1
|
Lipari Pinto P, Dixon M, Sudhakar S, Baric I, Baruteau J. Asymptomatic pediatric presentation of S-adenosylhomocysteine hydrolase deficiency. JIMD Rep 2024; 65:371-381. [PMID: 39512434 PMCID: PMC11540567 DOI: 10.1002/jmd2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024] Open
Abstract
S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive inborn error of metabolism affecting methylation by disrupting the methionine cycle. Its clinical spectrum spans from severe perinatal encephalomyopathy and liver failure to asymptomatic course in patients with isolated hypermethioninemia. We present two new cases of S-adenosylhomocysteine hydrolase deficiency from Pakistani origin clinically asymptomatic at presentation. Both siblings showed mild chronic liver failure and elevation of creatine kinase. The older patient presented at 6 years of age with isolated verbal processing difficulty and mild diffuse leukodystrophy, reversible 12 months after introduction of methionine dietary restriction. The patient showed subtle atrophy in the muscle MRI at the age of 7 years. S-adenosylhomocysteine hydrolase deficiency was confirmed with homozygous missense variant c.146G>A (p.Arg49His) in the AHCY gene, a genotype previously reported in Pakistani patients with mild presentation. Dietary methionine restriction decreased plasma methionine but not plasma S-adenosylhomocysteine and S-adenosylmethionine. This work expands the mild spectrum of S-adenosylhomocysteine hydrolase deficiency with no noticeable clinical symptoms in children, highlighting a specific hotspot variant from South Asia. This mild form of the disease is likely underdiagnosed and raises the question of therapeutic management to prevent long-term complications documented in the literature, such as hepatocellular carcinoma and myopathy in early adulthood.
Collapse
Affiliation(s)
- Patrícia Lipari Pinto
- Hereditary Metabolic Disease Reference Center, Metabolic Unit, Pediatric DepartmentSanta Maria's Hospital‐Lisbon North University Hospital Center, EPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Ivo Baric
- Department of PediatricsUniversity Hospital Center Zagreb and University of Zagreb, School of Medicine ZagrebZagrebCroatia
| | - Julien Baruteau
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Great Ormond Street Institute of Child Health, University college LondonLondonUK
| |
Collapse
|
2
|
Petković Ramadža D, Kuhtić I, Žarković K, Lochmüller H, Čavka M, Kovač I, Barić I, Prutki M. Case Report: Advanced Skeletal Muscle Imaging in S-Adenosylhomocysteine Hydrolase Deficiency and Further Insight Into Muscle Pathology. Front Pediatr 2022; 10:847445. [PMID: 35463910 PMCID: PMC9026168 DOI: 10.3389/fped.2022.847445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION S-Adenosylhomocysteine hydrolase deficiency (SAHHD) is a rare inherited multisystemic disease with muscle involvement as one of the most prominent and poorly understood features. To get better insight into muscle involvement, skeletal muscles were analyzed by magnetic resonance imaging (MRI) and MR spectroscopy (MRS) in three brothers with SAHHD in the different age group. METHOD The study was based on analysis of MRI and MRS of skeletal muscles of the lower and the proximal muscle groups of the upper extremities in three SAHHD patients. RESULTS Three siblings presented in early infancy with similar signs and symptoms, including motor developmental delay. All manifested myopathy, more pronounced in the lower extremities and the proximal skeletal muscle groups, and permanently elevated creatine kinase. At the time of MRI and MRS study, the brothers were at the age of 13, 11, and 8 years, respectively. MRI revealed lipid infiltration, and the MRS curve showed an elevated muscle lipid fraction (higher peak of lipid), which increased with age, and was more prominent in the proximal skeletal muscles of the lower extremities. These results were consistent with muscle biopsy findings in two of them, while the third patient had no specific pathological changes in the examined muscle tissue. CONCLUSIONS These findings demonstrate that an accessible and non-invasive method of MRI and MRS is useful for an insight into the extent of muscle involvement, monitoring disease progression, and response to treatment in SAHHD.
Collapse
Affiliation(s)
- Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Kuhtić
- Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kamelija Žarković
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mislav Čavka
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ida Kovač
- Department of Rehabilitation and Orthopaedic Devices, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Prutki
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Koronowski KB, Greco CM, Huang H, Kim JK, Fribourgh JL, Crosby P, Mathur L, Ren X, Partch CL, Jang C, Qiao F, Zhao Y, Sassone-Corsi P. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Rep 2021; 36:109487. [PMID: 34348140 PMCID: PMC8372761 DOI: 10.1016/j.celrep.2021.109487] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023] Open
Abstract
Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. β-hydroxybutyrate (β-OHB) is utilized in lysine β-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke β-OHB. Mass spectrometry analysis of the β-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.
Collapse
Affiliation(s)
- Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - He Huang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin-Kwang Kim
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lavina Mathur
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cholsoon Jang
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Feng Qiao
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Zhao L, Chen X, Zhou S, Lin Z, Yu X, Huang Y. DNA methylation of AHCY may increase the risk of ischemic stroke. Bosn J Basic Med Sci 2020; 20:471-476. [PMID: 32020847 PMCID: PMC7664786 DOI: 10.17305/bjbms.2020.4535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of ischemic stroke. Of these, epigenetic modifications provide a new direction for the study of ischemic stroke pathogenesis. This study aimed to determine the correlation between DNA methylation of the gene encoding S-adenosylhomocysteine hydrolase (AHCY) and the risk of ischemic stroke in 64 ischemic stroke patients and 138 patients with traumatic brain injury (control group). The methylation level of AHCY was analyzed using quantitative methylation-specific polymerase chain reaction. Statistically significant differences in AHCY methylation levels were observed between the case group [medians (interquartile range): 0.13% (0.09%, 0.27%)] and the control group [0.06% (0.00%, 0.17%), p < 0.0001], and these associations remained significant in both male (p = 0.003) and female (p = 0.0005) subjects. A subgroup analysis by age revealed a considerably higher percentage of methylated AHCY in the case group than the control group in all age groups (age < 60 years, p = 0.007; age ≥ 60 years, p < 0.0001). A receiver operating characteristic (ROC) curve analysis revealed a trend toward a role for AHCY methylation as an indicator of risk in all ischemic patients [area under the curve (AUC) = 0.70, p = 0.0001], male patients (AUC = 0.67, p = 0.004), and female patients (AUC = 0.75, p = 0.0002). Our study confirmed a significant association between the AHCY DNA methylation level and the risk of ischemic stroke, suggesting that this gene methylation pattern may be a potential diagnostic marker of ischemic stroke.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiaosheng Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xi Yu
- Key Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| |
Collapse
|
5
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Villani GR, Albano L, Caterino M, Crisci D, Di Tommaso S, Fecarotta S, Fisco MG, Frisso G, Gallo G, Mazzaccara C, Marchese E, Nolano A, Parenti G, Pecce R, Redi A, Salvatore F, Strisciuglio P, Turturo MG, Vallone F, Ruoppolo M. Hypermethioninemia in Campania: Results from 10 years of newborn screening. Mol Genet Metab Rep 2019; 21:100520. [PMID: 31641591 PMCID: PMC6796781 DOI: 10.1016/j.ymgmr.2019.100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022] Open
Abstract
In the last years tandem mass spectrometry (MS/MS) has become a leading technology used for neonatal screening purposes. Newborn screening by MS/MS on dried blood spot samples (DBS) has one of its items in methionine levels: the knowledge of this parameter allows the identification of infant affected by homocystinuria (cystathionine β-synthase, CBS, deficiency) but can also lead, as side effect, to identify cases of methionine adenosyltransferase (MAT) type I/III deficiency. We started an expanded newborn screening for inborn errors of metabolism in Campania region in 2007. Here we report our ten years experience on expanded newborn screening in identifying patients affected by hypermethioninemia. During this period we screened approximately 77,000 infants and identified two cases: one case of classical homocystinuria and one patient affected by defect of MAT I/III. In this paper we describe these patients and their biochemical follow-up and review the literature concerning worldwide newborn screening reports on incidence of CBS and MAT deficiency.
Collapse
Affiliation(s)
- Guglielmo R.D. Villani
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Lucia Albano
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | | | | | - Simona Fecarotta
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | | | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Emanuela Marchese
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Antonio Nolano
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Naples, Italy
| | - Rita Pecce
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Adriana Redi
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
| | | | - Pietro Strisciuglio
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Naples, Italy
| | | | | | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University, Naples, Italy
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| |
Collapse
|
7
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
8
|
Kido J, Sawada T, Momosaki K, Suzuki Y, Uetani H, Kitajima M, Mitsubuchi H, Nakamura K, Matsumoto S. Neonatal methionine adenosyltransferase I/III deficiency with abnormal signal intensity in the central tegmental tract. Brain Dev 2019; 41:382-388. [PMID: 30389272 DOI: 10.1016/j.braindev.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/26/2022]
Abstract
Methionine adenosyltransferase I/III (MAT I/III) deficiency is characterized by persistent hypermethioninemia. The clinical manifestations in cases with MAT I/III deficiency vary from a complete lack of symptoms to neurological problems associated with brain demyelination. We experienced a neonatal case with MAT I/III deficiency, in which severe hypermethioninemia was detected during the newborn screening test. The patient gradually showed hyperreflexia, foot clonus, and irritability from the age of 1 month onwards, and his brain magnetic resonance imaging scans showed abnormal signal intensity in the bilateral central tegmental tracts. His neurological manifestations improved after the S-adenosylmethionine (SAMe) treatment, deteriorated after discontinuation of SAMe, and re-improved owing to re-administration of SAMe. He achieved normal neurodevelopment through SAMe and methionine restriction therapy. Lack of SAMe as well as severe hypermethioninemia were thought to contribute towards the clinical psychophysical state. Moreover, impaired MAT I/III activity contributed to the development of neurological disorder from the early neonatal period.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Suzuki
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mika Kitajima
- Department of Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
Aranda S, Alcaine-Colet A, Blanco E, Borràs E, Caillot C, Sabidó E, Di Croce L. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. SCIENCE ADVANCES 2019; 5:eaav2448. [PMID: 30854431 PMCID: PMC6402848 DOI: 10.1126/sciadv.aav2448] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/28/2019] [Indexed: 05/19/2023]
Abstract
Profiling the chromatin-bound proteome (chromatome) in a simple, direct, and reliable manner might be key to uncovering the role of yet uncharacterized chromatin factors in physiology and disease. Here, we have designed an experimental strategy to survey the chromatome of proliferating cells by using the DNA-mediated chromatin pull-down (Dm-ChP) technology. Our approach provides a global view of cellular chromatome under normal physiological conditions and enables the identification of chromatin-bound proteins de novo. Integrating Dm-ChP with genomic and functional data, we have discovered an unexpected chromatin function for adenosylhomocysteinase, a major one-carbon pathway metabolic enzyme, in gene activation. Our study reveals a new regulatory axis between the metabolic state of pluripotent cells, ribosomal protein production, and cell division during the early phase of embryo development, in which the metabolic flux of methylation reactions is favored in a local milieu.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire Caillot
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
10
|
Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. AQUACULTURE 2018; 495:106-114. [DOI: 10.1016/j.aquaculture.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, Nie J, Pan B, Wang R, Yang J. LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo[a]pyrene. CHEMOSPHERE 2018; 207:84-90. [PMID: 29772428 DOI: 10.1016/j.chemosphere.2018.05.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Benzo [a]pyrene (BaP) have been demonstrated to induce lung cancer risk in humans and many different animal models, with aberrant gene methylation as one of the epigenetic errors; however, the molecular mechanisms remain unclear. Here, we used three types of human lung-derived cells with BaP exposure as a model and attempted to investigate the long non-coding RNA (lncRNA) H19/S-adenosylhomocysteine hydrolase (SAHH) pathway that regulates gene methylation in vitro exposure to BaP. Results showed that compared to the controls, BaP-treated cells H19 expressions were increased in a dose- and time-dependent manner, whereas SAHH protein expressions were decreased. Indeed, H19 binds to and attenuates SAHH expressions and activity, and this interaction will be enhanced by BaP. However, suppression of H19 exaggerates SAHH protein expression and activity exposed to BaP. Although BaP-treated cells H19 single knockdown expectedly increased long interspersed nuclear elements-1 (LINE-1) methylation and inhibited benzo [a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) -DNA adducts formation with altering SAHH protein expressions and activity, the double knockdown restored methylation to the control level and exacerbated BPDE-DNA adducts formation. Overall, our results uncover a H19/SAHH circuit involving gene-methylation alterations by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Wubin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanli Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan 030008, China
| | - Ruisheng Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Tan XD, Mao LG, Wu W, Nian SY, Wang GP. Synthesis and biological evaluation of substituted indazolyl amide derivatives as S -adenosyl- l -homocysteine hydrolase inhibitors. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Richard N, Silva TS, Wulff T, Schrama D, Dias JP, Rodrigues PML, Conceição LEC. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state. J Proteomics 2016; 142:1-14. [PMID: 27126605 DOI: 10.1016/j.jprot.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 01/15/2023]
Abstract
A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. SIGNIFICANCE Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed with diet WF, by undertaking a comparative analysis of fish liver proteome at the end of winter. This study brings information relative to biological processes that are involved in gilthead seabream winter thermal stress and shows that these can be mitigated through a nutritional strategy, assisting gilthead seabream to deal better with winter thermal conditions. Furthermore, the results show that proteomic information not only clearly distinguishes the two dietary groups from each other, but also captures heterogeneities that reflect intra-group differences in nutritional state. This was exploited in this work to refine the variable selection strategy so that protein spots displaying a stronger correlation with “nutritional state” could be identified as possible indicators of gilthead seabream metabolic and nutritional state. Finally, this study shows that gel-based proteomics seems to provide more reliable information than transmissive FT-IR spectroscopy, for the purposes of nutritional and metabolic profiling.
Collapse
Affiliation(s)
- Nadège Richard
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Tomé S Silva
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Denise Schrama
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge P Dias
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Pedro M L Rodrigues
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
14
|
Motzek A, Knežević J, Switzeny OJ, Cooper A, Barić I, Beluzić R, Strauss KA, Puffenberger EG, Mudd SH, Vugrek O, Zechner U. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency. PLoS One 2016; 11:e0151261. [PMID: 26974671 PMCID: PMC4790936 DOI: 10.1371/journal.pone.0151261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.
Collapse
Affiliation(s)
- Antje Motzek
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jelena Knežević
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
| | - Olivier J. Switzeny
- Institute for Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexis Cooper
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Robert Beluzić
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
| | - Kevin A. Strauss
- Clinic for Special Children, Strasburg, Pennsylvania, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - Erik G. Puffenberger
- Clinic for Special Children, Strasburg, Pennsylvania, United States of America
- Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - S. Harvey Mudd
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Oliver Vugrek
- Institute Ruđer Bošković, Division of Molecular Medicine, Zagreb, Croatia
- * E-mail: (OV); (UZ)
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail: (OV); (UZ)
| |
Collapse
|
15
|
Li C, Batistel F, Osorio JS, Drackley JK, Luchini D, Loor JJ. Peripartal rumen-protected methionine supplementation to higher energy diets elicits positive effects on blood neutrophil gene networks, performance and liver lipid content in dairy cows. J Anim Sci Biotechnol 2016; 7:18. [PMID: 26962451 PMCID: PMC4784469 DOI: 10.1186/s40104-016-0077-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Main objectives were to determine to what extent Smartamine M (SM) supplementation to a prepartal higher-energy diet could alter neutrophil (PMN) and liver tissue immunometabolic biomarkers, and whether those responses were comparable to those in cows fed a prepartal lower-energy diet (CON). RESULTS Twenty-eight multiparous Holstein cows were fed CON (NEL = 1.24 Mcal/kg DM) during d -50 to d -22 relative to calving. From d -21 to calving, cows were randomly assigned to a higher-energy diet (OVE, n = 9; NEL = 1.54 Mcal/kg DM), OVE plus SM (OVE + SM, n = 10; SM = 0.07 % of DM) or remained on CON (n = 9). All cows received the same basal lactation diet (NEL = 1.75 Mcal/kg DM). Supplementation of SM (OVE + SM) continued until 30 d postpartum. Liver biopsies were harvested at d -10, 7, and 21 relative to parturition. Blood PMN isolated at -10, 3, and 21 d relative to calving was used to evaluate gene expression. As expected, OVE increased liver lipid content postpartum; however, cows fed OVE + SM or CON had lower concentrations than OVE. Compared with OVE, cows in CON and OVE + SM had greater DMI postpartum and milk production. Furthermore, cows fed OVE + SM had the greatest milk protein and fat percentage and lowest milk SCC despite having intermediate PMN phagocytic capacity. Adaptations in PMN gene expression in OVE + SM cows associated with the lower SCC were gradual increases from -10 to 21 d in genes that facilitate migration into inflammatory sites (SELL, ITGAM), enzymes essential for reducing reactive oxygen metabolites (SOD1, SOD2), and a transcription factor(s) required for controlling PMN development (RXRA). The greater expression of TLR4 on d 3, key for activation of innate immunity due to inflammation, in OVE compared with CON cows suggests a more pronounced inflammatory state. Feeding OVE + SM dampened the upregulation of TLR4, despite the fact that these cows had similar expression of the pro-inflammatory genes NFKB1 and TNF as OVE. Cows in CON had lower overall expression of these inflammation-related genes and GSR, which generates reduced glutathione, an important cellular antioxidant. CONCLUSIONS Although CON cows appeared to have a less stressful transition into lactation, SM supplementation was effective in alleviating negative effects of energy-overfeeding. As such, SM was beneficial in terms of production and appeared to boost the response of PMN in a way that improved overall cow health.
Collapse
Affiliation(s)
- Cong Li
- />Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Fernanda Batistel
- />Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Johan Samir Osorio
- />Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331 OR USA
| | - James K. Drackley
- />Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Daniel Luchini
- />Ruminant Technical Services, ADISSEO NA, Alpharetta, 30022 GA USA
| | - Juan J. Loor
- />Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
16
|
Staufner C, Lindner M, Dionisi-Vici C, Freisinger P, Dobbelaere D, Douillard C, Makhseed N, Straub BK, Kahrizi K, Ballhausen D, la Marca G, Kölker S, Haas D, Hoffmann GF, Grünert SC, Blom HJ. Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options. J Inherit Metab Dis 2016; 39:273-83. [PMID: 26642971 DOI: 10.1007/s10545-015-9904-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Adenosine kinase deficiency is a recently described defect affecting methionine metabolism with a severe clinical phenotype comprising mainly neurological and hepatic impairment and dysmorphism. METHODS Clinical data of 11 additional patients from eight families with adenosine kinase deficiency were gathered through a retrospective questionnaire. Two liver biopsies of one patient were systematically evaluated. RESULTS The main clinical symptoms are mild to severe liver dysfunction with neonatal onset, muscular hypotonia, global developmental retardation and dysmorphism (especially frontal bossing). Hepatic involvement is not a constant finding. Most patients have epilepsy and recurrent hypoglycemia due to hyperinsulinism. Major biochemical findings are intermittent hypermethioninemia, increased S-adenosylmethionine and S-adenosylhomocysteine in plasma and increased adenosine in urine. S-adenosylmethionine and S-adenosylhomocysteine are the most reliable biochemical markers. The major histological finding was pronounced microvesicular hepatic steatosis. Therapeutic trials with a methionine restricted diet indicate a potential beneficial effect on biochemical and clinical parameters in four patients and hyperinsulinism was responsive to diazoxide in two patients. CONCLUSION Adenosine kinase deficiency is a severe inborn error at the cross-road of methionine and adenosine metabolism that mainly causes dysmorphism, brain and liver symptoms, but also recurrent hypoglycemia. The clinical phenotype varies from an exclusively neurological to a multi-organ manifestation. Methionine-restricted diet should be considered as a therapeutic option.
Collapse
Affiliation(s)
- Christian Staufner
- Department of General Pediatrics, Division of Pediatric Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Martin Lindner
- Department of General Pediatrics, Division of Pediatric Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Dries Dobbelaere
- Reference Center for Inherited Metabolic Diseases in Child and Adulthood, University Children's Hospital Jeanne de Flandre, Lille Cedex, France
| | - Claire Douillard
- Reference Center for Inherited Metabolic Diseases in Child and Adulthood, University Children's Hospital Jeanne de Flandre, Lille Cedex, France
| | | | - Beate K Straub
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Diana Ballhausen
- Center for molecular diseases, CHUV Lausanne, Lausanne, Switzerland
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, NeuroFarba Department, Meyer Children's University Hospital, Florence, Italy
| | - Stefan Kölker
- Department of General Pediatrics, Division of Pediatric Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Dorothea Haas
- Department of General Pediatrics, Division of Pediatric Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Pediatric Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sarah C Grünert
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Henk J Blom
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, Xie J, Giang K, Chung H, Sun X, Lu L, Carmichael GG, Taylor HS, Huang Y. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 2015; 6:10221. [PMID: 26687445 PMCID: PMC4703905 DOI: 10.1038/ncomms10221] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.
Collapse
Affiliation(s)
- Jichun Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Lihua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, Tianjin Renmin Hospital, Tianjin 300000, China
| | - Tianyu Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Martin Mueller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, University Hospital, Bern 3012, Switzerland
| | - Yi Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Juanke Xie
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Karolyn Giang
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Hunter Chung
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Xueguang Sun
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Lingeng Lu
- Department of Chronic Diseases Epidemiology, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
18
|
Stender S, Chakrabarti RS, Xing C, Gotway G, Cohen JC, Hobbs HH. Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 2015; 116:269-74. [PMID: 26527160 PMCID: PMC4733618 DOI: 10.1016/j.ymgme.2015.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The etiology of liver disease remains elusive in some adults presenting with severe hepatic dysfunction. METHODS AND RESULTS Here we describe a woman of Pakistani descent who had elevated aminotransferases at age 23. She developed muscle weakness in her mid-20s, and was diagnosed with hepatocellular carcinoma at age 29. She died without a diagnosis at age 32 after having a liver transplant. Exome sequencing revealed that she was homozygous for a missense mutation (R49H) in AHCY, the gene encoding S-adenosylhomocysteine (SAH) hydrolase. SAH hydrolase catalyzes the final step in conversion of methionine to homocysteine and inactivating mutations in this enzyme cause a rare autosomal recessive disorder, SAH hydrolase deficiency, that typically presents in infancy. An asymptomatic 7-year old son of the proband is also homozygous for the AHCY-R49H mutation and has elevated serum aminotransferase levels, as well as markedly elevated serum levels of SAH, S-adenosylmethionine (SAM), and methionine, which are hallmarks of SAH hydrolase deficiency. CONCLUSION This report reveals several new aspects of SAH hydrolase deficiency. Affected women with SAH hydrolase deficiency can give birth to healthy children. SAH hydrolase deficiency can remain asymptomatic in childhood, and the disorder can be associated with early onset hepatocellular carcinoma. The measurement of serum amino acids should be considered in patients with liver disease or hepatocellular carcinoma of unknown etiology.
Collapse
Affiliation(s)
- Stefan Stender
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Rima S Chakrabarti
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Garrett Gotway
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Jonathan C Cohen
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
19
|
Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase. Sci Rep 2015; 5:16641. [PMID: 26573329 PMCID: PMC4647836 DOI: 10.1038/srep16641] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
S-adenosyl-L-homocysteine hydrolase (SAH hydrolase or SAHH) is a highly conserved enzyme that catalyses the reversible hydrolysis of SAH to L-homocysteine (HCY) and adenosine (ADO). High-resolution crystal structures have been reported for bacterial and plant SAHHs, but not mammalian SAHHs. Here, we report the first high-resolution crystal structure of mammalian SAHH (mouse SAHH) in complex with a reaction product (ADO) and with two reaction intermediate analogues—3’-keto-aristeromycin (3KA) and noraristeromycin (NRN)—at resolutions of 1.55, 1.55, and 1.65 Å. Each of the three structures constitutes a structural snapshot of one of the last three steps of the five-step process of SAH hydrolysis by SAHH. In the NRN complex, a water molecule, which is an essential substrate for ADO formation, is structurally identified for the first time as the candidate donor in a Michael addition by SAHH to the 3’-keto-4’,5’-didehydroadenosine reaction intermediate. The presence of the water molecule is consistent with the reaction mechanism proposed by Palmer & Abeles in 1979. These results provide insights into the reaction mechanism of the SAHH enzyme.
Collapse
|
20
|
Huemer M, Kožich V, Rinaldo P, Baumgartner MR, Merinero B, Pasquini E, Ribes A, Blom HJ. Newborn screening for homocystinurias and methylation disorders: systematic review and proposed guidelines. J Inherit Metab Dis 2015; 38:1007-19. [PMID: 25762406 PMCID: PMC4626539 DOI: 10.1007/s10545-015-9830-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 01/22/2023]
Abstract
Newborn screening (NBS) is justified if early intervention is effective in a disorder generally not detected early in life on a clinical basis, and if sensitive and specific biochemical markers exist. Experience with NBS for homocystinurias and methylation disorders is limited. However, there is robust evidence for the success of early treatment with diet, betaine and/or pyridoxine for CBS deficiency and good evidence for the success of early betaine treatment in severe MTHFR deficiency. These conditions can be screened in dried blood spots by determining methionine (Met), methionine-to-phenylanine (Met/Phe) ratio, and total homocysteine (tHcy) as a second tier marker. Therefore, we recommend NBS for cystathionine beta-synthase and severe MTHFR deficiency. Weaker evidence is available for the disorders of intracellular cobalamin metabolism. Early treatment is clearly of advantage for patients with the late-onset cblC defect. In the early-onset type, survival and non-neurological symptoms improve but the effect on neurocognitive development is uncertain. The cblC defect can be screened by measuring propionylcarnitine, propionylcarnitine-to-acetylcarnitine ratio combined with the second tier markers methylmalonic acid and tHcy. For the cblE and cblG defects, evidence for the benefit of early treatment is weaker; and data on performance of Met, Met/Phe and tHcy even more limited. Individuals homozygous or compound heterozygous for MAT1A mutations may benefit from detection by NBS using Met, which on the other hand also detects asymptomatic heterozygotes. Clinical and laboratory data is insufficient to develop any recommendation on NBS for the cblD, cblF, cblJ defects, glycineN-methyltransferase-, S-adenosylhomocysteinehydrolase- and adenosine kinase deficiency.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
- Radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland.
- Department of Pediatrics, Landeskrankenhaus Bregenz, Carl-Pedenz-Str. 2, 6900, Bregenz, Austria.
| | - Viktor Kožich
- Institute of Inherited Metabolic Disorders, Charles University in Prague-1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Piero Rinaldo
- Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
| | - Begoña Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Facultad de Ciencias, Universidad Autónoma de Madrid, IDIPAZ, CIBER de Enfermedades Raras, Madrid, Spain
| | - Elisabetta Pasquini
- Department of Neuroscience, Newborn Screening Unit, A. Meyer University Children's Hospital, Florence, Italy
| | - Antonia Ribes
- Division Inborn Errors of Metabolism, Hospital Clinic, CIBERER, Barcelona, Spain
| | - Henk J Blom
- Laboratory Clinical Biochemistry and Metabolism, Center for Pediatrics and Adolescent Medicine University Hospital, Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Schweinberger BM, Turcatel E, Rodrigues AF, Wyse ATS. Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring. Int J Exp Pathol 2015; 96:277-84. [PMID: 26303039 PMCID: PMC4693554 DOI: 10.1111/iep.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/31/2015] [Indexed: 12/25/2022] Open
Abstract
In this study we evaluated oxidative/nitrative stress parameters (reactive oxygen species production, lipid peroxidation, sulfhydryl content, superoxide dismutase, catalase and nitrite levels), as well as total protein content in the gastrocnemius skeletal muscle of the offspring of rats that had been subjected to gestational hypermethioninaemia. The occurrence of muscular injury and inflammation was also measured by creatine kinase activity, levels of creatinine, urea and C-reactive protein and the presence of cardiac troponin I in serum. Wistar female rats (70-90 days of age) received methionine (2.68 μmol/g body weight) or saline (control) twice a day by subcutaneous injections during the gestational period (21 days). After the rats gave birth, pups were killed at the twenty-first day of life for removal of muscle and serum. Methionine treatment increased reactive oxygen species production and lipid peroxidation and decreased sulfhydryl content, antioxidant enzymes activities and nitrite levels, as well as total protein content in skeletal muscle of the offspring. Creatine kinase activity was reduced and urea and C-reactive protein levels were increased in serum of pups. These results were accompanied by reduced muscle mass. Our findings showed that maternal gestational hypermethioninaemia induced changes in oxidative/nitrative status in gastrocnemius skeletal muscle of the offspring. This may represent a mechanism which can contribute to the myopathies and loss of muscular mass that is found in some hypermethioninaemic patients. In addition, we believe that these results may be relevant as gestational hypermethioninaemia could cause damage to the skeletal muscle during intrauterine life.
Collapse
Affiliation(s)
- Bruna M. Schweinberger
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Elias Turcatel
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - André F. Rodrigues
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
22
|
Osorio J, Ji P, Drackley J, Luchini D, Loor J. Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. J Dairy Sci 2014; 97:7451-64. [DOI: 10.3168/jds.2014-8680] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023]
|
23
|
Wang Y, Kavran JM, Chen Z, Karukurichi KR, Leahy DJ, Cole PA. Regulation of S-adenosylhomocysteine hydrolase by lysine acetylation. J Biol Chem 2014; 289:31361-72. [PMID: 25248746 DOI: 10.1074/jbc.m114.597153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD(+)-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys(401) and Lys(408) but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys(401) and Lys(408) and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD(+) binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.
Collapse
Affiliation(s)
- Yun Wang
- From the Deptartments of Pharmacology and Molecular Sciences and
| | - Jennifer M Kavran
- Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zan Chen
- From the Deptartments of Pharmacology and Molecular Sciences and
| | | | - Daniel J Leahy
- From the Deptartments of Pharmacology and Molecular Sciences and Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Philip A Cole
- From the Deptartments of Pharmacology and Molecular Sciences and
| |
Collapse
|
24
|
Balasubramaniam S, Duley JA, Christodoulou J. Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 2014; 37:669-86. [PMID: 24972650 DOI: 10.1007/s10545-014-9731-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised treatment options.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Princess Margaret Hospital, Roberts Road, Subiaco, Perth, WA, 6008, Australia
| | | | | |
Collapse
|
25
|
Chen BC, Balasubramaniam S, McGown IN, O'Neill JP, Chng GS, Keng WT, Ngu LH, Duley JA. Treatment of Lesch-Nyhan disease with S-adenosylmethionine: experience with five young Malaysians, including a girl. Brain Dev 2014; 36:593-600. [PMID: 24055166 DOI: 10.1016/j.braindev.2013.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lesch-Nyhan disease (LND) is a rare X-linked recessive neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8) which is responsible for recycling purine bases into purine nucleotides. Affected individuals have hyperuricemia leading to gout and urolithiasis, accompanied by a characteristic severe neurobehavioural phenotype with compulsive self-mutilation, extrapyramidal motor disturbances and cognitive impairment. AIM For its theoretical therapeutic potential to replenish the brain purine nucleotide pool, oral supplementation with S-adenosylmethionine (SAMe) was trialed in 5 Malaysian children with LND, comprising 4 related Malay children from 2 families, including an LND girl, and a Chinese Malaysian boy. RESULTS Dramatic reductions of self-injury and aggressive behaviour, as well as a milder reduction of dystonia, were observed in all 5 patients. Other LND neurological symptoms did not improve during SAMe therapy. DISCUSSION Molecular mechanisms proposed for LND neuropathology include GTP depletion in the brain leading to impaired dopamine synthesis, dysfunction of G-protein-mediated signal transduction, and defective developmental programming of dopamine neurons. The improvement of our LND patients on SAMe, particularly the hallmark self-injurious behaviour, echoed clinical progress reported with another purine nucleotide depletion disorder, Arts Syndrome, but contrasted lack of benefit with the purine disorder adenylosuccinate lyase deficiency. This first report of a trial of SAMe therapy in LND children showed remarkably encouraging results that warrant larger studies.
Collapse
Affiliation(s)
- Bee C Chen
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Shanti Balasubramaniam
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia; Metabolic Unit, Department of Pediatric and Adolescent Medicine, Princess Margaret Hospital, 6008 Perth, Western Australia.
| | - Ivan N McGown
- Mater Health Services and Mater Medical Research Institute, Brisbane 4101, Australia
| | - J Patrick O'Neill
- Department of Pediatrics, University of Vermont Genetics Laboratory, Burlington, VT 05405, USA
| | - Gaik S Chng
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Wee T Keng
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Lock H Ngu
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - John A Duley
- Mater Health Services and Mater Medical Research Institute, Brisbane 4101, Australia; School of Pharmacy, The University of Queensland, Brisbane 4101, Australia
| |
Collapse
|
26
|
Bonnot O, Klünemann HH, Sedel F, Tordjman S, Cohen D, Walterfang M. Diagnostic and treatment implications of psychosis secondary to treatable metabolic disorders in adults: a systematic review. Orphanet J Rare Dis 2014; 9:65. [PMID: 24775716 PMCID: PMC4043981 DOI: 10.1186/1750-1172-9-65] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/24/2014] [Indexed: 12/18/2022] Open
Abstract
Objective It is important for psychiatrists to be aware of certain inborn errors of metabolism (IEMs) as these rare disorders can present as psychosis, and because definitive treatments may be available for treating the underlying metabolic cause. A systematic review was conducted to examine IEMs that often present with schizophrenia-like symptoms. Data sources Published literature on MEDLINE was assessed regarding diseases of homocysteine metabolism (DHM; cystathionine beta-synthase deficiency [CbS-D] and homocysteinemia due to methyltetrahydrofolate reductase deficiency [MTHFR-D]), urea cycle disorders (UCD), acute porphyria (POR), Wilson disease (WD), cerebrotendinous-xanthomatosis (CTX) and Niemann-Pick disease type C (NP-C). Study selection Case reports, case series or reviews with original data regarding psychiatric manifestations and cognitive impairment published between January 1967 and June 2012 were included based on a standardized four-step selection process. Data extraction All selected articles were evaluated for descriptions of psychiatric signs (type, severity, natural history and treatment) in addition to key disease features. Results A total of 611 records were identified. Information from CbS-D (n = 2), MTHFR-D (n = 3), UCD (n = 8), POR (n = 12), WD (n = 11), CTX (n = 14) and NP-C publications (n = 9) were evaluated. Six non-systematic literature review publications were also included. In general, published reports did not provide explicit descriptions of psychiatric symptoms. The literature search findings are presented with a didactic perspective, showing key features for each disease and psychiatric signs that should trigger psychiatrists to suspect that psychotic symptoms may be secondary to an IEM. Conclusion IEMs with a psychiatric presentation and a lack of, or sub-clinical, neurological signs are rare, but should be considered in patients with atypical psychiatric symptoms.
Collapse
Affiliation(s)
- Olivier Bonnot
- Department of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire de Nantes, Hôpital Mère-Enfant, 7 quai Moncousu, 44 000 Nantes, France.
| | | | | | | | | | | |
Collapse
|
27
|
Nagao M, Tanaka T, Furujo M. Spectrum of mutations associated with methionine adenosyltransferase I/III deficiency among individuals identified during newborn screening in Japan. Mol Genet Metab 2013; 110:460-4. [PMID: 24231718 DOI: 10.1016/j.ymgme.2013.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Methionine adenosyltransferase I/III deficiency (MAT I/III deficiency) is an inborn error of metabolism that results in isolated persistent hypermethioninemia. Definitive diagnosis is now possible by molecular analyses of the MAT1A gene. Based on newborn screening (NBS) data collected between 2001 and 2012 in Hokkaido, Japan, the estimated incidence of MAT I/III deficiency was 1 in 107,850. 24 patients (13 males, 11 females) from 11 prefectures in Japan were referred to our laboratory for genetic diagnosis of MAT I/III deficiency. They were all found between 1992 and 2012 by the NBS program in each region. In these 24 individuals, we identified 12 distinct mutations; 14 patients were heterozygous for an R264H mutation; R264H caused an autosomal dominant and clinically benign phenotype in each case. The mutations in the other 10 patients showed autosomal recessive inheritance and included eight novel MAT1A mutations. Putative amino acid substitutions at R356 were observed with six alleles (three R356P, two R356Q, and one R356L). MAT I/III deficiency is not always benign because three of our cases involved brain demyelination or neurological complications. DNA testing early in life is recommended to prevent potential detrimental neurological manifestations.
Collapse
Affiliation(s)
- Masayoshi Nagao
- Department of Pediatrics and Clinical research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan.
| | | | | |
Collapse
|
28
|
Couce ML, Bóveda MD, García-Jimémez C, Balmaseda E, Vives I, Castiñeiras DE, Fernández-Marmiesse A, Fraga JM, Mudd SH, Corrales FJ. Clinical and metabolic findings in patients with methionine adenosyltransferase I/III deficiency detected by newborn screening. Mol Genet Metab 2013; 110:218-221. [PMID: 23993429 DOI: 10.1016/j.ymgme.2013.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/26/2022]
Abstract
Persistent hypermethioninemia due to mutations in the MAT1A gene is often found during newborn screening (NBS) for homocystinuria due to cystathionine beta-synthase deficiency, however, outcomes and optimal management for these patients are not well established. We carried out a multicenter study of MAT I/III-deficient patients detected by NBS in four of the Spanish regional NBS programs. Data evaluated during NBS and follow-up for 18 patients included methionine and total homocysteine levels, clinical presentation parameters, genotypes, and development quotients. The birth prevalence was 1:1:22,874. At detection 16 of the 18 patients exhibited elevations of plasma methionine above 60 μmol/L (mean 99.9 ± 38 μmol/L) and the mean value in confirmation tests was 301 μmol/L (91-899) μmol/L. All patients were asymptomatic. In four patients with more markedly elevated plasma methionines (>450 μmol/L) total homocysteine values were slightly elevated (about 20 μmol/L). The average follow-up period was 3 years 7 months (range: 2-123 months). Most patients (83%) were heterozygous for the autosomal dominant Arg264His mutation and, with one exception, presented relatively low circulating methionine concentrations (<400 μM). Additional mutations identified in patients with mean confirmatory plasma methionines above 400 μM were Arg199Cys, Leu355Arg, and a novel mutation, Thr288Ala. During continued follow-up, the patients have been asymptomatic, and, to date, no therapeutic interventions have been utilized. Therefore, the currently available evidence shows that hypermethioninemia due to heterozygous MAT1A mutations such as Arg264His is a mild condition for which no treatment is necessary.
Collapse
Affiliation(s)
- María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), A Choupana, s/n, 15706 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Soloway AH, Soloway PD, Warner VD. Possible chemical initiators of cognitive dysfunction in phenylketonuria, Parkinson’s disease and Alzheimer’s disease. Med Hypotheses 2013; 81:690-4. [DOI: 10.1016/j.mehy.2013.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/07/2013] [Accepted: 07/13/2013] [Indexed: 01/20/2023]
|
30
|
Hirabayashi K, Shiohara M, Yamada K, Sueki A, Ide Y, Takeuchi K, Hagimoto R, Kinoshita T, Yabuhara A, Mudd SH, Koike K. Neurologically normal development of a patient with severe methionine adenosyltransferase I/III deficiency after continuing dietary methionine restriction. Gene 2013; 530:104-8. [PMID: 23973726 DOI: 10.1016/j.gene.2013.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/15/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND There is not much information on established standard therapy for patients with severe methionine adenosyltransferase (MAT) I/III deficiency. CASE PRESENTATION We report a boy with MAT I/III deficiency, in whom plasma methionine and total homocysteine, and urinary homocystine were elevated. Molecular genetic studies showed him to have novel compound heterozygous mutations of the MAT1A gene: c.191T>A (p.M64K) and c.589delC (p.P197LfsX26). A low methionine milk diet was started at 31 days of age, and during continuing dietary methionine restriction plasma methionine levels have been maintained at less than 750 μmol/L. He is now 5 years old, and has had entirely normal physical growth and psychomotor development. CONCLUSIONS Although some severely MAT I/III deficient patients have developed neurologic abnormalities, we report here the case of a boy who has remained neurologically and otherwise normal for 5 years during methionine restriction, suggesting that perhaps such management, started in early infancy, may help prevent neurological complications.
Collapse
Affiliation(s)
- Koichi Hirabayashi
- Department of Pediatrics, Ina Central Hospital, Ina, Japan; Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70:1543-73. [PMID: 23474979 PMCID: PMC11113764 DOI: 10.1007/s00018-013-1296-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein-Taybi syndrome, Coffin-Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 2013; 16:339-45. [PMID: 23493015 PMCID: PMC3729018 DOI: 10.1097/mco.0b013e3283600d46] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Humans eating diets low in choline develop fatty liver and liver damage. Rodents fed choline-methionine-deficient diets not only develop fatty liver, but also progress to develop fibrosis and hepatocarcinoma. This review focuses on the role of choline in liver function, with special emphasis on the epigenetic mechanisms of action. RECENT FINDINGS Dietary intake of methyl donors like choline influences the methylation of DNA and histones, thereby altering the epigenetic regulation of gene expression. The liver is the major organ within which methylation reactions occur, and many of the hepatic genes involved in pathways for the development of fatty liver, hepatic fibrosis, and hepatocarcinomas are epigenetically regulated. SUMMARY Dietary intake of choline varies over a three-fold range and many humans have genetic polymorphisms that increase their demand for choline. Choline is an important methyl donor needed for the generation of S-adenosylmethionine. Dietary choline intake is an important modifier of epigenetic marks on DNA and histones, and thereby modulates the gene expression in many of the pathways involved in liver function and dysfunction.
Collapse
Affiliation(s)
- Mihai G Mehedint
- Nutrition Research Institute at Kannapolis, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
33
|
Furujo M, Kinoshita M, Nagao M, Kubo T. Methionine adenosyltransferase I/III deficiency: neurological manifestations and relevance of S-adenosylmethionine. Mol Genet Metab 2012; 107:253-6. [PMID: 22951388 DOI: 10.1016/j.ymgme.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 11/17/2022]
Abstract
Methionine adenosyltransferase I/III (MAT I/III) deficiency, caused by mutations in the MAT1A gene, is an inherited metabolic disorder characterized by persistent hypermethioninemia, usually detected by newborn mass screening. There is a wide range of clinical manifestations, from completely asymptomatic to neurological problems associated with brain demyelination. Physiological role of S-adenosylmethionine (SAM), the metabolic product of methionine catalyzed by MAT, in the central nervous system has been investigated in vivo and in vitro, and case reports demonstrated an effectiveness of supplementary treatment of SAM in the improvement of neurological development and myelination. Methionine restriction can be an additional therapeutic strategy because hypermethioninemia alone may be neurotoxic; however, lowering methionine carries a risk to decrease the synthesis of SAM.
Collapse
Affiliation(s)
- Mahoko Furujo
- Department of Pediatrics, Okayama Medical Center, National Hospital Organization, Okayama, Japan.
| | | | | | | |
Collapse
|
34
|
Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta Mol Basis Dis 2012; 1832:204-15. [PMID: 23017368 PMCID: PMC3787734 DOI: 10.1016/j.bbadis.2012.09.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
35
|
Furujo M, Kinoshita M, Nagao M, Kubo T. S-adenosylmethionine treatment in methionine adenosyltransferase deficiency, a case report. Mol Genet Metab 2012; 105:516-8. [PMID: 22178350 DOI: 10.1016/j.ymgme.2011.11.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022]
Abstract
Reported is a female patient with methionine adenosyltransferase I/III (MAT I/III) deficiency, who was found to have pronounced hypermethioninemia on newborn mass spectroscopy screening, and had two compound heterozygous missense mutations in the gene encoding human MAT1A protein. Hypermethioninemia persisted and her mental development was deficient. At 4 years and 8 months, we started with the supplementary treatment of S-adenosylmethionine, the metabolic product of methionine catalyzed by MAT, which was effective in her neurological development.
Collapse
Affiliation(s)
- Mahoko Furujo
- Department of Pediatrics, National Hospital Organization, Okayama Medical Center, Okayama, Japan.
| | | | | | | |
Collapse
|
36
|
Martins E, Marcão A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L. Methionine Adenosyltransferase I/III Deficiency in Portugal: High Frequency of a Dominantly Inherited Form in a Small Area of Douro High Lands. JIMD Rep 2012; 6:107-12. [PMID: 23430947 DOI: 10.1007/8904_2011_124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/10/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023] Open
Abstract
Methionine adenosyltransferase deficiency (MAT I/III deficiency) is an inborn error of metabolism resulting in isolated hypermethioninemia, and usually inherited as an autosomal recessive trait, although a dominant form has been reported in several families.During the last 6 years, approximately 520,000 newborns were screened in the Portuguese Newborn Screening Laboratory by MS/MS, and 21 cases of persistent hypermethioninemia were found. One case was confirmed to be a deficiency of cystathionine β-synthase and 20 cases were confirmed by MAT1A gene analysis to have an elevation of methionine due to MAT I/III deficiency, which indicates an incidence for this condition of 1/26,000. Twelve of the MAT I/III deficient newborns, belonging to 11 families, were identified in the northern region of Portugal and sent to the same treatment center, where they are under follow-up. Clinical, biochemical, and genetic characteristics of individuals from these 11 families are presented. Plasma methionine and homocysteine concentrations were found to be moderately increased in all newborns, and molecular analysis revealed that they all were heterozygous for R264H mutation. Normal growth, development, and neurological examination were observed in all cases, and cerebral MRI performed in six cases revealed myelination abnormalities in one case. Plasma methionine concentration for all 12 cases was always below 300 μM, and they are all on a normal diet for their age.
Collapse
Affiliation(s)
- E Martins
- Hospital de Crianças Maria Pia, Centro Hospitalar do Porto, Rua da Boavista, 827, 4050-111, Porto, Portugal,
| | | | | | | | | | | |
Collapse
|
37
|
Blum NM, Mueller K, Hirche F, Lippmann D, Most E, Pallauf J, Linn T, Mueller AS. Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes. Food Funct 2011; 2:654-64. [PMID: 21959850 DOI: 10.1039/c1fo10122f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Data from human and animal trials have revealed contradictory results regarding the influence of selenium (Se) status on homocysteine (HCys) metabolism. It was hypothesised that sufficient Se reduces the flux of HCys through the transsulphuration pathway by decreasing the expression of glutathione (GSH) synthesising enzymes. Glucoraphanin (GRA) is a potent inducer of genes regulated via an antioxidant response element (ARE), including those of GSH biosynthesis. We tested the hypothesis that GRA supplementation to rat diets lowers plasma HCys levels by increasing GSH synthesis. Therefore 96 weaned albino rats were assigned to 8 groups of 12 and fed diets containing four different Se levels (15, 50, 150 and 450 μg kg(diet)(-1)), either without GRA (groups: C15, C50, C150 and C450) or in combination with 700 μmol GRA kg(diet)(-1) (groups G15, G50, G150 and G450). Rats fed the low Se diets C15 and G15 showed an impressive decrease of plasma HCys. Se supplementation increased plasma HCys and lowered GSH significantly by reducing the expression of GSH biosynthesis enzymes. As new molecular targets explaining these results, we found a significant down-regulation of the hepatic GSH exporter MRP4 and an up-regulation of the HCys exporter Slco1a4. In contrast to our hypothesis, GRA feeding did not reduce plasma HCys levels in Se supplemented rats (G50, G150 and 450) through inducing GSH biosynthesis enzymes and MRP4, but reduced their mRNA in some cases to a higher extent than Se alone. We conclude: 1. That the long-term supplementation of moderate GRA doses reduces ARE-driven gene expression in the liver by increasing the intestinal barrier against oxidative stress. 2. That the up-regulation of ARE-regulated genes in the liver largely depends on GRA cleavage to free sulforaphane and glucose by plant-derived myrosinase or bacterial β-glucosidases. As a consequence, higher dietary GRA concentrations should be used in future experiments to test if GRA or sulforaphane can be established as HCys lowering compounds.
Collapse
Affiliation(s)
- Nicole M Blum
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Von Danckelmann Platz 2, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sedic M, Kraljevic Pavelic S, Cindric M, Vissers JPC, Peronja M, Josic D, Cuk M, Fumic K, Pavelic K, Baric I. Plasma biomarker identification in S-adenosylhomocysteine hydrolase deficiency. Electrophoresis 2011; 32:1970-5. [PMID: 21732553 DOI: 10.1002/elps.201000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 11/09/2022]
Abstract
S-Adenosylhomocysteine hydrolase (AHCY) deficiency is a rare congenital disorder in methionine metabolism clinically characterized by white matter atrophy, delayed myelination, slowly progressive myopathy, retarded psychomotor development and mildly active chronic hepatitis. In the present study, we utilized a comparative proteomics strategy based on 2-DE/MALDI-MS and LC/ESI-MS to analyze plasma proteins from three AHCY-deficient patients prior to and after receiving dietary treatment designed to alleviate disease symptoms. Obtained results revealed candidate biomarkers for the detection of myopathy specifically associated with AHCY deficiency, such as carbonic anhydrase 3, creatine kinase, and thrombospondin 4. Several proteins mediating T-cell activation and function were identified as well, including attractin and diacylglycerol kinase α. Further validation and functional analysis of identified proteins with clinical value would ensure that these biomarkers make their way into routine diagnosis and management of AHCY deficiency.
Collapse
Affiliation(s)
- Mirela Sedic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schiff M, Bénit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease. Nutr Rev 2011; 69:65-75. [PMID: 21294740 DOI: 10.1111/j.1753-4887.2010.00363.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria exert crucial physiological functions that create complex links among nutrition, health, and disease. While mitochondrial dysfunction with subsequent impairment of oxidative phosphorylation (OXPHOS) is the hallmark of the rare inherited OXPHOS diseases, OXPHOS dysfunction also plays a central role in the pathophysiology of common conditions such as type 2 diabetes and various neurodegenerative disorders. Dietary interventions, especially calorie restriction, have been shown to improve the course of these diseases and to extend the lifespan. Few data are available on the impact of nutraceuticals (macronutrients, vitamins, and cofactors) on primary inherited OXPHOS diseases. This review presents recent knowledge about the impact of nutritional modulation on mitochondria and lifespan regulation and about the development of potential treatments for mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Manuel Schiff
- Centre de référence Maladies Métaboliques, Hôpital Robert Debré, APHP, Université Paris 7, Faculté de médecine Denis Diderot, IFR02, INSERM, U676, Paris, France.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
41
|
Dever JT, Elfarra AA. The biochemical and toxicological significance of hypermethionemia: new insights and clinical relevance. Expert Opin Drug Metab Toxicol 2010; 6:1333-46. [PMID: 20874374 DOI: 10.1517/17425255.2010.522177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE OF THE FIELD Disrupted l-methionine (Met) metabolism can lead to hepatic, neurological and cardiovascular dysfunction in humans. Aberrant methyl group flux likely contributes to the development of these pathologies, but when patients also become hypermethionemic, additional toxicological mechanisms may be relevant. AREAS COVERED IN THIS REVIEW Following a discussion of the causes of hypermethionemia in humans, evidence for the toxicological roles and clinical significance of the Met transmethylation (TM), transamination (TA) and sulfoxidation (SO) pathways will be presented. WHAT THE READER WILL GAIN Recent data from freshly isolated mouse hepatocytes (FIMHs) confirmed previous in vivo results in rodents that Met TM is a detoxification pathway while Met TA leads to toxicity. Gender-related differences in Met accumulation and metabolism in FIMHs correlated with gender differences in toxicity. Data obtained from FIMHs also implicated Met SO in Met metabolism and toxicity. Currently, little is known about the mechanisms and biological significance of Met sulfoxidation in humans. TAKE HOME MESSAGE In hypermethionemic patients, clinical and dietary interventions should focus on increasing Met TM and decreasing Met TA and SO. Novel biomarkers of hypermethionemia in humans that correlate with pathological end points are needed to better understand the impact of the condition.
Collapse
Affiliation(s)
- Joseph T Dever
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
S-adenosyl-L-methionine restores photoreceptor function following acute retinal ischemia. Vis Neurosci 2009; 26:429-41. [PMID: 19919727 DOI: 10.1017/s0952523809990241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The survival and function of retinal neurons is dependent on mitochondrial energy generation and its intracellular distribution by creatine kinase. Post ischemic disruption of retinal creatine synthesis, creatine kinase activity, or transport of creatine into neurons may impair retinal function. S-adenosyl-L-methionine (SAMe) is required for creatine synthesis, phosphatidylcholine and glutathione synthesis, and transducin methylation. These reactions are essential for photoreceptor function but may be downregulated after ischemia due to a reduction in SAMe. Our aim was to determine whether administration of SAMe after ischemia could improve retinal function. Unilateral retinal ischemia was induced in adult rats by increasing the intraocular pressure to 110 mm Hg for 60 min. Immediately after the ischemic insult, SAMe was injected into the vitreous (100 microM), followed by oral administration (69 mg/kg/day) for 5 or 10 days. Retinal function (electroretinography), histology, and creatine transporter (CRT-1) expression were analyzed. Photoreceptoral responses (R(mP3), S), rod and cone bipolar cell responses (PII), and oscillatory potentials were reduced by the ischemia/reperfusion insult. Although SAMe treatment ameliorated the ischemia-induced histological damage by day 5, there was no improvement in retinal function and the intensity of CRT-1 labeling in ischemic retinas was markedly reduced. However, 10 days after ischemia, a recovery in CRT-1 immunolabeling was evident and SAMe supplementation significantly restored photoreceptor function and rod PII responses. In conclusion, these data suggest that creatine transport and methylation reactions, such as creatine synthesis, may be compromised by an ischemic insult contributing to retinal dysfunction and injury. Oral SAMe supplementation after retinal ischemia may provide an effective, safe, and accessible neuroprotective strategy.
Collapse
|