILD): Gaucher disease (GD); Niemann-Pick disease, also known as acid sphingomyelinase deficiency (ASMD); and Fabry disease (FD). In GD and in ASMD, analysis of bronchoalveolar lavage fluid and lung biopsy can be informative, showing foamy cells. In GD, ILD is rare. Enzyme replacement therapy (ERT) has been available since 1991 and has greatly changed the natural history of GD, with pulmonary failure and death reported before the ERT era. In ASMD, ILD is frequent and is usually associated with spleen enlargement, low platelet cell count and low level of high-density lipoprotein-cholesterol. Results of ERT are promising regarding preliminary results of olipudase alfa in paediatric and adult ASMD populations. The most frequent respiratory manifestation in FD is COPD-like symptoms regardless of smoking habit and dyspnoea due to congestive heart failure. Early diagnosis of these three LSDs is crucial to prevent irreversible organ damage. Early initiation of ERT can, at least in part, prevent organ failure.
Collapse
Affiliation(s)
- Raphaël Borie
- Service de Pneumologie A, Centre de Référence des maladies pulmonaires rares, DHU APOLLO, APHP, Hôpital Bichat, Paris, France .,Université de Paris, INSERM U1152, Labex INFLAMEX, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Centre de Référence des maladies pulmonaires rares, DHU APOLLO, APHP, Hôpital Bichat, Paris, France.,Université de Paris, INSERM U1152, Labex INFLAMEX, Paris, France
| | - Alice Guyard
- Laboratoire d'anatomopathologie, Hôpital Bichat, Paris, France
| | - Olivier Lidove
- Service de Médecine Interne, Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France.,Centre de Référence Maladies Lysosomales (CRML, site Diaconesses Croix Saint-Simon) - Filière Maladies Rares G2M, Paris, France
| |
Collapse
|
42
|
Sura R, Hutt J, Morgan S. Opinion on the Use of Animal Models in Nonclinical Safety Assessment: Pros and Cons. Toxicol Pathol 2021; 49:990-995. [PMID: 33827334 DOI: 10.1177/01926233211003498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nonclinical evaluation of human safety risks for new chemical entities (NCEs) is primarily conducted in conventional healthy animals (CHAs); however, in certain instances, animal models of diseases (AMDs) can play a critical role in the understanding of human health risks. Animal models of diseases may be especially important when there is a need to understand how disease conditions associated with the intended indication might impact risk assessment of NCEs or when CHAs lack the human-specific target of interest (receptor, etc). Although AMDs have potential benefits over CHAs, they also have limitations. Understanding these limitations and optimizing the AMDs of interest should be done prior to proceeding with studies that will guide development of NCE. The purpose of this manuscript is to provide an overview of the major pros and cons of utilization of AMDs in nonclinical safety assessment.
Collapse
Affiliation(s)
| | - Julie Hutt
- Greenfield Pathology Services, Inc., Greenfield, IN, USA
| | | |
Collapse
|
43
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
44
|
Biomarker analysis of Niemann-Pick disease type C using chromatography and mass spectrometry. J Pharm Biomed Anal 2020; 191:113622. [PMID: 32998104 DOI: 10.1016/j.jpba.2020.113622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive degradation of central nervous system. The age of the onset varies from perinatal to adulthood. Patients with NPC are affected in the central nervous system, peripheral nerves, and systemic organs. From these background, it is extremely difficult to discover NPC clinically and diagnose it correctly. The procedure of the conventional laboratory methods are complicated and it takes long time to obtain the result. Because of the importance of early treatments and the shortcomings of conventional diagnostic methods for NPC, remarkable attention has been paid to biomarkers and chemical diagnoses. In the last decade, many NPC biomarkers have been reported. They are classified as cholesterol-related metabolites, sphingolipid metabolites, and novel phospholipid metabolites, respectively. Therefore, these are all lipid metabolites. Various chemical analysis methods have been used for their identification. In addition, chromatography and mass spectrometry are mainly used for their quantification. This review article outlines NPC biomarkers reported in the last decade and their analytical methods.
Collapse
|
45
|
Villeneuve T, Guibert N, Collot S, Fajadet P, Colombat M, Courtade-Saïdi M, Levade T, Didier A, Prévot G. Confocal LASER endomicroscopy in Niemann-Pick disease type B. Eur Respir J 2020; 57:13993003.02306-2020. [PMID: 32943409 DOI: 10.1183/13993003.02306-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Villeneuve
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Nicolas Guibert
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Samia Collot
- Service de Radiologie, Hôpital Rangueil, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Pierre Fajadet
- Service de Radiologie, Clinique de l'Union, Toulouse, France
| | - Magali Colombat
- Département d'Anatomie et Cytologie Pathologiques, Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Monique Courtade-Saïdi
- Département d'Anatomie et Cytologie Pathologiques, Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie métabolique, Institut Fédératif de Biologie, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Alain Didier
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Grégoire Prévot
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| |
Collapse
|
46
|
Chui C. A Large Abdomen and More. J Pediatr Ophthalmol Strabismus 2020; 57:281. [PMID: 32956475 DOI: 10.3928/01913913-20200722-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Iwahori A, Maekawa M, Narita A, Kato A, Sato T, Ogura J, Sato Y, Kikuchi M, Noguchi A, Higaki K, Okuyama T, Takahashi T, Eto Y, Mano N. Development of a Diagnostic Screening Strategy for Niemann-Pick Diseases Based on Simultaneous Liquid Chromatography-Tandem Mass Spectrometry Analyses of N-Palmitoyl-O-phosphocholine-serine and Sphingosylphosphorylcholine. Biol Pharm Bull 2020; 43:1398-1406. [PMID: 32581190 DOI: 10.1248/bpb.b20-00400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early diagnosis of Niemann-Pick diseases (NPDs) is important for better prognosis of such diseases. N-Palmitoyl-O-phosphocholine-serine (PPCS) is a new NPD biomarker possessing high sensitivity, and with its combination with sphingosylphosphocholine (SPC) it may be possible to distinguish NPD-C from NPD-A/B. In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (method 1) and a validated LC-MS/MS analysis (method 2) of PPCS and SPC were developed, and we have proposed a diagnostic screening strategy for NPDs using a combination of serum PPCS and SPC concentrations. Nexera and API 5000 were used as LC-MS/MS systems. C18 columns with lengths of 10 and 50 mm were used for method 1 and 2, respectively. 2H3-Labeled PPCS and nor-SPC were used as internal standards. Selective reaction monitoring in positive-ion mode was used for MS/MS. Run times of 1.2 and 8 min were set for methods 1 and 2, respectively. In both methods 1 and 2, two analytes showed high linearity in the range of 1-4000 ng/mL. Method 2 provided high accuracy and precision in method validation. Serum concentrations of both analytes were significantly higher in NPD-C patients than those of healthy subjects in both methods. Serum PPCS correlated between methods 1 and 2; however, it was different in the case of SPC. The serum PPCS/SPC ratio was different in healthy subjects, NPD-C, and NPD-A/B. These results suggest that using a combination of the two LC-MS/MS analytical methods for PPCS and SPC is useful for diagnostic screening of NPDs.
Collapse
Affiliation(s)
- Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital
| | - Akie Kato
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University.,Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
48
|
Giussani P, Prinetti A, Tringali C. The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem 2020; 156:403-414. [PMID: 33448358 DOI: 10.1111/jnc.15133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) represents the most common demyelinating disease affecting the central nervous system (CNS) in adults as well as in children. Furthermore, in children, in addition to acquired diseases such as MS, genetically inherited diseases significantly contribute to the incidence of demyelinating disorders. Some genetic defects lead to sphingolipid alterations that are able to elicit neurological symptoms. Sphingolipids are essential for brain development, and their aberrant functionality may thus contribute to demyelinating diseases such as MS. In particular, sphingolipidoses caused by deficits of sphingolipid-metabolizing enzymes, are often associated with demyelination. Sphingolipids are not only structural molecules but also bioactive molecules involved in the regulation of cellular events such as development of the nervous system, myelination and maintenance of myelin stability. Changes in the sphingolipid metabolism deeply affect plasma membrane organization. Thus, changes in myelin sphingolipid composition might crucially contribute to the phenotype of diseases characterized by demyelinalization. Here, we review key features of several sphingolipids such as ceramide/dihydroceramide, sphingosine/dihydrosphingosine, glucosylceramide and, galactosylceramide which act in myelin formation during rat brain development and in human brain demyelination during the pathogenesis of MS, suggesting that this knowledge could be useful in identifying targets for possible therapies.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| |
Collapse
|
49
|
Samaranch L, Pérez-Cañamás A, Soto-Huelin B, Sudhakar V, Jurado-Arjona J, Hadaczek P, Ávila J, Bringas JR, Casas J, Chen H, He X, Schuchman EH, Cheng SH, Forsayeth J, Bankiewicz KS, Ledesma MD. Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A. Sci Transl Med 2020; 11:11/506/eaat3738. [PMID: 31434754 DOI: 10.1126/scitranslmed.aat3738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 01/23/2019] [Accepted: 07/29/2019] [Indexed: 11/02/2022]
Abstract
Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.
Collapse
Affiliation(s)
- Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | | | - Vivek Sudhakar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | - Piotr Hadaczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | - Jesús Ávila
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - John R Bringas
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | | | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA.
| | | |
Collapse
|
50
|
Manthe RL, Loeck M, Bhowmick T, Solomon M, Muro S. Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme. J Control Release 2020; 324:181-193. [PMID: 32389778 PMCID: PMC7720842 DOI: 10.1016/j.jconrel.2020.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
The interaction of drug delivery systems with tissues is key for their application. An example is drug carriers targeted to endothelial barriers, which can be transported to intra-endothelial compartments (lysosomes) or transcellularly released at the tissue side (transcytosis). Although carrier targeting valency influences this process, the mechanism is unknown. We studied this using polymer nanocarriers (NCs) targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface glycoprotein whose expression is increased in pathologies characterized by inflammation. A bell-shaped relationship was found between NC targeting valency and the rate of transcytosis, where high and low NC valencies rendered less efficient transcytosis rates than an intermediate valency formulation. In contrast, an inverted bell-shape relationship was found for NC valency and lysosomal trafficking rates. Data suggested a model where NC valency plays an opposing role in the two sub-processes involved in transcytosis: NC binding-uptake depended directly on valency and exocytosis-detachment was inversely related to this parameter. This is because the greater the avidity of the NC-receptor interaction the more efficient uptake becomes, but NC-receptor detachment post-transport is more compromised. Cleavage of the receptor at the basolateral side of endothelial cells facilitated NC transcytosis, likely by helping NC detachment post-transport. Since transcytosis encompasses both sets of events, the full process finds an optimum at the intersection of these inverted relationships, explaining the bell-shaped behavior. NCs also trafficked to lysosomes from the apical side and, additionally, from the basolateral side in the case of high valency NCs which are slower at detaching from the receptor. This explains the opposite behavior of NC valency for transcytosis vs. lysosomal transport. Anti-ICAM NCs were verified to traffic into the brain after intravenous injection in mice, and both cellular and in vivo data showed that intermediate valency NCs resulted in higher delivery of a therapeutic enzyme, acid sphingomyelinase, required for types A and B Niemann-Pick disease.
Collapse
Affiliation(s)
- Rachel L Manthe
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Tridib Bhowmick
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA; Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08910, Spain.
| |
Collapse
|