1
|
Abuzaid Y, Suliman GAM, Toulba OARER, Elezz AAEBA, Badraldeen A, Dawoud H. Cardioprotective effects of CoQ10 in pediatric patients with lysosomal storage disorders. Ital J Pediatr 2025; 51:163. [PMID: 40437590 PMCID: PMC12121178 DOI: 10.1186/s13052-025-02008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/11/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Lysosomal storage disorders (LSDs) result from an accumulation of specific substrates, due to the inability to break them down leading to cellular dysfunction in multiple organs, including the heart constituting an important and treatable cause of cardiomyopathy. Given the role of oxidative stress in many inborn errors of metabolism, many studies are evaluating oxidative stress and hence the role of antioxidants in patients with LSDs. THE AIM OF THIS STUDY was to study the possible effects of Coenzyme Q10 as a cardioprotective and an antioxidant drug in patients with LSDs. METHODS This study was a prospective case-control study conducted on 30 patients with LSDs and an equal number of healthy subjects of matched age and sex served as a control group at the unit of Medical Genetics and inborn errors of metabolism at the Pediatric Department of Tanta University Hospital. All subjects included were subjected to full history taking, complete physical examination, assessing serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) & serum malondialdehyde (MDA), along with comprehensive cardiac evaluation that was done using tissue doppler imaging and speckling tracking echo. Then the patient group was subdivided into two subgroups, half of the patients received Co enzyme Q10 (CoQ10) while the other half received a placebo for 24 weeks followed by cardiac evaluation and reassessment of serum MDA and NT-proBNP for both patient subgroups. RESULTS Patients with LSDs had significantly higher levels of serum MDA than controls denoting higher oxidative stress, P-value < 0.001. CoQ10 resulted in significant beneficial reduction of serum MDA (15%) &NT-proBNP (30%) in the group of patients who received CoQ10, P-value < 0.001 and improvement of cardiac functional parameters in patients with LSDs. CONCLUSION These findings suggest that CoQ10 may have a role in reducing oxidative stress and so may prevent the development of cardiomyopathy in patients with LSDs. TRIAL REGISTRATION This study was performed after approval from the Ethical Committee, Faculty of Medicine, Tanta University, Egypt (approval code 33255/07/19) and after obtaining written informed consent from children guardians. Also, this trial was registered on Pan African clinical trials registry with the number PACTR, 'PACTR202107466690046'. Registered 04 July 2021.
Collapse
Affiliation(s)
- Yasmine Abuzaid
- Pediatrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | | | | | | | - Heba Dawoud
- Pediatrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Gul R, Firasat S, Schubert M, Ullah A, Peña E, Thuesen ACB, Gjesing AP, Hussain M, Tufail M, Saqib M, Afshan K, Hansen T. Identification of genetic variants associated with a wide spectrum of phenotypes clinically diagnosed as Sanfilippo and Morquio syndromes using whole genome sequencing. Front Genet 2023; 14:1254909. [PMID: 37772257 PMCID: PMC10524275 DOI: 10.3389/fgene.2023.1254909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders (LSDs). MPSs are caused by excessive accumulation of mucopolysaccharides due to missing or deficiency of enzymes required for the degradation of specific macromolecules. MPS I-IV, MPS VI, MPS VII, and MPS IX are sub-types of mucopolysaccharidoses. Among these, MPS III (also known as Sanfilippo) and MPS IV (Morquio) syndromes are lethal and prevalent sub-types. This study aimed to identify causal genetic variants in cases of MPS III and MPS IV and characterize genotype-phenotype relations in Pakistan. We performed clinical, biochemical and genetic analysis using Whole Genome Sequencing (WGS) in 14 Pakistani families affected with MPS III or MPS IV. Patients were classified into MPS III by history of aggressive behaviors, dementia, clear cornea and into MPS IV by short trunk, short stature, reversed ratio of upper segment to lower segment with a short upper segment. Data analysis and variant selections were made based on segregation analysis, examination of known MPS III and MPS IV genes, gene function, gene expression, the pathogenicity of variants based on ACMG guidelines and in silico analysis. In total, 58 individuals from 14 families were included in the present study. Six families were clinically diagnosed with MPS III and eight families with MPS IV. WGS revealed variants in MPS-associated genes including NAGLU, SGSH, GALNS, GNPTG as well as the genes VWA3B, BTD, and GNPTG which have not previously associated with MPS. One family had causal variants in both GALNS and BTD. Accurate and early diagnosis of MPS in children represents a helpful step for designing therapeutic strategies to protect different organs from permanent damage. In addition, pre-natal screening and identification of genetic etiology will facilitate genetic counselling of the affected families. Identification of novel causal MPS genes might help identifying new targeted therapies to treat LSDs.
Collapse
Affiliation(s)
- Rutaba Gul
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elionora Peña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne C. B. Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annete P. Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mulazim Hussain
- The Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Muhammad Tufail
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saqib
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
4
|
Hammerschmidt TG, Donida B, Faverzani JL, Moura AP, Dos Reis BG, Machado AZ, Kessler RG, Sebastião FM, Reinhardt LS, Moura DJ, Vargas CR. Cytokine profile and cholesterol levels in patients with Niemann-Pick type C disease presenting neurological symptoms: The in vivo effect of miglustat and the in vitro effect of N-acetylcysteine and Coenzyme Q10. Exp Cell Res 2022; 416:113175. [PMID: 35487270 DOI: 10.1016/j.yexcr.2022.113175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 μM and 10 μM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.
Collapse
Affiliation(s)
- Tatiane G Hammerschmidt
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Jéssica L Faverzani
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana P Moura
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
6
|
Oxidative Stress in Mucopolysaccharidoses: Pharmacological Implications. Molecules 2021; 26:molecules26185616. [PMID: 34577086 PMCID: PMC8468662 DOI: 10.3390/molecules26185616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.
Collapse
|
7
|
Liu Y, Yao Y, Tao W, Liu F, Yang S, Zhao A, Song D, Li X. Coenzyme Q10 ameliorates BPA-induced apoptosis by regulating autophagy-related lysosomal pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112450. [PMID: 34186417 DOI: 10.1016/j.ecoenv.2021.112450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a widely distributed environmental endocrine disruptor. The accumulation of BPA has been proved that produce various toxic effects both on human and animals. However, the strategies to reduce the damage of BPA on the body and related mechanisms remain to be studied. Coenzyme Q10 (CoQ10), as a powerful antioxidant, is ubiquitous in many eukaryotic cells, which can improve the integrity of lysosomal membrane, lysosomal degradation function and promote autophagy. Here, we examined the ability of CoQ10 to alleviate oxidative stress and apoptosis in BPA-induced damages in C2C12 cells, and how to alleviate it. Our results showed that BPA treatment significantly reduced cell viability, increased the number of cell apoptosis and ROS production, decreased mitochondrial membrane potential, and inhibited the gene expression of mitochondria biogenesis. Moreover, we demonstrated that exposure to BPA increased expression levels of autophagy protein (LC3-II, p62), inhibited autophagy flux, and disrupted the acidic pH environment of lysosomes. Importantly, CoQ10 supplementation effectively restored these abnormalities caused by BPA. CoQ10 significantly decreased the apoptotic incidence and ROS levels, improved mitochondrial membrane potential. Moreover, CoQ10 improved lysosome function and enhanced autophagy flux. Taken together, our results indicate that CoQ10 supplementation is a feasible and effective way to promote the level of autophagy by improving lysosomal function, thereby reducing the apoptosis caused by BPA accumulation. This study aims to provide evidence for the role of CoQ10 in repairing BPA-induced cell damage in clinical practice.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaxin Yao
- Yikon Genomics Company, Ltd., Suzhou 215000, China
| | - Wenjing Tao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Feng Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Dan Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA. Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1932459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Nathan Bowers
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Sam Khajeh
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| |
Collapse
|
9
|
Carubbi F, Barbato A, Burlina AB, Francini F, Mignani R, Pegoraro E, Landini L, De Danieli G, Bruni S, Strazzullo P. Nutrition in adult patients with selected lysosomal storage diseases. Nutr Metab Cardiovasc Dis 2021; 31:733-744. [PMID: 33589321 DOI: 10.1016/j.numecd.2020.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of clinically heterogeneous disorders affecting the function of lysosomes and are characterized by an accumulation of undigested substrates within several cell types. In recent years there have been substantial advances in supportive care and drug treatment for some LSDs, leading to improved patient survival, as seen in Gaucher, Pompe and Fabry disease and some Mucopolysaccharidoses; however, many symptoms still persist. Thus it is now even more important to improve patients' quality of life and reduce symptoms and comorbidities. One potential way of achieving this goal is through adjunct nutritional therapy, which is challenging as patients may be overweight with associated consequences, or malnourished, or underweight. Furthermore, drugs used to treat LSDs can modify the metabolic status and needs of patients. There are currently not enough data to make specific dietary recommendations for individual LSDs; however, suggestions can be made for managing clinical manifestations of the diseases, as well as treatment-associated adverse events. The metabolic and nutritional status of adult patients must be regularly assessed and individualized dietary plans may be created to cater to a patient's specific needs. Damage to the autophagic process is a common feature in LSDs that is potentially sensitive to dietary manipulation and needs to be assessed in clinical studies.
Collapse
Affiliation(s)
- Francesca Carubbi
- U.O.C. Medicina metabolica AOU Modena, Metabolic Medicine Unit, Modena University Hospital, Modena, Italy.
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Major Operational Unit of Hereditary Metabolic Diseases, Azienda Ospedaliera di Padova, Padua, Italy
| | - Francesco Francini
- U.O. Nutrizione Clinica, Department of Medicine, Azienda Ospedaliera di Padova, Padua, Italy
| | - Renzo Mignani
- U.O. di Nefrologia e Dialisi dell'Ospedale Infermi di Rimini, Nephrology Operational Unit of the Infermi Hospital in Rimini, Rimini, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Italy
| | | | | | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| |
Collapse
|
10
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
11
|
Kong W, Yao Y, Zhang J, Lu C, Ding Y, Meng Y. Update of treatment for mucopolysaccharidosis type III (sanfilippo syndrome). Eur J Pharmacol 2020; 888:173562. [DOI: 10.1016/j.ejphar.2020.173562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022]
|
12
|
Benetó N, Vilageliu L, Grinberg D, Canals I. Sanfilippo Syndrome: Molecular Basis, Disease Models and Therapeutic Approaches. Int J Mol Sci 2020; 21:E7819. [PMID: 33105639 PMCID: PMC7659972 DOI: 10.3390/ijms21217819] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
Collapse
Affiliation(s)
- Noelia Benetó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Department of Clinical Sciences, Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
13
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
14
|
Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020; 21:ijms21186695. [PMID: 32933108 PMCID: PMC7555759 DOI: 10.3390/ijms21186695] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.
Collapse
|
15
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|
16
|
Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab 2019; 126:83-97. [PMID: 30528228 DOI: 10.1016/j.ymgme.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Small-molecule- enzyme enhancement therapeutics (EETs) have emerged as attractive agents for the treatment of lysosomal storage diseases (LSDs), a broad group of genetic diseases caused by mutations in genes encoding lysosomal enzymes, or proteins required for lysosomal function. The underlying enzyme deficiencies characterizing LSDs cause a block in the stepwise degradation of complex macromolecules (e.g. glycosaminoglycans, glycolipids and others), such that undegraded or partially degraded substrates progressively accumulate in lysosomal and non-lysosomal compartments, a process leading to multisystem pathology via primary and secondary mechanisms. Missense mutations underlie many of the LSDs; the resultant mutant variant enzyme hydrolase is often impaired in its folding and maturation making it subject to rapid disposal by endoplasmic reticulum (ER)-associated degradation (ERAD). Enzyme deficiency in the lysosome is the result, even though the mutant enzyme may retain significant catalytic functioning. Small molecule modulators - pharmacological chaperones (PCs), or proteostasis regulators (PRs) are being identified through library screens and computational tools, as they may offer a less costly approach than enzyme replacement therapy (ERT) for LSDs, and potentially treat neuronal forms of the diseases. PCs, capable of directly stabilizing the mutant protein, and PRs, which act on other cellular elements to enhance protein maturation, both allow a proportion of the synthesized variant protein to reach the lysosome and function. Proof-of-principle for PCs and PRs as therapeutic agents has been demonstrated for several LSDs, yet definitive data of their efficacy in disease models and/or in downstream clinical studies in many cases has yet to be achieved. Basic research to understand the cellular consequences of protein misfolding such as perturbed organellar crosstalk, redox status, and calcium balance is needed. Likewise, an elucidation of the early in cellulo pathogenic events underlying LSDs is vital and may lead to the discovery of new small molecule modulators and/or to other therapeutic approaches for driving proteostasis toward protein rescue.
Collapse
Affiliation(s)
- Ryan Thomas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada.
| |
Collapse
|
17
|
Gaffke L, Pierzynowska K, Piotrowska E, Węgrzyn G. How close are we to therapies for Sanfilippo disease? Metab Brain Dis 2018; 33:1-10. [PMID: 28921412 PMCID: PMC5769821 DOI: 10.1007/s11011-017-0111-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/10/2017] [Indexed: 11/11/2022]
Abstract
Sanfilippo disease is one of mucopolysaccharidoses (MPS), a group of lysosomal storage diseases characterized by accumulation of partially degraded glycosaminoglycans (GAGs). It is classified as MPS type III, though it is caused by four different genetic defects, determining subtypes A, B, C and D. In each subtype of MPS III, the primary storage GAG is heparan sulfate (HS), but mutations leading to A, B, C, and D subtypes are located in genes coding for heparan N-sulfatase (the SGSH gene), α-N-acetylglucosaminidase (the NAGLU gene), acetyl-CoA:α-glucosaminide acetyltransferase (the HGSNAT gene), and N-acetylglucosamine-6-sulfatase (the GNS gene), respectively. Neurodegenerative changes in the central nervous system (CNS) are major problems in Sanfilippo disease. They cause severe cognitive disabilities and behavioral disturbances. This is the main reason of a current lack of therapeutic options for MPS III patients, while patients from some other MPS types (I, II, IVA, and VI) can be treated with enzyme replacement therapy or bone marrow or hematopoietic stem cell transplantations. Nevertheless, although no therapy is available for Sanfilippo disease now, recent years did bring important breakthroughs in this aspect, and clinical trials are being conducted with enzyme replacement therapy, gene therapy, and substrate reduction therapy. These recent achievements are summarized and discussed in this review.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
18
|
Donida B, Jacques CED, Mescka CP, Rodrigues DGB, Marchetti DP, Ribas G, Giugliani R, Vargas CR. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers. Clin Chim Acta 2017; 466:46-53. [DOI: 10.1016/j.cca.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
|
19
|
de la Mata M, Cotán D, Oropesa-Ávila M, Villanueva-Paz M, de Lavera I, Álvarez-Córdoba M, Luzón-Hidalgo R, Suárez-Rivero JM, Tiscornia G, Sánchez-Alcázar JA. Coenzyme Q 10 partially restores pathological alterations in a macrophage model of Gaucher disease. Orphanet J Rare Dis 2017; 12:23. [PMID: 28166796 PMCID: PMC5292786 DOI: 10.1186/s13023-017-0574-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/20/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. RESULTS Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. CONCLUSION These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.
Collapse
Affiliation(s)
- Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Gustavo Tiscornia
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
20
|
Sánchez-Fernández EM, García Fernández JM, Mellet CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb) 2016; 52:5497-515. [PMID: 27043200 DOI: 10.1039/c6cc01564f] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| |
Collapse
|
21
|
Gegg ME, Schapira AHV. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiol Dis 2015; 90:43-50. [PMID: 26388395 PMCID: PMC4838669 DOI: 10.1016/j.nbd.2015.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
The lysosomal hydrolase glucocerebrosidase (GCase) is encoded for by the GBA gene. Homozygous GBA mutations cause Gaucher disease (GD), a lysosomal storage disorder. Furthermore, homozygous and heterozygous GBA mutations are numerically the greatest genetic risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. The loss of GCase activity results in impairment of the autophagy‐lysosome pathway (ALP), which is required for the degradation of macromolecules and damaged organelles. Aberrant protein handling of α-synuclein by the ALP occurs in both GD and PD. α-synuclein is the principle component of Lewy bodies, a defining hallmark of PD. Mitochondrial dysfunction is also observed in both GD and PD. In this review we will describe how mitochondria are affected following loss of GCase activity. The pathogenic mechanisms leading to mitochondria dysfunction will also be discussed, focusing on the likely inhibition of the degradation of mitochondria by the ALP, also termed mitophagy. Other pathogenic cellular processes associated with GBA mutations that might contribute, such as the unfolding of GCase in the endoplasmic reticulum, calcium dysregulation and neuroinflammation will also be described. Impairment of the ALP and mitochondria dysfunction are common pathogenic themes between GD and PD and probably explain why GBA mutations increase the risk of developing PD that is very similar to sporadic forms of the disease.
Collapse
Affiliation(s)
- Matthew E Gegg
- Department of Clinical Neuroscience, UCL Institute of Neurology, London NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, London NW3 2PF, UK.
| |
Collapse
|
22
|
Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases. PLoS One 2015; 10:e0135873. [PMID: 26287674 PMCID: PMC4545610 DOI: 10.1371/journal.pone.0135873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/27/2015] [Indexed: 11/21/2022] Open
Abstract
Nonsense mutations are quite prevalent in inherited diseases. Readthrough drugs could provide a therapeutic option for any disease caused by this type of mutation. Geneticin (G418) and gentamicin were among the first to be described. Novel compounds have been generated, but only a few have shown improved results. PTC124 is the only compound to have reached clinical trials. Here we first investigated the readthrough effects of gentamicin on fibroblasts from one patient with Sanfilippo B, one with Sanfilippo C, and one with Maroteaux-Lamy. We found that ARSB activity (Maroteaux-Lamy case) resulted in an increase of 2–3 folds and that the amount of this enzyme within the lysosomes was also increased, after treatment. Since the other two cases (Sanfilippo B and Sanfilippo C) did not respond to gentamicin, the treatments were extended with the use of geneticin and five non-aminoglycoside (PTC124, RTC13, RTC14, BZ6 and BZ16) readthrough compounds (RTCs). No recovery was observed at the enzyme activity level. However, mRNA recovery was observed in both cases, nearly a two-fold increase for Sanfilippo B fibroblasts with G418 and around 1.5 fold increase for Sanfilippo C cells with RTC14 and PTC124. Afterwards, some of the products were assessed through in vitro analyses for seven mutations in genes responsible for those diseases and, also, for Niemann-Pick A/B. Using the coupled transcription/translation system (TNT), the best results were obtained for SMPD1 mutations with G418, reaching a 35% recovery at 0.25 μg/ml, for the p.W168X mutation. The use of COS cells transfected with mutant cDNAs gave positive results for most of the mutations with some of the drugs, although to a different extent. The higher enzyme activity recovery, of around two-fold increase, was found for gentamicin on the ARSB p.W146X mutation. Our results are promising and consistent with those of other groups. Further studies of novel compounds are necessary to find those with more consistent efficacy and fewer toxic effects.
Collapse
|
23
|
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiencies of lysosomal enzymes catalyzing degradation of glycosaminoglycans (GAGs). Previously, we reported a secondary plasma coenzyme Q10 (CoQ) deficiency in MPS patients. For this study, nine MPS patients were recruited in the Hospital Sant Joan de Déu (HSJD, Barcelona) and two patients in the Neurometabolic Unit, National Hospital (NMU, London), to explore the nutritional status of MPS type III patients by analyzing several vitamins and micronutrients in blood and in cerebrospinal fluid. Plasma CoQ and plasma and cerebrospinal fluid pyridoxal phosphate (PLP) content were analyzed by high-pressure liquid chromatography (HPLC) with electrochemical and fluorescence detection, respectively. We found that most MPS-III patients disclosed low plasma pyridoxal phosphate (PLP) values (seven out of nine) and also low plasma CoQ concentrations (eight out of nine). We observed significantly lower median values of PLP, tocopherol, and CoQ (Mann-Whitney U test, p = 0.006, p = 0.004, and p = 0.001, respectively) in MPS patients when compared with age-matched controls. Chi-square test showed a significant association between the fact of having low plasma PLP and CoQ values in the whole cohort of patients. Cerebrospinal fluid PLP values were clearly deficient in the two patients studied. In conclusion, we report a combined CoQ and PLP deficiency in MPS-III patients. These observations could be related to the complexity of the physiopathology of the disease. If our results are confirmed in larger series of patients, CoQ and PLP therapy could be trialed as coadjuvant therapy with the current MPS treatments.
Collapse
|
24
|
Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Sci Rep 2015; 5:10903. [PMID: 26045184 PMCID: PMC4456666 DOI: 10.1038/srep10903] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.
Collapse
|
25
|
Andrade F, Aldámiz-Echevarría L, Llarena M, Couce ML. Sanfilippo syndrome: Overall review. Pediatr Int 2015; 57:331-8. [PMID: 25851924 DOI: 10.1111/ped.12636] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
Mucopolysaccharidosis type III (MPS III, Sanfilippo syndrome) is a lysosomal storage disorder, caused by a deficiency in one of the four enzymes involved in the catabolism of glycosaminoglycan heparan sulfate. It is characterized by progressive cognitive decline and severe hyperactivity, with relatively mild somatic features. This review focuses on clinical features, diagnosis, treatment, and follow-up of MPS III, and provides information about supplementary tests and differential diagnosis. Given that few reviews of MPS III have been published, several studies were compiled to establish diagnostic recommendations. Quantitative urinary glycosaminoglycan analysis is strongly recommended, and measurement of disaccharides, heparin cofactor II-thrombin complex and gangliosides is also used. Enzyme activity of the different enzymes in blood serum, leukocytes or fibroblasts, and mutational analysis for SGSH, NAGLU, HGSNAT or GNS genes are required to confirm diagnosis and differentiate four subtypes of MPS III. Although there is no global consensus for treatment, enzyme replacement therapy and gene therapy can provide appropriate results. In this regard, recent publications on treatment and follow-up are discussed.
Collapse
Affiliation(s)
- Fernando Andrade
- Division of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo, Spain
| | - Luis Aldámiz-Echevarría
- Division of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo, Spain
| | - Marta Llarena
- Division of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo, Spain
| | - María Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Neonatology Service, Department of Pediatrics, CIBER de Enfermedades Raras (CIBERER), IDIS Clinic University Hospital of Santiago de Compostela, Coruña, Spain
| |
Collapse
|