1
|
Brothwell SL, Fitzsimons PE, Gerrard A, Schwahn BC, Stockdale C, Bowron A, Anderson M, Hart CE, Hannah R, Ritchie F, Deshpande SA, Sreekantam S, Watts G, Yap S, Mundy H, Veiraiah A, Collins A, Cozens A, Morris AA, Crushell E. Glycerol intoxication syndrome in young children, following the consumption of slush ice drinks. Arch Dis Child 2025:archdischild-2024-328109. [PMID: 40068898 DOI: 10.1136/archdischild-2024-328109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 05/23/2025]
Abstract
INTRODUCTION Slush ice drinks are commonly available refreshments, aimed at children and young people. Glycerol is used to maintain the slush effect in the absence of a high sugar content. OBJECTIVE To describe a series of children who became acutely unwell shortly after consuming a slush ice drink; their presentation mimics specific inherited metabolic diseases (IMDs). METHODS A retrospective case review of 21 children who presented to centres across the UK and Ireland from 2009 through 2024 was carried out. RESULTS Almost all of the children (93%) became unwell within 60 min of slush ice drink consumption. None had any relevant past medical history. The median age at presentation was 3 years 6 months (range 2 years - 6 years 9 months). Presenting features include acute decrease in consciousness (94%), hypoglycaemia (95%), metabolic (lactic) acidosis (94%), pseudohypertriglyceridaemia (89%) and hypokalaemia (75%). Glyceroluria was present in all acute urine organic acid samples. No underlying IMD was found in the 14 patients who underwent further enzymatic or genetic testing. The majority (95%) subsequently avoided slush ice drinks and did not have reoccurrence. CONCLUSION Consumption of slush ice drinks containing glycerol may cause a clinical syndrome of glycerol intoxication in young children, characterised by decreased consciousness, hypoglycaemia, lactic acidosis, pseudohypertriglyceridaemia and hypokalaemia. This mimics inherited disorders of gluconeogenesis and glycerol metabolism. Clinicians and parents should be alert to the phenomenon, and public health bodies should ensure clear messaging regarding the fact that younger children, especially those under 8 years of age, should avoid slush ice drinks containing glycerol.
Collapse
Affiliation(s)
- Shona Lc Brothwell
- Department of Paediatric Inherited Metabolic Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Patricia E Fitzsimons
- Department of Laboratory Medicine, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Adam Gerrard
- Department of Paediatric Inherited Metabolic Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Bernd C Schwahn
- Willink Metabolic Unit, Royal Manchester Children's Hospital, Manchester, UK
| | - Christopher Stockdale
- Department of Paediatric Inherited Metabolic Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ann Bowron
- Department of Blood Sciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Mark Anderson
- Department of Paediatric Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Claire E Hart
- Department of Clinical Chemistry and Newborn Screening, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Romanie Hannah
- Department of Paediatric Emergency Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Francesca Ritchie
- Department of Paediatric Inherited Metabolic Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Sanjeev A Deshpande
- Department of Paediatrics, Shrewsbury and Telford Hospital NHS Trust, Telford, UK
| | - Srividya Sreekantam
- Department of Paediatric Inherited Metabolic Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Gemma Watts
- Department of Paediatrics, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Sufin Yap
- Department of Paediatric Inherited Metabolic Medicine, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Helen Mundy
- Department of Paediatric Inherited Metabolic Medicine, Evelina London Children's Hospital, London, UK
| | | | - Abigail Collins
- Child Health Public Health, Health Service Executive, Dublin, Ireland
| | - Alison Cozens
- Department of Paediatric Inherited Metabolic Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Andrew A Morris
- Willink Metabolic Unit, Royal Manchester Children's Hospital, Manchester, UK
| | - Ellen Crushell
- Department of Paediatrics, School of Medicine, University College Dublin, Dublin, Ireland
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| |
Collapse
|
2
|
Kim ES, Casey JG, Tao BS, Mansur A, Mathiyalagan N, Wallace ED, Ehrmann BM, Gupta VA. Intrinsic and extrinsic regulation of rhabdomyolysis susceptibility by Tango2. Dis Model Mech 2023; 16:dmm050092. [PMID: 37577943 PMCID: PMC10499024 DOI: 10.1242/dmm.050092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Rhabdomyolysis is a clinical emergency characterized by severe muscle damage, resulting in the release of intracellular muscle components, which leads to myoglobinuria and, in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations in TANGO2 result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia. The underlying mechanism contributing to disease onset in response to specific triggers remains unclear. To address these challenges, we created a zebrafish model of Tango2 deficiency. Here, we demonstrate that the loss of Tango2 in zebrafish results in growth defects, early lethality and increased susceptibility of skeletal muscle defects in response to extrinsic triggers, similar to TANGO2-deficient patients. Using lipidomics, we identified alterations in the glycerolipid pathway in tango2 mutants, which is critical for membrane stability and energy balance. Therefore, these studies provide insight into key disease processes in Tango2 deficiency and have increased our understanding of the impacts of specific defects on predisposition to environmental triggers in TANGO2-related disorders.
Collapse
Affiliation(s)
- Euri S. Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer G. Casey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Brian S. Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Nishanthi Mathiyalagan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Shui F, Qiu G, Pan S, Wang X, Jiang T, Geng Z, Jin S. Impact of divergence of residual feed intake on triglyceride metabolism-related gene expression in meat-type ducks. PLoS One 2023; 18:e0286051. [PMID: 37216344 DOI: 10.1371/journal.pone.0286051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Triglyceride (TG) metabolism is a key factor that affects residual feed intake (RFI); however, few studies have been conducted on the related gene expression in poultry. The aim of the present study was to investigate the expression of genes and their associations with RFI in meat-type ducks. Weight gain and feed intake (FI) at an age 21-42 days were measured and the RFI was calculated. Quantitative PCR was used to test the expression of the six identified genes, namely peroxisome proliferator activated receptor γ (PPARγ), glycerol kinase 2 (GK2), glycerol-3-phosphate dehydrogenase 1 (GPD1), glycerol kinase (GYK), lipase E (LIPE), and lipoprotein lipase (LPL) in the duodenum in the high RFI (HRFI) and low RFI (LRFI) groups. The results demonstrated that daily feed intake, feed conversion ratio (FCR), and RFI were markedly higher in HRFI ducks than those in LRFI ducks. Moreover, the levels of expression of PPARγ, GK2, and LIPE were significantly higher in the LRFI group than those in the HRFI group. Correlation analysis showed that PPARγ, GK2, and LIPE were significantly negatively associated with FCR and RFI. Furthermore, gene expression levels were negatively associated with the measured phenotype. The association of GK2 with PPARγ, GPD1, LPL, and LIPE was positive. The relationship between the TG related gene and RFI was further verified to potentially develop pedigree poultry breeding programs. The results of this study suggested that the expression of genes correlated with TG metabolism and transport is up-regulated in the duodenum of ducks with high feed efficiency. PPARγ, GK2, and LIPE are important genes that affect RFI. The results of the present study provide information that could facilitate further explorations of the mechanism of RFI and potential markers at the molecular and cellular levels.
Collapse
Affiliation(s)
- Fei Shui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Guiru Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shenqiang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Xin Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Tingting Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei, China
| |
Collapse
|
4
|
Borst C, Symmank D, Drach M, Weninger W. Cutaneous signs and mechanisms of inflammasomopathies. Ann Rheum Dis 2022; 81:454-465. [PMID: 35039323 DOI: 10.1136/annrheumdis-2021-220977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
The emerging group of autoinflammatory diseases (AIDs) is caused by a dysregulation of the innate immune system while lacking the typical footprint of adaptive immunity. A prominent subgroup of AIDs are inflammasomopathies, which are characterised by periodic flares of cutaneous signs as well as systemic organ involvement and fever. The range of possible skin lesions is vast, ranging from urticarial, erysipelas-like and pustular rashes to erythematous patches, violaceous plaques and eventual necrosis and ulceration. This review provides a structured overview of the pathogenesis and the clinical picture with a focus on dermatological aspects of inflammasomopathies. Current treatment options for these conditions are also discussed.
Collapse
Affiliation(s)
- Carina Borst
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Dörte Symmank
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
5
|
Wathes DC, Cheng Z, Salavati M, Buggiotti L, Takeda H, Tang L, Becker F, Ingvartsen KI, Ferris C, Hostens M, Crowe MA. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation. J Dairy Sci 2021; 104:3596-3616. [PMID: 33455774 DOI: 10.3168/jds.2020-19165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Homeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, β-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.
Collapse
Affiliation(s)
- D C Wathes
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom.
| | - Z Cheng
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - M Salavati
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - L Buggiotti
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - L Tang
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - F Becker
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - K I Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, B-9820 Merelbeke, Belgium
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
6
|
Han Z, Sun J, Wang A, Lv A, Hu X, Chen L, Guo Y. Differentially expressed proteins in the intestine of Cynoglossus semilaevis Günther following a Shewanella algae challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 104:111-122. [PMID: 32525078 DOI: 10.1016/j.fsi.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Fish intestine is an important constituent of the mucosal immune system. The gut and gut-associated lymphoid tissue construct a local immune environment. A Shewanella algae strain was previously reported to be a pathogen causing ascitic disease accompanied with intestinal inflammation in Cynoglossus semilaevis. This study aimed to investigate the intestine immune response in C. semilaevis to S. algae infection at the protein level. Two-dimensional electrophoresis coupled with mass spectrometry proteomics was utilized to compare protein expression in the intestines from normal and S. algae-infected C. semilaevis. A total of 70 differentially expressed proteins (DEPs), consisting of 16 upregulated and 54 downregulated proteins, were identified in the intestine tissue of C. Semilaevis. These protein expression changes were further validated using western blot analysis and quantitative real-time PCR. Gene ontology enrichment analysis showed that these 70 DEPs could be assigned across three categories: "cellular components", "molecular function", and "biological process". Forty-one DEPs (six up-regulated and 35 down-regulated proteins) related to metabolic processes were identified. In addition, 20 DEPs (eight up-regulated and 12 down-regulated proteins) related to stress and immune responses were identified. A protein-protein interaction network generated by the STRING (Search Tool for the Retrieval of Interacting Genes/protein) revealed that 30 DEPs interacted with one another to form an integrated network. Among them, 29 DEPs were related to stress, immune, and metabolism processes. In the network, some of the immune related proteins (C9, FGB, KNG1, apolipoprotein A-IV-like, and PDIA3) were up-regulated and most DEPs involved in metabolism processes were down-regulated. These results indicate that the immune defense response of the intestine was activated and the intestinal function associated with metabolism processes was disturbed. This study provides valuable information for further research into the functions of these DEPs in fish.
Collapse
Affiliation(s)
- Zhuoran Han
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yongjun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
7
|
Sato T, Sayama N, Inoue M, Morita A, Miura S. The enhancement of fat oxidation during the active phase and suppression of body weight gain in glycerol-3-phosphate dehydrogenase 1 deficient mice. Biosci Biotechnol Biochem 2020; 84:2367-2373. [PMID: 32662756 DOI: 10.1080/09168451.2020.1792268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated whether the deletion of glycerol-3-phosphate dehydrogenase (GPD) 1 would affect carbohydrate oxidation, fat oxidation, and body weight by using the GPD1 null mice (BALB/cHeA (HeA)). We found that fat oxidation in HeA mice was significantly high during the early active phase than in BALB/cBy (By) mice used as a control under ad libitum conditions. Metabolic tracer experiment revealed that fatty acid oxidation in the skeletal muscle of HeA mice tended to be high. The energy expenditure and fat oxidation in HeA mice under fasting conditions were significantly higher than that in the By mice. Moreover, we monitored body weight gain in HeA mice under ad libitum feeding and found lower body weight gain. These data indicate that GPD1 deficiency induces enhancement of fat oxidation with suppression of weight gain. We propose that GPD1 deletion contributes to the reduction of body weight gain via enhancement of fat oxidation.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science , Tokyo, Japan
| | - Neo Sayama
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Mizuki Inoue
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka , Shizuoka, Japan
| |
Collapse
|
8
|
Bromodomain-containing protein 4 regulates a cascade of lipid-accumulation-related genes at the transcriptional level in the 3T3-L1 white adipocyte-like cell line. Eur J Pharmacol 2020; 883:173351. [PMID: 32650006 DOI: 10.1016/j.ejphar.2020.173351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 11/20/2022]
Abstract
Our previous study demonstrated that the transfection of a short hairpin (sh)RNA targeting bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family of proteins, into 3T3-L1 cells, a white adipocyte-like cell line, reduced the expression of insulin sensitivity genes, such as Adipoq, Fabp4, Lpl, Slc2a4 and Dgat1, and that BRD4 directly bound to the Adipoq, Slc2a4 and Lpl genes. In the present study, we aimed to identify other target genes of BRD4 by microarray analysis of Brd4 shRNA- and control shRNA-transfected cells. We found that the expression of many genes related to fat metabolism, and particularly those involved in fat accumulation in the glycolytic pathway, tricarboxylic acid cycle, and triacylglycerol synthesis, such as Dgat2, Gpd1, Acsl1, Pnpla2, Pgkfb3, Pcx, Fasn, Acacb and Cidec, was reduced by Brd4 shRNA transfection 2 and 8 days after the end of adipocyte differentiation. The binding of BRD4 at the 2-day and histone acetylation at the 8-day time point, in the vicinity of the Dgat2, Gpd1, Acsl1 and Cidec genes, was also reduced by Brd4 shRNA transduction. Treatment with low doses (10-100 nM) of the BET family inhibitor (+)-JQ-1 for 2, 4 or 8 days also reduced the expression of Dgat2, Gpd1, Fasn, Acab, Acsl1, Pnpla2 and Cidec in 3T3-L1 white adipocyte-like cells. These results indicate that BRD4 regulates the expression of numerous genes involved in lipid accumulation at the transcriptional level in a white adipocyte-like cell line.
Collapse
|
9
|
Matarazzo L, Ragnoni V, Malaventura C, Leon A, Colavito D, Vigna GB, Lanza G, Sonzogni A, Maggiore G. Successful fenofibrate therapy for severe and persistent hypertriglyceridemia in a boy with cirrhosis and glycerol-3-phosphate dehydrogenase 1 deficiency. JIMD Rep 2020; 54:25-31. [PMID: 32685347 PMCID: PMC7358666 DOI: 10.1002/jmd2.12125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022] Open
Abstract
Glycerol-3-phosphate dehydrogenase 1 deficiency is a rare autosomal recessive disorder caused by mutations in the GPD1 gene (GPD1; OMIM*138420). Very few cases are reported in literature. It usually manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, steatosis, and fibrosis. We report the case of a 16-year-old boy followed since the age of 1 year for hepatomegaly, elevated liver enzymes, and persistent hypertriglyceridemia. Abdominal ultrasound showed diffuse liver echogenicity and liver biopsy disclosed cirrhosis with micro and macrovesicular steatosis. Next-generation sequencing for metabolic and genetic liver diseases was conducted with the identification of the homozygous mutation c.895G>A in GPD1 gene resulting in the aminocidic substitution p.G299R. Considering the persistent and progressive increase of plasma triglycerides, fenofibrate treatment was started at 15 years of age allowing triglyceride level reduction in the following 1-year follow-up.
Collapse
Affiliation(s)
- Lorenza Matarazzo
- Department of Medicine, Surgery, and Health SciencesUniversity of TriesteTriesteItaly
| | - Valentina Ragnoni
- Section of Pediatrics, Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Cristina Malaventura
- Section of Pediatrics, Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Alberta Leon
- Research & Innovation Srl (R&I Genetics)PadovaItaly
| | | | | | - Giovanni Lanza
- Department of Medical Sciences, Pathology UnitUniversity of FerraraFerraraItaly
| | | | - Giuseppe Maggiore
- Section of Pediatrics, Department of Medical SciencesUniversity of FerraraFerraraItaly
- Gastrointestinal, Liver and Nutrition UnitIRCCS Ospedale Pediatrico Bambino GesùRomeItaly
| |
Collapse
|
10
|
Wang F, Chen S, Ren L, Wang Y, Li Z, Song T, Zhang H, Yang Q. The Effect of Silibinin on Protein Expression Profile in White Adipose Tissue of Obese Mice. Front Pharmacol 2020; 11:55. [PMID: 32184719 PMCID: PMC7059093 DOI: 10.3389/fphar.2020.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the effect of silibinin on the protein expression profile of white adipose tissue (WAT) in obese mice by using Tandem Mass Tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods According to experimental requirements, 36 C57BL/6JC mice were randomly divided into normal diet group (WC group), high fat diet group (WF group), and high fat diet + silibinin group (WS group). WS group was intragastrically administered with 54 mg/kg body weight of silibinin, and the WC group and the WF group were intragastrically administered with equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. IPGTT was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. TMT combined with LC-MS/MS were used to study the expression of WAT, and its cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. Finally, RT-PCR and LC-MS/MS were used to detect the mRNA and protein expressions of FABP5, Plin4, GPD1, and AGPAT2, respectively. Results Although silibinin did not reduce the mice's weight, it did improve glucose metabolism. In addition, silibinin decreased the concentration of TC, TG, and LDL-C and increased the concentration of HDL-C in the serum of mice. In the WF/WS group, 182 differentially expressed proteins were up-regulated and 159 were down-regulated. While in the WS/WF group, 362 differentially expressed proteins were up-regulated and 176 were down-regulated. Further analysis found that these differential proteins are mainly distributed in the peroxisome proliferation-activated receptor (PPAR), lipolysis of fat cells, metabolism of glycerides, oxidative phosphorylation, and other signaling pathways, and participate in cell processes and lipid metabolism through catalysis and integration functions. Specifically, silibinin reduced the expression of several key factors such as FABP5, Plin4, GPD1, and AGPTA2. Conclusion High fat diet (HFD) can increase the expression of lipid synthesis and transport-related proteins and reduce mitochondrial related proteins, thereby increasing lipid synthesis, reducing energy consumption, and improving lipid metabolism in vivo. Silibinin can reduce lipid synthesis, increase energy consumption, and improve lipid metabolism in mice in vivo.
Collapse
Affiliation(s)
- Fei Wang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.,North China University of Science and Technology, Tangshan, China
| | - Zelin Li
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Tiantian Song
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - He Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Qiwen Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.,Hebei North University, Zhangjiakou, China
| |
Collapse
|
11
|
Yang H, Zhao C, Tang MC, Wang Y, Wang SP, Allard P, Furtos A, Mitchell GA. Inborn errors of mitochondrial acyl-coenzyme a metabolism: acyl-CoA biology meets the clinic. Mol Genet Metab 2019; 128:30-44. [PMID: 31186158 DOI: 10.1016/j.ymgme.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
The last decade saw major advances in understanding the metabolism of Coenzyme A (CoA) thioesters (acyl-CoAs) and related inborn errors (CoA metabolic diseases, CAMDs). For diagnosis, acylcarnitines and organic acids, both derived from acyl-CoAs, are excellent markers of most CAMDs. Clinically, each CAMD is unique but strikingly, three main patterns emerge: first, systemic decompensations with combinations of acidosis, ketosis, hypoglycemia, hyperammonemia and fatty liver; second, neurological episodes, particularly acute "stroke-like" episodes, often involving the basal ganglia but sometimes cerebral cortex, brainstem or optic nerves and third, especially in CAMDs of long chain fatty acyl-CoA metabolism, lipid myopathy, cardiomyopathy and arrhythmia. Some patients develop signs from more than one category. The pathophysiology of CAMDs is not precisely understood. Available data suggest that signs may result from CoA sequestration, toxicity and redistribution (CASTOR) in the mitochondrial matrix has been suggested to play a role. This predicts that most CAMDs cause deficiency of CoA, limiting mitochondrial energy production, and that toxic effects from the abnormal accumulation of acyl-CoAs and from extramitochondrial functions of acetyl-CoA may also contribute. Recent progress includes the following. (1) Direct measurements of tissue acyl-CoAs in mammalian models of CAMDs have been related to clinical features. (2) Inborn errors of CoA biosynthesis were shown to cause clinical changes similar to those of inborn errors of acyl-CoA degradation. (3) CoA levels in cells can be influenced pharmacologically. (4) Roles for acetyl-CoA are increasingly identified in all cell compartments. (5) Nonenzymatic acyl-CoA-mediated acylation of intracellular proteins occurs in mammalian tissues and is increased in CAMDs.
Collapse
Affiliation(s)
- Hao Yang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Chen Zhao
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada; College of Animal Science and Technology, Northwest A&F University, China
| | | | - Youlin Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | | | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
12
|
Zhang X, Zhang CC, Yang H, Soni KG, Wang SP, Mitchell GA, Wu JW. An Epistatic Interaction between Pnpla2 and Lipe Reveals New Pathways of Adipose Tissue Lipolysis. Cells 2019; 8:cells8050395. [PMID: 31035700 PMCID: PMC6563012 DOI: 10.3390/cells8050395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
White adipose tissue (WAT) lipolysis contributes to energy balance during fasting. Lipolysis can proceed by the sequential hydrolysis of triglycerides (TGs) by adipose triglyceride lipase (ATGL), then of diacylglycerols (DGs) by hormone-sensitive lipase (HSL). We showed that the combined genetic deficiency of ATGL and HSL in mouse adipose tissue produces a striking different phenotype from that of isolated ATGL deficiency, inconsistent with the linear model of lipolysis. We hypothesized that the mechanism might be functional redundancy between ATGL and HSL. To test this, the TG hydrolase activity of HSL was measured in WAT. HSL showed TG hydrolase activity. Then, to test ATGL for activity towards DGs, radiolabeled DGs were incubated with HSL-deficient lipid droplet fractions. The content of TG increased, suggesting DG-to-TG synthesis rather than DG hydrolysis. TG synthesis was abolished by a specific ATGL inhibitor, suggesting that ATGL functions as a transacylase when HSL is deficient, transferring an acyl group from one DG to another, forming a TG plus a monoglyceride (MG) that could be hydrolyzed by monoglyceride lipase. These results reveal a previously unknown physiological redundancy between ATGL and HSL, a mechanism for the epistatic interaction between Pnpla2 and Lipe. It provides an alternative lipolytic pathway, potentially important in patients with deficient lipolysis.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Cong Cong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hao Yang
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada.
| | - Krishnakant G Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada.
| | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Pennisi EM, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med 2018; 7:E472. [PMID: 30477112 PMCID: PMC6306737 DOI: 10.3390/jcm7120472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications.
Collapse
Affiliation(s)
- Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy.
| | - Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| |
Collapse
|
14
|
van Rijn JM, Ardy RC, Kuloğlu Z, Härter B, van Haaften-Visser DY, van der Doef HP, van Hoesel M, Kansu A, van Vugt AH, Thian M, Kokke FT, Krolo A, Başaran MK, Kaya NG, Aksu AÜ, Dalgıç B, Ozcay F, Baris Z, Kain R, Stigter EC, Lichtenbelt KD, Massink MP, Duran KJ, Verheij JB, Lugtenberg D, Nikkels PG, Brouwer HG, Verkade HJ, Scheenstra R, Spee B, Nieuwenhuis EE, Coffer PJ, Janecke AR, van Haaften G, Houwen RH, Müller T, Middendorp S, Boztug K. Intestinal Failure and Aberrant Lipid Metabolism in Patients With DGAT1 Deficiency. Gastroenterology 2018; 155:130-143.e15. [PMID: 29604290 PMCID: PMC6058035 DOI: 10.1053/j.gastro.2018.03.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids. METHODS We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients. Organoids were generated from duodenal biopsies from 3 patients and 3 healthy individuals (controls). Caco-2 cells and patient-derived dermal fibroblasts were transfected or transduced with vectors that express full-length or mutant forms of DGAT1 or full-length DGAT2. We performed CRISPR/Cas9-guided disruption of DGAT1 in control intestinal organoids. Cells and organoids were analyzed by immunoblot, immunofluorescence, flow cytometry, chromatography, quantitative real-time polymerase chain reaction, and for the activity of caspases 3 and 7. RESULTS In the 10 patients, we identified 5 bi-allelic loss-of-function mutations in DGAT1. In patient-derived fibroblasts and organoids, the mutations reduced expression of DGAT1 protein and altered triacylglycerol metabolism, resulting in decreased lipid droplet formation after oleic acid addition. Expression of full-length DGAT2 in patient-derived fibroblasts restored formation of lipid droplets. Organoids derived from patients with DGAT1 mutations were more susceptible to lipid-induced cell death than control organoids. CONCLUSIONS We identified a large cohort of patients with congenital diarrheal disorders with mutations in DGAT1 that reduced expression of its product; dermal fibroblasts and intestinal organoids derived from these patients had altered lipid metabolism and were susceptible to lipid-induced cell death. Expression of full-length wildtype DGAT1 or DGAT2 restored normal lipid metabolism in these cells. These findings indicate the importance of DGAT1 in fat metabolism and lipotoxicity in the intestinal epithelium. A fat-free diet might serve as the first line of therapy for patients with reduced DGAT1 expression. It is important to identify genetic variants associated with congenital diarrheal disorders for proper diagnosis and selection of treatment strategies.
Collapse
Affiliation(s)
- Jorik M. van Rijn
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zarife Kuloğlu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Bettina Härter
- Division of Paediatric Surgery, Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Innsbruck, Austria
| | - Désirée Y. van Haaften-Visser
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Hubert P.J. van der Doef
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Anke H.M. van Vugt
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Marini Thian
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Freddy T.M. Kokke
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Meryem Keçeli Başaran
- Pediatric Gastroenterology Department, Akdeniz University Medicine Hospital, Antalya, Turkey
| | - Neslihan Gurcan Kaya
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Figen Ozcay
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Zeren Baris
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Edwin C.A. Stigter
- Molecular Cancer Research, Center Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Klaske D. Lichtenbelt
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maarten P.G. Massink
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Karen J. Duran
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joke B.G.M Verheij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen The Netherlands
| | - Peter G.J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Henkjan J. Verkade
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - René Scheenstra
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Paul J. Coffer
- Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Gijs van Haaften
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roderick H.J. Houwen
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Middendorp
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands.
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2018; 19:ijms19051425. [PMID: 29747466 PMCID: PMC5983589 DOI: 10.3390/ijms19051425] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.
Collapse
|
16
|
Li P, Wang Y, Zhang L, Ning Y, Zan L. The Expression Pattern of PLIN2 in Differentiated Adipocytes from Qinchuan Cattle Analysis of Its Protein Structure and Interaction with CGI-58. Int J Mol Sci 2018; 19:ijms19051336. [PMID: 29723991 PMCID: PMC5983586 DOI: 10.3390/ijms19051336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
PLIN2 (Perilipin-2) is a protein that can anchor on the membrane of lipid droplets (LDs), playing a vital role in the early formation of LDs and in the regulation of LD metabolism in many types of cells. However, little research has been conducted in cattle adipocytes. In the present study, we found that the expression of PLIN2 mRNA peaks at Day 2 during cattle adipocyte differentiation (p < 0.01), but PLIN2 protein levels maintain high abundance until Day 4 and then decrease sharply. We first built an interaction model using PyMOL. The results of a pull-down assay indicated that bovine PLIN2 and CGI-58 (ABHD5, α/β hydrolase domain-containing protein 5) had an interaction relationship. Furthermore, Bimolecular Fluorescence Complementation-Flow Cytometry (BiFC-FC) was used to explore the function of the PLIN2-CGI-58 interaction. Interestingly, we found that different combined models had different levels of fluorescence intensity; specifically, PLIN2-VN173+CGI-58-VC155 expressed in bovine adipocytes exhibited the highest level of fluorescence intensity. Our findings elucidate the PLIN2 expression pattern in cattle adipocytes, the protein structure and the function of protein–protein interactions (PPI) as well as highlight the characteristics of bovine PLIN2 during the early formation and accumulation of lipid droplets.
Collapse
Affiliation(s)
- Peiwei Li
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yaning Wang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Le Zhang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Rogne M, Chu DT, Küntziger TM, Mylonakou MN, Collas P, Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Mol Biol Cell 2018; 29:1487-1501. [PMID: 29688805 PMCID: PMC6014102 DOI: 10.1091/mbc.e17-09-0538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Optic atrophy 1 (OPA1) is the A-kinase anchoring protein targeting the pool of protein kinase A (PKA) responsible for perilipin 1 phosphorylation, a gatekeeper for lipolysis. However, the involvement of OPA1-bound PKA in the downstream regulation of lipolysis is unknown. Here we show up-regulation and relocation of OPA1 from mitochondria to lipid droplets during adipocytic differentiation of human adipose stem cells. We employed various biochemical and immunological approaches to demonstrate that OPA1-bound PKA phosphorylates perilipin 1 at S522 and S497 on lipolytic stimulation. We show that the first 30 amino acids of OPA1 are essential for its lipid droplet localization as is OMA1-dependent processing. Finally, our results indicate that presence of OPA1 is necessary for lipolytic phosphorylation of downstream targets. Our results show for the first time, to our knowledge, how OPA1 mediates adrenergic control of lipolysis in human adipocytes by regulating phosphorylation of perilipin 1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | | | - Maria-Niki Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.,Norewegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
18
|
Paquette M, Hegele RA, Paré G, Baass A. A novel mutation in GPIHBP1 causes familial chylomicronemia syndrome. J Clin Lipidol 2018; 12:506-510. [DOI: 10.1016/j.jacl.2018.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
|
19
|
Nelson BC, Hashem SI, Adler ED. Human-Induced Pluripotent Stem Cell-Based Modeling of Cardiac Storage Disorders. Curr Cardiol Rep 2017; 19:26. [PMID: 28251514 DOI: 10.1007/s11886-017-0829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this study is to review the published human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models of cardiac storage disorders and to evaluate the limitations and future applications of this technology. RECENT FINDINGS Several cardiac storage disorders (CSDs) have been modeled using patient-specific hiPSC-CMs, including Anderson-Fabry disease, Danon disease, and Pompe disease. These models have shown that patient-specific hiPSC-CMs faithfully recapitulate key phenotypic features of CSDs and respond predictably to pharmacologic manipulation. hiPSC-CMs generated from patients with CSDs are representative models of the patient disease state and can be used as an in vitro system for the study of human cardiomyocytes. While these models suffer from several limitations, they are likely to play an important role in future mechanistic studies of cardiac storage disorders and the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Bradley C Nelson
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA
| | - Sherin I Hashem
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA
| | - Eric D Adler
- Department of Medicine, Division of Cardiology, University of California San Diego, 9500 Gilman Drive, Biomedical Research Facility, Room 1217 AA, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Crisóstomo L, Alves MG, Calamita G, Sousa M, Oliveira PF. Glycerol and testicular activity: the good, the bad and the ugly. Mol Hum Reprod 2017; 23:725-737. [DOI: 10.1093/molehr/gax049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luís Crisóstomo
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
21
|
Watt MJ, Cheng Y. Triglyceride metabolism in exercising muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1250-1259. [PMID: 28652193 DOI: 10.1016/j.bbalip.2017.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Triglycerides are stored within lipid droplets in skeletal muscle and can be hydrolyzed to produce fatty acids for energy production through β-oxidation and oxidative phosphorylation. While there was some controversy regarding the quantitative importance of intramyocellular triglyceride (IMTG) as a metabolic substrate, recent advances in proton magnetic resonance spectroscopy and confocal microscopy support earlier tracer and biopsy studies demonstrating a substantial contribution of IMTG to energy production, particularly during moderate-intensity endurance exercise. This review provides an update on the understanding of IMTG utilization during exercise, with a focus on describing the key regulatory proteins that control IMTG breakdown and how these proteins respond to acute exercise and in the adaptation to exercise training. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Matthew J Watt
- Metabolic Disease and Obesity program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Yunsheng Cheng
- Metabolic Disease and Obesity program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Gluchowski NL, Becuwe M, Walther TC, Farese RV. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 2017; 14:343-355. [PMID: 28428634 PMCID: PMC6319657 DOI: 10.1038/nrgastro.2017.32] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids during times of energy excess and serve as an energy reservoir during deprivation. Many prevalent metabolic diseases, such as the metabolic syndrome or obesity, often result in abnormal lipid accumulation in lipid droplets in the liver, also called hepatic steatosis. Obesity-related steatosis, or NAFLD in particular, is a major public health concern worldwide and is frequently associated with insulin resistance and type 2 diabetes mellitus. Here, we review the latest insights into the biology of lipid droplets and their role in maintaining lipid homeostasis in the liver. We also offer a perspective of liver diseases that feature lipid accumulation in these lipid storage organelles, which include NAFLD and viral hepatitis. Although clinical applications of this knowledge are just beginning, we highlight new opportunities for identifying molecular targets for treating hepatic steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Nina L. Gluchowski
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Boston Children’s Hospital Department of Gastroenterology, Hepatology and Nutrition, 300 Longwood Avenue Boston, Massachusetts 02115, USA
| | - Michel Becuwe
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Robert V. Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Viecili PRN, da Silva B, Hirsch GE, Porto FG, Parisi MM, Castanho AR, Wender M, Klafke JZ. Triglycerides Revisited to the Serial. Adv Clin Chem 2017; 80:1-44. [PMID: 28431638 DOI: 10.1016/bs.acc.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.
Collapse
|
24
|
Dionisi-Vici C, Shteyer E, Niceta M, Rizzo C, Pode-Shakked B, Chillemi G, Bruselles A, Semeraro M, Barel O, Eyal E, Kol N, Haberman Y, Lahad A, Diomedi-Camassei F, Marek-Yagel D, Rechavi G, Tartaglia M, Anikster Y. Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency. J Inherit Metab Dis 2016; 39:689-695. [PMID: 27368975 DOI: 10.1007/s10545-016-9956-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
Abstract
Transient infantile hypertriglyceridemia (HTGT1; OMIM #614480) is a rare autosomal recessive disorder, which manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis. This rare clinical entity is caused by inactivating mutations in the GPD1 gene, which encodes the cytosolic isoform of glycerol-3-phosphate dehydrogenase. Here we report on four patients from three unrelated families of diverse ethnic origins, who presented with hepatomegaly, liver steatosis, hypertriglyceridemia, with or without fasting ketotic hypoglycemia. Whole exome sequencing revealed the affected individuals to harbor deleterious biallelic mutations in the GPD1 gene, including the previously undescribed c.806G > A (p.Arg269Gln) and c.640T > C (p.Cys214Arg) mutations. The clinical features in three of our patients showed several differences compared to the original reports. One subject presented with recurrent episodes of fasting hypoglycemia along with hepatomegaly, hypetriglyceridemia, and elevated liver enzymes; the second showed a severe liver disease, with intrahepatic cholestasis associated with kidney involvement; finally, the third presented persistent hypertriglyceridemia at the age of 30 years. These findings expand the current knowledge of this rare disorder, both with regard to the phenotype and molecular basis. The enlarged phenotypic spectrum of glycerol-3-phosphate dehydrogenase 1 deficiency can mimic other inborn errors of metabolism with liver involvement and should alert clinicians to recognize this entity by considering GPD1 mutations in appropriate clinical settings.
Collapse
Affiliation(s)
- Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eyal Shteyer
- Pediatric Gastroenterology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Marcello Niceta
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy
| | - Alessandro Bruselles
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Semeraro
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eran Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Haberman
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Avishai Lahad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gideon Rechavi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Marco Tartaglia
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy.
| |
Collapse
|
25
|
Lamiquiz-Moneo I, Blanco-Torrecilla C, Bea AM, Mateo-Gallego R, Pérez-Calahorra S, Baila-Rueda L, Cenarro A, Civeira F, de Castro-Orós I. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain. Lipids Health Dis 2016; 15:82. [PMID: 27108409 PMCID: PMC4842266 DOI: 10.1186/s12944-016-0251-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is a common complex metabolic trait that results of the accumulation of relatively common genetic variants in combination with other modifier genes and environmental factors resulting in increased plasma triglyceride (TG) levels. The majority of severe primary hypertriglyceridemias is diagnosed in adulthood and their molecular bases have not been fully defined yet. The prevalence of HTG is highly variable among populations, possibly caused by differences in environmental factors and genetic background. However, the prevalence of very high TG and the frequency of rare mutations causing HTG in a whole non-selected population have not been previously studied. Methods The total of 23,310 subjects over 18 years from a primary care-district in a middle-class area of Zaragoza (Spain) with TG >500 mg/dL were selected to establish HTG prevalence. Those affected of primary HTG were considered for further genetic analisys. The promoters, coding regions and exon-intron boundaries of LPL, LMF1, APOC2, APOA5, APOE and GPIHBP1 genes were sequenced. The frequency of rare variants identified was studied in 90 controls. Results One hundred ninety-four subjects (1.04 %) had HTG and 90 subjects (46.4 %) met the inclusion criteria for primary HTG. In this subgroup, nine patients (12.3 %) were carriers of 7 rare variants in LPL, LMF1, APOA5, GPIHBP1 or APOE genes. Three of these mutations are described for the first time in this work. The presence of a rare pathogenic mutation did not confer a differential phenotype or a higher family history of HTG. Conclusion The prevalence of rare mutations in candidate genes in subjects with primary HTG is low. The low frequency of rare mutations, the absence of a more severe phenotype or the dominant transmission of the HTG would not suggest the use of genetic analysis in the clinical practice in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0251-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.
| | - Cristian Blanco-Torrecilla
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Sofía Pérez-Calahorra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Departamento de Bioquímica, Biología Molecular y Celular, 50009, Zaragoza, Spain
| |
Collapse
|