1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
3
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
4
|
Meshrkey F, Scheulin KM, Littlejohn CM, Stabach J, Saikia B, Thorat V, Huang Y, LaFramboise T, Lesnefsky EJ, Rao RR, West FD, Iyer S. Induced pluripotent stem cells derived from patients carrying mitochondrial mutations exhibit altered bioenergetics and aberrant differentiation potential. Stem Cell Res Ther 2023; 14:320. [PMID: 37936209 PMCID: PMC10631039 DOI: 10.1186/s13287-023-03546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.
Collapse
Affiliation(s)
- Fibi Meshrkey
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Christopher M Littlejohn
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Joshua Stabach
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Bibhuti Saikia
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Morava E, Oglesbee D. Laboratory and metabolic investigations. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:167-172. [PMID: 36813311 DOI: 10.1016/b978-0-12-821751-1.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Clinical variability and substantial overlap between mitochondrial disorders and other genetic disorders and inborn errors make the clinical and metabolic diagnosis of mitochondrial disorders quite challenging. Evaluating specific laboratory markers is essential in the diagnostic process, but mitochondrial disease can be present in the absence of any abnormal metabolic markers. In this chapter, we share the current consensus guidelines for metabolic investigations, including investigations in blood, urine, and the cerebral spinal fluid and discuss different diagnostic approaches. As personal experience might significantly vary and there are different recommendations published as diagnostic guidelines, the Mitochondrial Medicine Society developed a consensus approach based on literature review for metabolic diagnostics in a suspected mitochondrial disease. According to the guidelines, the work-up should include the assessment of complete blood count, creatine phosphokinase, transaminases, albumin, postprandial lactate and pyruvate (lactate/pyruvate ratio when the lactate level is elevated), uric acid, thymidine, amino acids, acylcarnitines in blood, and urinary organic acids (especially screening for 3-methylglutaconic acid). Urine amino acid analysis is recommended in mitochondrial tubulopathies. CSF metabolite analysis (lactate, pyruvate, amino acids, and 5-methyltetrahydrofolate) should be included in the presence of central nervous system disease. We also suggest a diagnostic strategy based on the mitochondrial disease criteria (MDC) scoring system in mitochondrial disease diagnostics; evaluating muscle-, neurologic-, and multisystem involvement, and the presence of metabolic markers and abnormal imaging. The consensus guideline encourages a primary genetic approach in diagnostics and only suggests a more invasive diagnostic approach with tissue biopsies (histology, OXPHOS measurements, etc.) after nonconclusive genetic testing.
Collapse
Affiliation(s)
- Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Department of Medical Genetics, University of Pecs Medical School, Pecs, Hungary.
| | - Devin Oglesbee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
7
|
Lipko NB. Photobiomodulation: Evolution and Adaptation. Photobiomodul Photomed Laser Surg 2022; 40:213-233. [DOI: 10.1089/photob.2021.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nancy B. Lipko
- Nancy B. Lipko, MD, MBA, Home Office, Beachwood, Ohio, USA
| |
Collapse
|
8
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
9
|
Hayman J, Pavlakis S, Finsterer J. Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS) in the 18th Century: Mitochondrial Disorders Are Not of Recent Origin. Cureus 2022; 14:e22314. [PMID: 35198337 PMCID: PMC8856639 DOI: 10.7759/cureus.22314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
|
10
|
Marković A, Tauchmannová K, Šimáková M, Mlejnek P, Kaplanová V, Pecina P, Pecinová A, Papoušek F, Liška F, Šilhavý J, Mikešová J, Neckář J, Houštěk J, Pravenec M, Mráček T. Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat. Biomedicines 2022; 10:276. [PMID: 35203486 PMCID: PMC8869460 DOI: 10.3390/biomedicines10020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.
Collapse
Affiliation(s)
- Aleksandra Marković
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Kateřina Tauchmannová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Vilma Kaplanová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Petr Pecina
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Alena Pecinová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Jana Mikešová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Josef Houštěk
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| |
Collapse
|
11
|
Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Commun Biol 2021; 4:989. [PMID: 34413467 PMCID: PMC8376967 DOI: 10.1038/s42003-021-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mouse models of genetic mitochondrial disorders are generally used to understand specific molecular defects and their biochemical consequences, but rarely to map compensatory changes allowing survival. Here we took advantage of the extraordinary mitochondrial resilience of hepatic Lrpprc knockout mice to explore this question using native proteomics profiling and lipidomics. In these mice, low levels of the mtRNA binding protein LRPPRC induce a global mitochondrial translation defect and a severe reduction (>80%) in the assembly and activity of the electron transport chain (ETC) complex IV (CIV). Yet, animals show no signs of overt liver failure and capacity of the ETC is preserved. Beyond stimulation of mitochondrial biogenesis, results show that the abundance of mitoribosomes per unit of mitochondria is increased and proteostatic mechanisms are induced in presence of low LRPPRC levels to preserve a balance in the availability of mitochondrial- vs nuclear-encoded ETC subunits. At the level of individual organelles, a stabilization of residual CIV in supercomplexes (SCs) is observed, pointing to a role of these supramolecular arrangements in preserving ETC function. While the SC assembly factor COX7A2L could not contribute to the stabilization of CIV, important changes in membrane glycerophospholipid (GPL), most notably an increase in SC-stabilizing cardiolipins species (CLs), were observed along with an increased abundance of other supramolecular assemblies known to be stabilized by, and/or participate in CL metabolism. Together these data reveal a complex in vivo network of molecular adjustments involved in preserving mitochondrial integrity in energy consuming organs facing OXPHOS defects, which could be therapeutically exploited. Cuillerier et al. investigate compensatory mechanisms underlying survival of mice with a liver-specific knockout of the mitochondrial mRNA-binding protein Lrpprc. They propose various mechanisms operating along the OXPHOS assembly line, including mitochondrial biogenesis, mitochondrial ribosome upregulation and preferential supercomplex assembly, that could compensate lack of LRPPRC and allow survival of these mice.
Collapse
|
12
|
Lin YT, Lin KH, Huang CJ, Wei AC. MitoTox: a comprehensive mitochondrial toxicity database. BMC Bioinformatics 2021; 22:369. [PMID: 34266386 PMCID: PMC8283953 DOI: 10.1186/s12859-021-04285-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background Mitochondria play essential roles in regulating cellular functions. Some drug treatments and molecular interventions have been reported to have off-target effects damaging mitochondria and causing severe side effects. The development of a database for the management of mitochondrial toxicity-related molecules and their targets is important for further analyses. Results To correlate chemical, biological and mechanistic information on clinically relevant mitochondria-related toxicity, a comprehensive mitochondrial toxicity database (MitoTox) was developed. MitoTox is an electronic repository that integrates comprehensive information about mitochondria-related toxins and their targets. Information and data related to mitochondrial toxicity originate from various sources, including scientific journals and other electronic databases. These resources were manually verified and extracted into MitoTox. The database currently contains over 1400 small-molecule compounds, 870 mitochondrial targets, and more than 4100 mitochondrial toxin-target associations. Each MitoTox data record contains over 30 fields, including biochemical properties, therapeutic classification, target proteins, toxicological data, mechanistic information, clinical side effects, and references. Conclusions MitoTox provides a fully searchable database with links to references and other databases. Potential applications of MitoTox include toxicity classification, prediction, reference and education. MitoTox is available online at http://www.mitotox.org.
Collapse
Affiliation(s)
- Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ko-Hong Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Jung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Ferreira CR, Rahman S, Keller M, Zschocke J. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis 2021; 44:164-177. [PMID: 33340416 PMCID: PMC9021760 DOI: 10.1002/jimd.12348] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Several initiatives at establishing a classification of inherited metabolic disorders have been published previously, some focusing on pathomechanisms, others on clinical manifestations, while yet another attempted a simplified approach of a comprehensive nosology. Some of these classifications suffered from shortcomings, such as lack of a mechanism for continuous update in light of a rapidly evolving field, or lack of widespread input from the metabolic community at large. Our classification-the International Classification of Inherited Metabolic Disorders, or International Classification of Inborn Metabolic Disorders (ICIMD)-includes 1450 disorders, and differs from prior approaches in that it benefited from input by a large number of experts in the field, and was endorsed by major metabolic societies around the globe. Several criteria such as pathway involvement and pathomechanisms were considered. The main purpose of the hierarchical, group-based approach of the ICIMD is an improved understanding of the interconnections between many individual conditions that may share functional, clinical, and diagnostic features. The ICIMD aims to include any primary genetic condition in which alteration of a biochemical pathway is intrinsic to specific biochemical, clinical, and/or pathophysiological features. As new disorders are discovered, we will seek the opinion of experts in the advisory board prior to inclusion in the appropriate group of the ICIMD, thus guaranteeing the continuing relevance of this classification via regular curation and expert advice.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Addresses for Correspondence: Carlos R. Ferreira, M.D., Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr, Building 49, Room 4A38, Bethesda, MD 20814, USA, ; Univ.-Prof. Dr. med. Johannes Zschocke, Ph.D., Institute of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria,
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Markus Keller
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
- Addresses for Correspondence: Carlos R. Ferreira, M.D., Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr, Building 49, Room 4A38, Bethesda, MD 20814, USA, ; Univ.-Prof. Dr. med. Johannes Zschocke, Ph.D., Institute of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria,
| | | |
Collapse
|
14
|
Schlieben LD, Prokisch H. The Dimensions of Primary Mitochondrial Disorders. Front Cell Dev Biol 2020; 8:600079. [PMID: 33324649 PMCID: PMC7726223 DOI: 10.3389/fcell.2020.600079] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of a mitochondrial disorder was initially described in 1962, in a patient with altered energy metabolism. Over time, mitochondrial energy metabolism has been discovered to be influenced by a vast number of proteins with a multitude of functional roles. Amongst these, defective oxidative phosphorylation arose as the hallmark of mitochondrial disorders. In the premolecular era, the diagnosis of mitochondrial disease was dependent on biochemical criteria, with inherent limitations such as tissue availability and specificity, preanalytical and analytical artifacts, and secondary effects. With the identification of the first mitochondrial disease-causing mutations, the genetic complexity of mitochondrial disorders began to unravel. Mitochondrial dysfunctions can be caused by pathogenic variants in genes encoded by the mitochondrial DNA or the nuclear DNA, and can display heterogenous phenotypic manifestations. The application of next generation sequencing methodologies in diagnostics is proving to be pivotal in finding the molecular diagnosis and has been instrumental in the discovery of a growing list of novel mitochondrial disease genes. In the molecular era, the diagnosis of a mitochondrial disorder, suspected on clinical grounds, is increasingly based on variant detection and associated statistical support, while invasive biopsies and biochemical assays are conducted to an ever-decreasing extent. At present, there is no uniform biochemical or molecular definition for the designation of a disease as a “mitochondrial disorder”. Such designation is currently dependent on the criteria applied, which may encompass clinical, genetic, biochemical, functional, and/or mitochondrial protein localization criteria. Given this variation, numerous gene lists emerge, ranging from 270 to over 400 proposed mitochondrial disease genes. Herein we provide an overview of the mitochondrial disease associated genes and their accompanying challenges.
Collapse
Affiliation(s)
- Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
15
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
16
|
Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 2020; 7:43-65. [PMID: 32455165 PMCID: PMC7242057 DOI: 10.3934/neuroscience.2020004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilitates a quality control mechanism. Biological studies in mitochondria dynamics are unveiling the mechanisms of fission and fusion, which essentially arrange morphology and motility of these organelles. Control of mitochondrial network homeostasis is a critical factor for the proper function of neurons. Disease-related genes have been reported to be implicated in mitochondrial dysfunction. Increasing evidence implicate mitochondrial perturbation in neuronal diseases, such as AD, PD, HD, and ALS. The intricacy involved in neurodegenerative diseases and the dynamic nature of mitochondria point to the idea that, despite progress toward detecting the biology underlying mitochondrial disorders, its link to these diseases is difficult to be identified in the laboratory. Considering the need to model signaling pathways, both in spatial and temporal level, there is a challenge to use a multiscale modeling framework, which is essential for understanding the dynamics of a complex biological system. The use of computational models in order to represent both a qualitative and a quantitative structure of mitochondrial homeostasis, allows to perform simulation experiments so as to monitor the conformational changes, as well as the intersection of form and function.
Collapse
|
17
|
Grace HE, Galdun P, Lesnefsky EJ, West FD, Iyer S. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells Dev 2019; 28:846-859. [PMID: 31017045 DOI: 10.1089/scd.2019.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
Collapse
Affiliation(s)
- Harrison E Grace
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Patrick Galdun
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,4 Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia.,5 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,6 Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Shilpa Iyer
- 7 Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
18
|
Galera-Monge T, Zurita-Díaz F, Garesse R, Gallardo ME. The mutation m.13513G>A impairs cardiac function, favoring a neuroectoderm commitment, in a mutant-load dependent way. J Cell Physiol 2019; 234:19511-19522. [PMID: 30950033 DOI: 10.1002/jcp.28549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/01/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Mitochondrial disorders (MDs) arise as a result of a respiratory chain dysfunction. While some MDs can affect a single organ, many involve several organs, the brain being the most affected, followed by heart and/or muscle. Many of these diseases are associated with heteroplasmic mutations in the mitochondrial DNA (mtDNA). The proportion of mutated mtDNA must exceed a critical threshold to produce disease. Therefore, understanding how embryonic development determines the heteroplasmy level in each tissue could explain the organ susceptibility and the clinical heterogeneity observed in these patients. In this report, the dynamics of heteroplasmy and the influence in cardiac commitment of the mutational load of the m.13513G>A mutation has been analyzed. This mutation has been reported as a frequent cause of Leigh syndrome (LS) and is commonly associated with cardiac problems. In this report, induced pluripotent stem cell (iPSc) technology has been used to delve into the molecular mechanisms underlying cardiac disease in LS. When mutation m.13513G>A is above a threshold, iPSc-derived cardiomyocytes (iPSc-CMs) could not be obtained due to an inefficient epithelial-mesenchymal transition. Surprisingly, these cells are redirected toward neuroectodermal lineages that would give rise to the brain. However, when mutation is below that threshold, dysfunctional CM are generated in a mutant-load dependent way. We suggest that distribution of the m.13513G>A mutation during cardiac differentiation is not at random. We propose a possible explanation of why neuropathology is a frequent feature of MD, but cardiac involvement is not always present.
Collapse
Affiliation(s)
- Teresa Galera-Monge
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Bioquímica, Instituto de Investigaciones Bio médicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, i+12. Centro de Actividades Ambulatorias. Avda. de Córdoba s/n, Madrid, Spain
| | - Francisco Zurita-Díaz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Bioquímica, Instituto de Investigaciones Bio médicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, i+12. Centro de Actividades Ambulatorias. Avda. de Córdoba s/n, Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Esther Gallardo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, i+12. Centro de Actividades Ambulatorias. Avda. de Córdoba s/n, Madrid, Spain
| |
Collapse
|
19
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [PMID: 30830800 DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- b Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
20
|
McCormick EM, Zolkipli-Cunningham Z, Falk MJ. Mitochondrial disease genetics update: recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease. Curr Opin Pediatr 2018; 30:714-724. [PMID: 30199403 PMCID: PMC6467265 DOI: 10.1097/mop.0000000000000686] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease (PMD) is a genetically and phenotypically diverse group of inherited energy deficiency disorders caused by impaired mitochondrial oxidative phosphorylation (OXPHOS) capacity. Mutations in more than 350 genes in both mitochondrial and nuclear genomes are now recognized to cause primary mitochondrial disease following every inheritance pattern. Next-generation sequencing technologies have dramatically accelerated mitochondrial disease gene discovery and diagnostic yield. Here, we provide an up-to-date review of recently identified, novel mitochondrial disease genes and/or pathogenic variants that directly impair mitochondrial structure, dynamics, and/or function. RECENT FINDINGS A review of PubMed publications was performed from the past 12 months that identified 16 new PMD genes and/or pathogenic variants, and recognition of expanded phenotypes for a wide variety of mitochondrial disease genes. SUMMARY Broad-based exome sequencing has become the standard first-line diagnostic approach for PMD. This has facilitated more rapid and accurate disease identification, and greatly expanded understanding of the wide spectrum of potential clinical phenotypes. A comprehensive dual-genome sequencing approach to PMD diagnosis continues to improve diagnostic yield, advance understanding of mitochondrial physiology, and provide strong potential to develop precision therapeutics targeted to diverse aspects of mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
21
|
Abstract
Purpose of review The groundwork for mitochondrial medicine was laid 30 years ago with identification of the first disease-causing mitochondrial DNA (mtDNA) mutations in 1988. Three decades later, mutations in nearly 300 genes involving every possible mode of inheritance within both nuclear and mitochondrial genomes are now recognized to collectively comprise the largest class of inherited metabolic disease affecting at least 1 in 4,300 individuals across all ages. Significant progress has been made in recent years to improve understanding of mitochondrial biology and disease pathophysiology. Recent findings Markedly improved understanding of the highly diverse molecular etiologies of multi-systemic phenotypes in primary mitochondrial disease has resulted from massively parallel genomic sequencing technologies and improved bioinformatic resources that enable identification in individual patients of their disease's precise genetic etiology. Key informatics resources of particular utility to the mitochondrial disease genomics community have been developed, including: (1) Mitocarta 2.0 repository of 1200+ verified mitochondria-localized proteins, (2) MITOMAP Web resource of curated mtDNA genome variants, and (3) Mitochondrial Disease Sequence Data Resource (MSeqDR) that centralizes Web curation and annotation of mitochondrial disease genes and variants in both genomes, ontology-defined phenotypes, and access to many analytic tools to support genomic data mining and interpretation. Gene and mutation-based disease categorization has proven particularly useful to identify the full clinical spectrum of disease that may affect a given individual. Summary Extensive genomic advances, both in technologic platforms and bioinformatics resources, have facilitated dramatic improvement in the accurate recognition and understanding of primary mitochondrial disease.
Collapse
|
22
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Mitochondrial Diseases as Model of Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:129-155. [DOI: 10.1007/978-3-319-60733-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F. Selection on the mitochondrial ATP synthase 6 and the NADH dehydrogenase 2 genes in hares (Lepus capensis L., 1758) from a steep ecological gradient in North Africa. BMC Evol Biol 2017; 17:46. [PMID: 28173765 PMCID: PMC5297179 DOI: 10.1186/s12862-017-0896-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/26/2017] [Indexed: 11/30/2022] Open
Abstract
Background Recent studies of selection on mitochondrial (mt) OXPHOS genes suggest adaptation due mainly to environmental variation. In this context, Tunisian hares that display several external phenotypes with phylogenetically rather homogenous gene pool and shallow population structure provide a good precondition to detect positive selection on mt genes related to environmental/climatic variation, specifically ambient temperature and precipitation. Results We used codon-based methods along with population genetic data to test for positive selection on ATPase synthase 6 (ATP6) and NADH dehydrogenase 2 (ND2) of cape hares (Lepus capensis) collected along a steep ecological gradient in Tunisia. We found significantly higher differentiation at the ATP6 locus across Tunisia, with sub-humid Mediterranean, semi-arid, and arid Sahara climate than for fourteen unlinked supposedly neutrally evolving nuclear microsatellites and mt control region sequences. This suggested positive selection on ATP6 sequences, which was confirmed by several codon-based tests for one sequence site that together with a second site translated into four different amino acids. Positive selection on ND2 sequences was also confirmed by several codon-based tests. The corresponding frequencies of the two most prevalent variants at each locus varied significantly across climate regions, and our logistic general linear models of occurrence of those proteins indicated significant effects of mean annual temperature for ATP6 and mean minimum temperature of the coldest month of the year for ND2, independent of geographical location, annual precipitation, and the respective co-occurring protein at the second locus. Moreover, presence of the ancestral ATP6 protein, as inferred from phylogenetic networks, was positively affected by the simultaneous presence of the derived ND2 protein and vice versa, independent of temperature, precipitation, or geographic location. Finally, we obtained a significant coevolution signal for the ancestral ATP6 and derived ND2 sequences and vice versa. Conclusions positive selection was strongly suggested by the population genetic approach and the codon-based tests in both mtDNA genes. Moreover, the two most prevalent proteins at the ATP6 locus were distributed at significantly varying frequencies across the study area with a significant effect of mean annual temperature on the occurrence of the ATP6 proteins independent of geographical coordinates and the co-occuring ND2 protein variant. For ND2, occurrence of the two most frequent protein variants was significantly influenced by the mean minimum temperature of the coldest month, independent of the co-occurring ATP6 protein variant and geographical coordinates. This strongly suggests direct involvement of ambient temperature in the adaptation of the studied mtOXPHOS genes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0896-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hichem Ben Slimen
- UR Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique (GIRC), Université de Tunis El-Manar, 2092, El Manar, Tunisia. .,Institut Supérieur de Biotechnologie de Béja, Beja, 9000, Tunisia.
| | - Helmut Schaschl
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
25
|
Dimond R, Stephens N. Three persons, three genetic contributors, three parents: Mitochondrial donation, genetic parenting and the immutable grammar of the ‘three x x’. Health (London) 2017; 22:240-258. [DOI: 10.1177/1363459316689380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In 2015, two novel in vitro fertilisation techniques intended to prevent the inheritance of mitochondrial disease were legalised in the United Kingdom, following an intense period of inquiry including scientific reviews, public consultations, government guidance and debates within the Houses of Parliament. The techniques were controversial because (1) they introduced a third genetic contributor into the reproductive process and (2) they are germline, meaning this genetic change could then be passed down to subsequent generations. Drawing on the social worlds framework with a focus on implicated actors and discursive strategies, this article explores key features of the UK mitochondrial debates as they played out in real time through policy documents and public debate. First, it situates the technology within a repertoire of metaphors, emotional terminology and their politics. It then explores the immutable grammar of ‘three x x’ that formed a key component of the political debate, by focusing on how institutional reviews discursively negotiated uncertainty around genetic parentage and how beneficiaries were implicated and rendered distant. Following the 2016 announcement of the first baby born through mitochondrial donation (in Mexico) and several pregnancies (in the Ukraine), we close with a discussion about the specific nature of UK regulation within a global economy. Overall, this article contributes to a much needed sociological discussion about mitochondrial donation, emerging reproductive technologies and the cultural significance of genetic material and genetic relatedness.
Collapse
|
26
|
Affiliation(s)
- Steven G. Pavlakis
- Communications should be addressed to: Dr. Pavlakis; Department of Pediatrics and Neurology; Brooklyn Hospital Center; Maynard Building; Brooklyn; New York City, New York.
| | | |
Collapse
|
27
|
Khan N. Recent advancements in diagnostic tools in mitochondrial energy metabolism diseases. Adv Med Sci 2016; 61:244-248. [PMID: 26998934 DOI: 10.1016/j.advms.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/27/2015] [Accepted: 02/05/2016] [Indexed: 01/02/2023]
Abstract
The involvement of mitochondrial energy metabolism in human disease ranges from rare monogenic disease to common diseases and aging with a genetic and/or lifestyle/environmental cause. This wide ranging involvement is due to the central role played by mitochondrion in cellular metabolism, its role in cellular perception of threats and its role in effecting responses to these threats. Investigating mitochondrial function/dysfunction or mitochondria-associated cell-biological responses have thus become a common finding where the pathogenic processes are investigated. Although, such investigations are warranted, it is not always clear if mitochondria can indeed be associated with cause or merely playing a responsive role in disease pathology. As this key question is also essential to disease progression and therapy, it should be recognized in investigative design. We herewith, present an overview of the current approaches and technologies used and the practicalities around these technologies.
Collapse
Affiliation(s)
- Naazneen Khan
- Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
28
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Abstract
INTRODUCTION OR BACKGROUND The UK is at the forefront of mitochondrial science and is currently the only country in the world to legalize germ-line technologies involving mitochondrial donation. However, concerns have been raised about genetic modification and the 'slippery slope' to designer babies. SOURCES OF DATA This review uses academic articles, newspaper reports and public documents. AREAS OF AGREEMENT Mitochondrial donation offers women with mitochondrial disease an opportunity to have healthy, genetically related children. AREAS OF CONTROVERSY Key areas of disagreement include safety, the creation of three-parent babies, impact on identity, implications for society, definitions of genetic modification and reproductive choice. GROWING POINTS The UK government legalized the techniques in March 2015. Scientific and medical communities across the world followed the developments with interest. AREAS TIMELY FOR DEVELOPING RESEARCH It is expected that the first cohort of 'three parent' babies will be born in the UK in 2016. Their health and progress will be closely monitored.
Collapse
Affiliation(s)
- Rebecca Dimond
- Cardiff School of Social Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
30
|
Sardin E, Donadello S, di Rago JP, Tetaud E. Biochemical investigation of a human pathogenic mutation in the nuclear ATP5E gene using yeast as a model. Front Genet 2015; 6:159. [PMID: 25954304 PMCID: PMC4407571 DOI: 10.3389/fgene.2015.00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
F1F0-ATP synthase is a key enzyme of the mitochondrial energetic metabolism responsible for the production of most cellular ATP in humans. Mayr et al. (2010) recently described a patient with a homozygote (Y12C) mutation in the nuclear gene ATP5E encoding the ε-subunit of ATP synthase. To better define how it affects ATP synthase, we have modeled this mutation in the yeast Saccharomyces cerevisiae. A yeast equivalent of this mutation (Y11C) had no significant effect on the growth of yeast on non-fermentable carbon sources (glycerol/ethanol or lactate), conditions under which the activity of the mitochondrial energy transducing system is absolutely essential. In addition, similar to what was observed in patient, this mutation in yeast has a minimal effect on the ATPase/synthase activities. On the contrary, this mutation which has been shown to have a strong impact on the assembly of the ATP synthase complex in humans, shows no significant impact on the assembly/stability of this complex in yeast, suggesting that biogenesis of this complex differs significantly.
Collapse
Affiliation(s)
- Elodie Sardin
- CNRS, Génétique Moléculaire des Systèmes Mitochondriaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France ; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France
| | - Stéphanie Donadello
- CNRS, Génétique Moléculaire des Systèmes Mitochondriaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France ; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Génétique Moléculaire des Systèmes Mitochondriaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France ; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France
| | - Emmanuel Tetaud
- CNRS, Génétique Moléculaire des Systèmes Mitochondriaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France ; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095 Bordeaux, France
| |
Collapse
|
31
|
Celie BM, Boone J, Smet JE, Vanlander AV, De Bleecker JL, Van Coster RN, Bourgois JG. Forearm deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) measured by near-infrared spectroscopy (NIRS) using a handgrip test in mitochondrial myopathy. APPLIED SPECTROSCOPY 2015; 69:342-347. [PMID: 25665184 DOI: 10.1366/14-07604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this paper is to test whether peripheral oxygenation responses measured with near-infrared spectroscopy (NIRS) would differ between patients suffering from mitochondrial myopathy (MM) and healthy controls during an incremental handgrip exercise test. Two groups of subjects were studied: 11 patients with MM and 11 age- and gender-matched untrained healthy controls. A handgrip exercise until exhaustion protocol was used consisting of 2 min periods of work (½ Hz) at different intensities, separated by a 60 s rest period. The changes in deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) during each work step were expressed in percent to the maximum deoxy[Hb + Mb]-value measured during arterial occlusion in forearm muscles. A repeated measures analysis of variance was used to compare the increase in deoxy[Hb + Mb] between MM patients and controls with increasing intensity. Statistical analysis revealed a significant difference between both populations (P < 0.001) indicating that the increase in deoxy[Hb + Mb] showed a significantly different pattern in the two populations. In the post hoc analysis significant lower deoxy[Hb + Mb] -values were found for MM patients at every intensity. The results of this paper show significantly different skeletal muscle oxygenation responses, measured with an optical method as NIRS, between MM patients and age- and gender-matched healthy subjects at submaximal and maximal level during an incremental handgrip exercise. This optical method is thus a valuable tool to assess differences in peripheral oxygenation. Moreover, this method could be used as an evaluation tool for follow up in interventional pharmacological studies and rehabilitation programs.
Collapse
Affiliation(s)
- Bert M Celie
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Patrushev MV, Kamenski PA, Mazunin IO. Mutations in mitochondrial DNA and approaches for their correction. BIOCHEMISTRY (MOSCOW) 2014; 79:1151-60. [DOI: 10.1134/s0006297914110029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 2014; 5:865-86. [PMID: 25264560 PMCID: PMC4276918 DOI: 10.3390/genes5040865] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to cytosol; where they exerted most of their actions. More recently, miRNAs were found to be present specifically in mitochondria; even originated there from mitochondrial DNA, regulating in a direct manner genes coding for mitochondrial proteins, and consequently mitochondrial function. Since miRNAs are recognized as major players in several biological processes, they are being considered as a key to better understand, explain, and probably prevent/cure not only the pathogenesis of multifactorial diseases but also mitochondrial dysfunction and associated diseases. Here we review some of the molecular mechanisms purported for miRNA actions in several biological processes, particularly the miRNAs acting in mitochondria or in mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Filipe V Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos M Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Anabela P Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
35
|
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W, Polkey MI, Roca J, Saey D, Schols AMWJ, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62. [PMID: 24787074 DOI: 10.1164/rccm.201402-0373st] [Citation(s) in RCA: 717] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Collapse
|
36
|
HEJZLAROVÁ K, MRÁČEK T, VRBACKÝ M, KAPLANOVÁ V, KARBANOVÁ V, NŮSKOVÁ H, PECINA P, HOUŠTĚK J. Nuclear Genetic Defects of Mitochondrial ATP Synthase. Physiol Res 2014; 63:S57-71. [DOI: 10.33549/physiolres.932643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme’s structural subunits α and ε, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. HOUŠTĚK
- Department of Bioenergetics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
37
|
Kalko SG, Paco S, Jou C, Rodríguez MA, Meznaric M, Rogac M, Jekovec-Vrhovsek M, Sciacco M, Moggio M, Fagiolari G, De Paepe B, De Meirleir L, Ferrer I, Roig-Quilis M, Munell F, Montoya J, López-Gallardo E, Ruiz-Pesini E, Artuch R, Montero R, Torner F, Nascimento A, Ortez C, Colomer J, Jimenez-Mallebrera C. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics 2014; 15:91. [PMID: 24484525 PMCID: PMC3937154 DOI: 10.1186/1471-2164-15-91] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/28/2014] [Indexed: 02/08/2023] Open
Abstract
Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neurology Department, Fundación Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
38
|
Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases 2014. [DOI: 10.3390/diseases2010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Xu W, Zhu H, Gu M, Luo Q, Ding J, Yao Y, Chen F, Wang Z. DHTKD1 is essential for mitochondrial biogenesis and function maintenance. FEBS Lett 2013; 587:3587-92. [PMID: 24076469 DOI: 10.1016/j.febslet.2013.08.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Maintaining the functional integrity of mitochondria is crucial for cell function, signal transduction and overall cell activities. Mitochondrial dysfunctions may alter energy metabolism and in many cases are associated with neurological diseases. Recent studies have reported that mutations in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1), a mitochondrial protein encoding gene, could cause neurological abnormalities. However, the function of DHTKD1 in mitochondria remains unknown. Here, we report a strong correlation of DHTKD1 expression level with ATP production, revealing the fact that DHTKD1 plays a critical role in energy production in mitochondria. Moreover, suppression of DHTKD1 leads to impaired mitochondrial biogenesis and increased reactive oxygen species (ROS), thus leading to retarded cell growth and increased cell apoptosis. These findings demonstrate that DHTKD1 contributes to mitochondrial biogenesis and function maintenance.
Collapse
Affiliation(s)
- Wangyang Xu
- Department of Clinical Laboratories, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Boone J, Celie B, Dumortier J, Barstow TJ, De Bleecker J, Smet J, Van Lander A, Van Coster R, Bourgois J. Forearm muscle oxygenation responses during and following arterial occlusion in patients with mitochondrial myopathy. Respir Physiol Neurobiol 2013; 190:70-5. [PMID: 24070894 DOI: 10.1016/j.resp.2013.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/12/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023]
Abstract
The aim was to study whether mitochondrial myopathy induces different oxygenation (deoxy[Hb+Mb] and oxy[Hb+Mb]) responses during and following arterial occlusion. In 10 mitochondrial myopathy patients (MMpatients) (age: 29±7 years; body mass: 59.9±15.7kg; heigth: 166.2±11.4cm) and age- and gender-matched healthy subjects (age: 28±9 years; body mass: 72.7±16.9kg; height: 174.4±8.7cm) arterial occlusion was performed by inflating a cuff to 240mmHg. Deoxy[Hb+Mb] and oxy[Hb+Mb] were registered during (AOoxy and AOdeoxy) and following (POdeoxy and POoxy) arterial occlusion. Amplitude of AOdeoxy did not differ (p=0.47) between MMpatients (44.9±28.0μM) and healthy subjects (38.6±22.8μM), The time constant of the exponential model was greater in MMpatients (263.4±49.1s vs. 200.3±73.7s, p=0.03). Following cuff release, in both populations a transient increase in total[Hb+Mb] was observed induced by different kinetics of POoxy and POdeoxy. The increase in POoxy (TD=6.6±2.2s and 11.9±3.5s; τ=3.8±1.4s and 6.4±2.9s for MMpatients and healthy subjects, respectively) was faster (p<0.001 for TD and τ) compared to the decrease in POdeoxy (TD=13.2±3.6s and 26.5±4.6s; τ=-6.2±2.2s and -9.6±2.4s for MMpatients and healthy subjects, respectively). POoxy and POdeoxy showed faster kinetics (p<0.001 and p<0.01 for TD and τ, respectively) in MMpatients compared to healthy subjects. MMpatients display altered oxygenation responses during and following arterial occlusion reflecting pathology related changes in the relationship between muscle blood flow and oxygen uptake.
Collapse
Affiliation(s)
- Jan Boone
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium; Center of Sports Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta Gen Subj 2013; 1830:4137-46. [DOI: 10.1016/j.bbagen.2013.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022]
|
42
|
Dimond R. Patient and family trajectories of mitochondrial disease: diversity, uncertainty and genetic risk. LIFE SCIENCES, SOCIETY AND POLICY 2013; 9:2. [PMCID: PMC4513040 DOI: 10.1186/2195-7819-9-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 10/25/2023]
Abstract
Mitochondrial disease can be a devastating, degenerative illness, with limited treatment and no cure. Novel reproductive techniques involving mitochondria donation present an opportunity for women with mitochondrial disease to prevent the transmission of disease to her offspring. Current IVF techniques, such as pre-implantation genetic diagnosis, reduce but do not eliminate the risk for the child. However, knowledge of the contexts within which this disease is experienced and reproductive decisions are made is limited. This article draws on qualitative interviews with adult patients to explore the practical realities of living with mitochondrial disease. Three key themes were identified; the personal and familial experiences of illness, age and generation as factors in shaping patient experience and the importance of experiential knowledge in making sense of reproductive choice. Overall, this article identifies potential barriers to patients accessing reproductive technologies highlighting how the complex nature and uncertain trajectory of mitochondrial disease poses considerable challenges for patients, practitioners and policy makers.
Collapse
Affiliation(s)
- Rebecca Dimond
- School of Social Sciences, Cardiff University, Glamorgan Building, King Edward VII Avenue, Cardiff, CF10 3WT UK
| |
Collapse
|
43
|
Goldstein A, Wolfe LA. The elusive magic pill: finding effective therapies for mitochondrial disorders. Neurotherapeutics 2013; 10:320-8. [PMID: 23355364 PMCID: PMC3625379 DOI: 10.1007/s13311-012-0175-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The incidence of mitochondrial diseases has been estimated at 11.5/100,000 (1:8500) worldwide. In the USA up to 4000 newborns annually are expected to develop a mitochondrial disease. More than 50 million adults in the USA also suffer from diseases in which primary or secondary mitochondrial dysfunction is involved. Mitochondrial dysfunction has been identified in cancer, infertility, diabetes, heart diseases, blindness, deafness, kidney disease, liver disease, stroke, migraine, dwarfism, and resulting from numerous medication toxicities. Mitochondrial dysfunction is also involved in normal aging and age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases. Yet most treatments available are based on empiric data and clinician experience because of the lack of randomized controlled clinical trials to provide evidence-based treatments for these disorders. Here we explore the current state of research for the treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Amy Goldstein
- />Division of Child Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA USA
| | - Lynne A. Wolfe
- />Undiagnosed Diseases Program, National Institutes of Health, 10 Center DR, MSC 1205, RM# 3-2551, Bethesda, MD 20892 USA
| |
Collapse
|
44
|
Abstract
Mutations in either nuclear DNA or mitochondrial DNA can result in disruption of oxidative phosphorylation and lead to mitochondrial dysfunction. Mitochondrial disease manifestations occur predominantly in the central nervous system, peripheral nervous system, and/or involve several organ systems. The consequences range from manifestations of a single organ or tissues, such as muscle fatigue, if confined only to muscle, seizures, intellectual disabilities, dementia, and stroke (if to the central nervous system), leading to disability or even early death. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. Criteria and checklists have been established and are more reflective of adult disease. However, in children, when symptoms suggest a mitochondrial disease, neuroimaging features may have more diagnostic impact and additionally these can be used to follow the course, evolution, and recovery of the disease. This review will demonstrate the common neuroimaging patterns in patients with mitochondrial disorders and point out how various newer neuroimaging modalities may be exploited to glean information as to the different aspects of mitochondrial dysfunction or resulting neurological and cognitive disruption, although reports in the literature using these methods remain sparse.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Pediatrics and Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
45
|
Fam HK, Chowdhury MK, Walton C, Choi K, Boerkoel CF, Hendson G. Expression profile and mitochondrial colocalization of Tdp1 in peripheral human tissues. J Mol Histol 2013; 44:481-94. [PMID: 23536040 DOI: 10.1007/s10735-013-9496-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that processes blocked 3' ends of DNA breaks. Functional loss of Tdp1 causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Based on the prominent cytoplasmic expression of Tdp1 in the neurons presumably affected in SCAN1, we hypothesized that Tdp1 participates in the repair of mitochondrial DNA. As a step toward testing this hypothesis, we profiled Tdp1 expression in different human tissues by immunohistochemistry and immunofluorescence respectively and determined whether Tdp1 was expressed in the cytoplasm of tissues other than the neurons. We found that Tdp1 was ubiquitously expressed and present in the cytoplasm of many cell types. Within human skeletal muscle and multiple mouse tissues, Tdp1 partially colocalized with the mitochondria. In cultured human dermal fibroblasts, Tdp1 redistributed to the cytoplasm and partially colocalized with mitochondria following oxidative stress. These studies suggest that one role of cytoplasmic Tdp1 is the repair of mitochondrial DNA lesions arising from oxidative stress.
Collapse
Affiliation(s)
- Hok Khim Fam
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando' S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 2013; 3:798-810. [PMID: 22878233 PMCID: PMC3478457 DOI: 10.18632/oncotarget.574] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have suggested that cancer cells behave as metabolic parasites, by inducing oxidative stress in adjacent normal fibroblasts. More specifically, oncogenic mutations in cancer cells lead to ROS production and the "secretion" of hydrogen peroxide species. Oxidative stress in stromal fibroblasts then induces their metabolic conversion into cancer-associated fibroblasts. Such oxidative stress drives the onset of autophagy, mitophagy, and aerobic glycolysis in fibroblasts, resulting in the local production of high-energy mitochondrial fuels (such as L-lactate, ketone bodies, and glutamine). These recycled nutrients are then transferred to cancer cells, where they are efficiently burned via oxidative mitochondrial metabolism (OXPHOS). We have termed this new energy-transfer mechanism "Two-Compartment Tumor Metabolism", to reflect that the production and consumption of nutrients (L-lactate and other catabolites) is highly compartmentalized. Thus, high-energy onco-catabolites are produced by the tumor stroma. Here, we used a genetic approach to stringently test this energy-transfer hypothesis. First, we generated hTERT-immortalized fibroblasts which were genetically re-programmed towards catabolic metabolism. Metabolic re-programming towards glycolytic metabolism was achieved by the recombinant over-expression of MFF (mitochondrial fission factor). MFF over-expression results in extensive mitochondrial fragmentation, driving mitochondrial dysfunction. Our results directly show that MFFfibroblasts undergo oxidative stress, with increased ROS production, and the onset of autophagy and mitophagy, both catabolic processes. Mechanistically, oxidative stress induces autophagy via NF-kB activation, also providing a link with inflammation. As a consequence MFF-fibroblasts showed intracellular ATP depletion and the extracellular secretion of L-lactate, a critical onco-catabolite. MFF-fibroblasts also showed signs of myofibroblast differentiation, with the expression of SMA and calponin. Importantly, MFF-fibroblasts signficantly promoted early tumor growth (up to 6.5-fold), despite a 20% overall reduction in angiogenesis. Thus, catabolic metabolism in cancer-associated fibroblasts may be a critical event during tumor intiation, allowing accelerated tumor growth, especially prior to the onset of neoangiogenesis.
Collapse
Affiliation(s)
- Carmela Guido
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cassandrini D, Cilio MR, Bianchi M, Doimo M, Balestri M, Tessa A, Rizza T, Sartori G, Meschini MC, Nesti C, Tozzi G, Petruzzella V, Piemonte F, Bisceglia L, Bruno C, Dionisi-Vici C, D'Amico A, Fattori F, Carrozzo R, Salviati L, Santorelli FM, Bertini E. Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients. J Inherit Metab Dis 2013; 36:43-53. [PMID: 22569581 DOI: 10.1007/s10545-012-9487-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 11/27/2022]
Abstract
Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.
Collapse
|
48
|
Abstract
Zusammenfassung
Die häufigste Manifestation einer Mitochondriopathie bei Erwachsenen ist die chronisch progressive externe Ophthalmoplegie (CPEO), die eine variable Multisystembeteiligung aufweist. Molekulargenetisch finden sich am häufigsten singuläre mtDNA-Deletionen, die meist mit einer sporadischen CPEO einhergehen. Es gibt aber auch autosomal-dominant und rezessiv vererbte CPEO-Formen durch Defekte in nukleären Genen, die für die mtDNA-Replikation wichtig sind, die zu multiplen mtDNA-Deletionen führen. Andere klassische multisystemische mitochondriale Erkrankungen sind z. B. das MELAS-Syndrom und das MERRF-Syndrom, sie entstehen durch maternal vererbte Punktmutationen der mtDNA. Die Lebersche Optikusneuropathie, ebenfalls durch mtDNA-Punktmutationen bedingt, ist eine häufige Mitochondriopathie ohne multisystemische Beteiligung, Über solch klassische mitochondriale Erkrankungen hinaus gibt es Mitochondriopathienpatienten mit weniger charakteristischen, manchmal monosymptomatischen Phänotypen (z. B. Myopathie oder Epilepsie), die schwieriger zu erkennen sind.
Collapse
Affiliation(s)
- M. Deschauer
- Aff1_344 grid.461820.9 0000000403901701 Klinik und Poliklinik für Neurologie Universitätsklinikum Halle Ernst-Grube-Str. 40 06097 Halle (Saale) Deutschland
| |
Collapse
|
49
|
Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P. Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012; 227:2297-310. [PMID: 21928343 DOI: 10.1002/jcp.23021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue. Cell Cycle 2012; 11:1445-54. [PMID: 22395432 DOI: 10.4161/cc.19841] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the "reverse Warburg effect," because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TO MM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the "reverse Warburg effect," our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TO MM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally "fuels" tumor progression and metastatic dissemination, by "feeding" mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TO MM20(-) "glycolytic" cancer cells were rarely observed, indicating that the conventional "Warburg effect" does not frequently occur in cancer-positive lymph node metastases.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|