1
|
Wang S, Li L, Ma Y, Yang H, Sang Y, Tang Y, Gong L, Zhao J, Gu L, Kong Y, Mao X. Six Chinese patients with propionic acidemia: from asymptomatic to death in the neonatal period. Orphanet J Rare Dis 2025; 20:122. [PMID: 40075390 PMCID: PMC11905712 DOI: 10.1186/s13023-025-03622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Propionic acidemia (PA) is a severe organic acidemia that can result in multi-organ damage and is potentially fatal. The rarity of this disease and the limited number of reported cases contribute to a lack of comprehensive knowledge, particularly concerning the genotype-phenotype correlation. This study aims to report on PA cases in Beijing and Ningxia, China, identify the pathogenic genetic factors involved, and explore the relationship between genotype and phenotype. METHODS We calculated the positive screening rates of PA in Beijing and Ningxia and summarized data from six Chinese patients with PA identified at the Beijing Newborn Screening Center and Ningxia Newborn Screening Center. Clinical examinations included blood tandem mass spectrometry, urine gas chromatography-mass spectrometry, and the next-generation sequencing (NGS) technology. Candidate mutations were validated using polymerase chain reaction and Sanger sequencing technology. Bioinformatics software was used to analyze the pathogenicity of the variants, and Swiss PDB Viewer software was employed to predict the effect of mutations on PCCA and PCCB proteins. RESULTS The updated incidence of PA was 1 in 114,820 in Beijing and 1 in 189,671 in Ningxia. We reported five patients diagnosed with PA through newborn screening (NBS) and one additional patient diagnosed clinically. Among the five patients diagnosed by NBS, the two late-onset patients exhibited normal neurodevelopment, while all three early-onset patients succumbed between 4 days and 18 months of age. The patient diagnosed clinically passed away at 20 days of age. NGS showed one patient carries compound mutations in the PCCA gene and three patients carry compound heterozygous or homozygous mutations in the PCCB gene. A total of two mutations in PCCA (c.985T > A and c.1195 C > T) and five mutations in PCCB (c.1076 C > T, c.1087T > C, c.224 A > C, c.1339 C> T, and c.1033G > C)were identified, including one novel PCCA mutation (c.985T > A) and four novel PCCB mutations (c.1076 C > T, c.224 A > C, c.1339 C> T, and c.1033G > C). Bioinformatics analysis indicated these mutations are pathogenic, and Swiss PDB Viewer predictions suggest that these variations affect protein conformation. CONCLUSIONS The updated incidence rates of PA in Beijing and Ningxia provide new epidemiological insights. We reported six patients with PA, and identified one novel mutation (c.985T > A) in PCCA and four novel mutations (c.1076 C > T, c.224 A > C, c.1339 C> T, and c.1033G > C) in PCCB, which expands the spectrum of clinical features and genetic mutations associated with PA. The c.985T > A mutation in PCCA and the c.1076 C > T mutation in PCCB may be associated with late-onset PA, while the c.224 A > C, c.1339 C > T, and c.1033G > C mutations in PCCB are related to early-onset PA.
Collapse
Affiliation(s)
- Shunan Wang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lulu Li
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yulan Ma
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China
| | - Haihe Yang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yuting Sang
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China
| | - Yue Tang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lifei Gong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Jinqi Zhao
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lijin Gu
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yuanyuan Kong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China.
| | - Xinmei Mao
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China.
| |
Collapse
|
2
|
García-Tenorio EM, Álvarez M, Gallego-Bonhomme M, Desviat LR, Richard E. Novel CRISPR-Cas9 iPSC knockouts for PCCA and PCCB genes: advancing propionic acidemia research. Hum Cell 2025; 38:64. [PMID: 40044943 PMCID: PMC11882705 DOI: 10.1007/s13577-025-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Propionic acidemia (PA) is a rare autosomal recessive metabolic disorder caused by mutations in the PCCA and PCCB genes, which encode subunits of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). This enzyme deficiency leads to the accumulation of toxic metabolites, resulting in severe metabolic dysfunction. To create ideal in vitro disease models of PA with isogenic controls and provide a robust platform for therapeutic research, we generated two induced pluripotent stem cell (iPSC) lines with knockout (KO) mutations in the PCCA and PCCB genes using CRISPR-Cas9 gene editing in a healthy control iPSC line. The KO iPS cells were successfully established and characterized, confirming the presence of frameshift insertions and deletions in each target gene, as well as the loss of the corresponding transcript, protein expression, and activity. Additionally, the generated iPSC lines exhibit hallmark characteristics of pluripotency, including the potential to differentiate into all three germ layers. Our PCCA and PCCB KO iPSC models provide a valuable tool for studying the molecular mechanisms underlying PA and hold potential for advancing new therapeutic approaches.
Collapse
Affiliation(s)
- Emilio M García-Tenorio
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Madrid, Spain.
| |
Collapse
|
3
|
Zhvania MG, Lobzhanidze G, Pochkhidze N, Japaridze N, Tchelidze P, Rzayev F, Gasimov E. Propionic acid affects the synaptic architecture of rat hippocampus and prefrontal cortex. Micron 2024; 181:103624. [PMID: 38492241 DOI: 10.1016/j.micron.2024.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
It is well documented that propionic acid (PPA) produces behavioral, morphological, molecular and immune responses in rats that are characteristic of autism spectrum disorder in humans. However, whether PPA affects the ultrastructure and synaptic architecture of regions of autistic brain has not been adequately addressed. Earlier we show that single intraperitoneal (IP) injection of PPA (175 mg/kg) produces superficial changes in the spatial memory and learning of adolescent male Wistar rats. However, in neurons, synapses and glial cells of hippocampal CA1 area and medial prefrontal cortex transient (mainly) or enduring alterations were detected. In this study, we used electron microscopic morphometric analysis to test the effect of PPA on different structural parameters of axodendritic synapses of the hippocampus and prefrontal cortex. The animals were treated with a single IP injection of PPA (175 mg/kg). The length and width of synaptic active zone, the area of presynaptic and postsynaptic mitochondria, the distance between presynaptic mitochondria and the synapse active zone, the distance between postsynaptic mitochondria and postsynaptic density and the depth and opening diameter of neuronal porosome complex were evaluated. Our results show that synaptic mitochondria of the hippocampus and prefrontal cortex are the most vulnerable to PPA treatment: in both regions, the area of postsynaptic mitochondria were increased. In general, our results show that even small dose of PPA, which produces only superficial effects on spatial memory and learning is able to alter the synapse architecture in brain regions involved in cognition and autism pathogenesis. Therefore, the microbiome may be involved in the control of neurotransmission in these regions.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia.
| | - Giorgi Lobzhanidze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia; New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Pavel Tchelidze
- New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Fuad Rzayev
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| | - Eldar Gasimov
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| |
Collapse
|
4
|
Shchelochkov OA, Farmer CA, Chlebowski C, Adedipe D, Ferry S, Manoli I, Pass A, McCoy S, Van Ryzin C, Sloan J, Thurm A, Venditti CP. Intellectual disability and autism in propionic acidemia: a biomarker-behavioral investigation implicating dysregulated mitochondrial biology. Mol Psychiatry 2024; 29:974-981. [PMID: 38200289 PMCID: PMC11176071 DOI: 10.1038/s41380-023-02385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Propionic acidemia (PA) is an autosomal recessive condition (OMIM #606054), wherein pathogenic variants in PCCA and PCCB impair the activity of propionyl-CoA carboxylase. PA is associated with neurodevelopmental disorders, including intellectual disability (ID) and autism spectrum disorder (ASD); however, the correlates and mechanisms of these outcomes remain unknown. Using data from a subset of participants with PA enrolled in a dedicated natural history study (n = 33), we explored associations between neurodevelopmental phenotypes and laboratory parameters. Twenty (61%) participants received an ID diagnosis, and 12 of the 31 (39%) who were fully evaluated received the diagnosis of ASD. A diagnosis of ID, lower full-scale IQ (sample mean = 65 ± 26), and lower adaptive behavior composite scores (sample mean = 67 ± 23) were associated with several biomarkers. Higher concentrations of plasma propionylcarnitine, plasma total 2-methylcitrate, serum erythropoietin, and mitochondrial biomarkers plasma FGF21 and GDF15 were associated with a more severe ID profile. Reduced 1-13C-propionate oxidative capacity and decreased levels of plasma and urinary glutamine were also associated with a more severe ID profile. Only two parameters, increased serum erythropoietin and decreased plasma glutamine, were associated with ASD. Plasma glycine, one of the defining features of PA, was not meaningfully associated with either ID or ASD. Thus, while both ID and ASD were commonly observed in our PA cohort, only ID was robustly associated with metabolic parameters. Our results suggest that disease severity and associated mitochondrial dysfunction may play a role in CNS complications of PA and identify potential biomarkers and candidate surrogate endpoints.
Collapse
Affiliation(s)
- Oleg A Shchelochkov
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cristan A Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Colby Chlebowski
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dee Adedipe
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Ferry
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irini Manoli
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra Pass
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samantha McCoy
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol Van Ryzin
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Sloan
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charles P Venditti
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ersak AŞ, Çak HT, Yıldız Y, Çavdar MK, Tunç S, Özer N, Zeltner NA, Huemer M, Tokatlı A, Haliloğlu G. Validity and reliability of the MetabQoL 1.0 and assessment of neuropsychiatric burden in organic acidemias: Reflections from Turkey. Mol Genet Metab 2024; 141:108117. [PMID: 38134582 DOI: 10.1016/j.ymgme.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES The MetabQoL 1.0 is the first disease-specific health related quality of life (HrQoL) questionnaire for patients with intoxication-type inherited metabolic disorders. Our aim was to assess the validity and reliability of the MetabQoL 1.0, and to investigate neuropsychiatric burden in our patient population. METHODS Data from 29 patients followed at a single center, aged between 8 and 18 years with the diagnosis of methylmalonic acidemia (MMA), propionic acidemia (PA) or isovaleric acidemia (IVA), and their parents were included. The Pediatric Quality of Life Inventory (PedsQoL) was used to evaluate the validity and reliability of MetabQoL 1.0. RESULTS The MetabQoL 1.0 was shown to be valid and reliable (Cronbach's alpha: 0.64-0.9). Fourteen out of the 22 patients (63.6%) formally evaluated had neurological findings. Of note, 17 out of 20 patients (85%) had a psychiatric disorder when evaluated formally by a child and adolescent psychiatrist. The median mental scores of the MetabQoL 1.0 proxy report were significantly higher than those of the self report (p = 0.023). Patients with neonatal-onset disease had higher MetabQoL 1.0 proxy physical (p = 0.008), mental (p = 0.042), total scores (p = 0.022); and self report social (p = 0.007) and total scores (p = 0.043) than those with later onset disease. CONCLUSIONS This study continues to prove that the MetabQoL 1.0 is an effective tool to measure what matters in intoxication-type inherited metabolic disorders. Our results highlight the importance of clinical assessment complemented by patient reported outcomes which further expands the evaluation toolbox of inherited metabolic diseases.
Collapse
Affiliation(s)
- Ayşe Şenol Ersak
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Halime Tuna Çak
- Department of Child and Adolescent Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Merve Kaşıkcı Çavdar
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sıla Tunç
- Department of Child and Adolescent Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nagihan Özer
- Department of Child and Adolescent Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nina A Zeltner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Pediatrics, LKH Bregenz, Bregenz, Austria
| | - Ayşegül Tokatlı
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
6
|
Lagod PP, Naser SA. The Role of Short-Chain Fatty Acids and Altered Microbiota Composition in Autism Spectrum Disorder: A Comprehensive Literature Review. Int J Mol Sci 2023; 24:17432. [PMID: 38139261 PMCID: PMC10743890 DOI: 10.3390/ijms242417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA;
| |
Collapse
|
7
|
Benitah KC, Kavaliers M, Ossenkopp KP. The enteric metabolite, propionic acid, impairs social behavior and increases anxiety in a rodent ASD model: Examining sex differences and the influence of the estrous cycle. Pharmacol Biochem Behav 2023; 231:173630. [PMID: 37640163 DOI: 10.1016/j.pbb.2023.173630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Research suggests that certain gut and dietary factors may worsen behavioral features of autism spectrum disorder (ASD). Treatment with propionic acid (PPA) has been found to create both brain and behavioral responses in rats that are characteristic of ASD in humans. A consistent male bias in human ASD prevalence has been observed, and several sex-differential genetic and hormonal factors have been suggested to contribute to this bias. The majority of PPA studies in relation to ASD focus on male subjects; research examining the effects of PPA in females is scarce. The present study includes two experiments. Experiment 1 explored sex differences in the effects of systemic administration of PPA (500 mg/kg, ip) on adult rodent social behavior and anxiety (light-dark test). Experiment 2 investigated differential effects of systemic administration of PPA (500 mg/kg) on social behavior and anxiety in relation to fluctuating estrogen and progesterone levels during the adult rodent estrous cycle. PPA treatment impaired social behavior and increased anxiety in females to the same degree in comparison to PPA-treated males. As well, females treated with PPA in their diestrus phase did not differ significantly in comparison to females administered PPA in their proestrus phase, in terms of reduced social behavior and increased anxiety.
Collapse
Affiliation(s)
- Katie C Benitah
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
8
|
Marchuk H, Wang Y, Ladd ZA, Chen X, Zhang GF. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacol Ther 2023; 249:108501. [PMID: 37482098 PMCID: PMC10529999 DOI: 10.1016/j.pharmthera.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.
Collapse
Affiliation(s)
- Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - You Wang
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong 272067, China.; School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Zachary Alec Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA.
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, and Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Vockley J, Burton B, Jurecka A, Ganju J, Leiro B, Zori R, Longo N. Challenges and strategies for clinical trials in propionic and methylmalonic acidemias. Mol Genet Metab 2023; 139:107612. [PMID: 37245378 DOI: 10.1016/j.ymgme.2023.107612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Clinical trial development in rare diseases poses significant study design and methodology challenges, such as disease heterogeneity and appropriate patient selection, identification and selection of key endpoints, decisions on study duration, choice of control groups, selection of appropriate statistical analyses, and patient recruitment. Therapeutic development in organic acidemias (OAs) shares many challenges with other inborn errors of metabolism, such as incomplete understanding of natural history, heterogenous disease presentations, requirement for sensitive outcome measures and difficulties recruiting a small sample of participants. Here, we review strategies for the successful development of a clinical trial to evaluate treatment response in propionic and methylmalonic acidemias. Specifically, we discuss crucial decisions that may significantly impact success of the study, including patient selection, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families.
Collapse
Affiliation(s)
- Jerry Vockley
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Barbara Burton
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Agnieszka Jurecka
- CoA Therapeutics, Inc., a BridgeBio company, San Francisco, CA, USA.
| | - Jitendra Ganju
- Independent Consultant to BridgeBio, San Francisco, CA, USA
| | - Beth Leiro
- Independent Consultant to BridgeBio, San Francisco, CA, USA
| | - Roberto Zori
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida, Gainesville, FL, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Senarathne UD, Indika NLR, Jezela-Stanek A, Ciara E, Frye RE, Chen C, Stepien KM. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes (Basel) 2023; 14:genes14040803. [PMID: 37107561 PMCID: PMC10138025 DOI: 10.3390/genes14040803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by impaired social interaction, limited communication skills, and restrictive and repetitive behaviours. The pathophysiology of ASD is multifactorial and includes genetic, epigenetic, and environmental factors, whereas a causal relationship has been described between ASD and inherited metabolic disorders (IMDs). This review describes biochemical, genetic, and clinical approaches to investigating IMDs associated with ASD. The biochemical work-up includes body fluid analysis to confirm general metabolic and/or lysosomal storage diseases, while the advances and applications of genomic testing technology would assist with identifying molecular defects. An IMD is considered likely underlying pathophysiology in ASD patients with suggestive clinical symptoms and multiorgan involvement, of which early recognition and treatment increase their likelihood of achieving optimal care and a better quality of life.
Collapse
Affiliation(s)
- Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Department of Chemical Pathology, Monash Health Pathology, Monash Health, Melbourne, VIC 3168, Australia
| | - Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Cliff Chen
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Mark Holland Unit, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
- Correspondence:
| |
Collapse
|
11
|
Indika NLR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM, Perera R, Engelen MPKJ, Deutz NEP. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med 2023; 13:252. [PMID: 36836486 PMCID: PMC9964499 DOI: 10.3390/jpm13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.
Collapse
Affiliation(s)
- Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Richard E. Frye
- Autism Discovery and Research Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Daniel A. Rossignol
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Susan C. Owens
- Autism Oxalate Project at the Autism Research Institute, San Diego, CA 92116, USA
| | - Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Chapman KA, MacEachern D, Cox GF, Waller M, Fogarty J, Granger S, Stepanians M, Waisbren S. Neuropsychological endpoints for clinical trials in methylmalonic acidemia and propionic acidemia: A pilot study. Mol Genet Metab Rep 2023; 34:100953. [PMID: 36659999 PMCID: PMC9842695 DOI: 10.1016/j.ymgmr.2022.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction This pilot study assessed instruments measuring relatively discrete neuropsychological domains to inform the selection of clinical outcome assessments that may be considered for interventional trials in methylmalonic acidemia (MMA) and propionic acidemia (PA). Methods Tests and questionnaires were selected for their possible relevance to MMA and PA and potential sensitivity to modest changes in functioning and behavior. Results Twenty-one patients (<18 years, n = 10;>18 years, n = 11) and/or their caregivers responded to video interviews and paper tests. Language deficits and significant motor deficits in some participants impacted scoring, especially in the verbal and processing speed sections of the Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V) and the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV). However, all participants ≥12 years of age were able to complete the Cookie Theft Picture Task. Thus, verbal discourse remains a potentially useful endpoint for participants in this age group. The Vineland Adaptive Behavior Scales (VABS-3) Adaptive Behavior Composite and Communication Scores confirmed delayed or immature functioning in day-to-day activities in these participants. Significant motor deficits prevented completion of some tests. Computerized processing speed tasks, which require pressing a button or tapping a computer screen, may be easier than writing or checking off boxes on paper in this cohort. Sleep characteristics among MMA participants were within normative ranges of the Child and Adolescent Sleep Checklist (CASC), indicating that this measurement would not provide valuable data in a clinical trial. Despite their challenges, responses to the Metabolic Quality of Life Questionnaire indicated these patients and their caregivers perceive an overall high quality of life. Conclusion Overall, test and questionnaire results were notably different between participants with MMA and participants with PA. The study demonstrates that pilot studies can detect instruments that may not be appropriate for individuals with language or motor deficits and that may not provide a broad range of scores reflecting disease severity. It also provides a rationale for focusing on discrete neuropsychological domains since some aspects of functioning were less affected than others and some were more closely related to disease severity. When global measures are used, overall scores may mask specific deficits. A pilot study like this one cannot ensure that scores will change over time in response to a specific treatment in a clinical trial. However, it can avert the selection of instruments that do not show associations with severity or biomedical parameters likely to be the target of a clinical trial. A pilot study can also identify when differences in diagnoses and baseline functioning need to be addressed prior to developing the analytical plan for the trial.
Collapse
Affiliation(s)
- Kimberly A. Chapman
- Children's National Rare Disease Institute, 7125 13th Pl NW, Washington DC 20012, USA,Corresponding author at: 7125 13th Place NW, Washington DC 20012, USA.
| | - Devon MacEachern
- PROMETRIKA, LLC, 100 CambridgePark Drive, Cambridge, MA 02140, USA
| | - Gerald F. Cox
- HemoShear Therapeutics Inc., 501 Locust Ave #301, Charlottesville, VA 22902, USA,Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Mavis Waller
- HemoShear Therapeutics Inc., 501 Locust Ave #301, Charlottesville, VA 22902, USA
| | - Jeanine Fogarty
- HemoShear Therapeutics Inc., 501 Locust Ave #301, Charlottesville, VA 22902, USA
| | - Suzanne Granger
- PROMETRIKA, LLC, 100 CambridgePark Drive, Cambridge, MA 02140, USA
| | | | - Susan Waisbren
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
13
|
Indika NLR, Owens SC, Senarathne UD, Grabrucker AM, Lam NSK, Louati K, McGuinness G, Frye RE. Metabolic Approaches to the Treatment of Autism Spectrum Disorders. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:291-312. [DOI: 10.1007/978-3-031-42383-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Tarrada A, Frismand-Kryloff S, Hingray C. Functional neurologic disorders in an adult with propionic acidemia: a case report. BMC Psychiatry 2021; 21:587. [PMID: 34809590 PMCID: PMC8607611 DOI: 10.1186/s12888-021-03596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inborn errors of metabolism are often characterized by various psychiatric syndromes. Previous studies tend to classify psychiatric manifestations into clinical entities. Among inborn errors of metabolism, propionic acidemia (PA) is a rare inherited organic aciduria that leads to neurologic disabilities. Several studies in children with PA demonstrated that psychiatric disorders are associated to neurological symptoms. To our knowledge, no psychopathological description in adult with propionic acidemia is available. CASE PRESENTATION We aimed to compare the case of a 53-year-old woman with PA, to the previous psychiatric descriptions in children with PA and in adults with other inborn errors of metabolism. Our patient presented a large variety of signs: functional neurologic disorders, borderline personality traits (emotional dyregulation, dissociative and alexithymic trends, obsessive-compulsive disorders), occurring in a context of neurodevelopmental disorder. CONCLUSION Clinical and paraclinical examinations are in favor of a mild mental retardation since childhood and disorders of behavior and personality without any definite psychiatric syndrome, as already described in other metabolic diseases (group 3). Nonetheless, further studies are needed to clarify the psychiatric alterations within adult patients with PA.
Collapse
Affiliation(s)
- Alexis Tarrada
- Service de Neurologie, CHRU Central Nancy, 54000, Nancy, France. .,Faculté de Médecine, Université Paris Descartes, 75006, Paris, France.
| | | | - Coraline Hingray
- Service de Neurologie, CHRU Central Nancy, 54000 Nancy, France ,Centre Psychothérapique de Nancy, Pôle Universitaire du Grand Nancy, 54000 Laxou, France
| |
Collapse
|
15
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
16
|
Akin EÖ, Pekcici BB, Eminoglu FT. International classification of functioning, disability and health framework (ICF) based adaptive functioning outcomes of children with organic acidemias from a middle-income country. Brain Dev 2021; 43:389-395. [PMID: 33309492 DOI: 10.1016/j.braindev.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The World Health Organization International Classification of Functioning, Disability and Health Framework (ICF) states that a child's health conditions, functions, activities, participation in life and contextual factors shape disability. Research on the development of children with organic acidemias (OA) mostly focused on cognitive and medical outcomes. This study aimed to examine adaptive functioning of children with OAs based on ICF. METHODS In this cross-sectional study, children with propionic academia, methylmalonic acidemia and maple syrup urine disease receiving care at Ankara University School of Medicine, Department of Pediatrics, Pediatric Metabolism Division were recruited. Comprehensive developmental assessments included ICF-based methods. Adaptive functioning was measured with Vineland Adaptive Behavior Scales-Second Edition. RESULTS The sample comprised 22 children with a median age of 47.5 months (IQR: 35-73.5). Most mothers (64%) had less than 5 years of education, half had depression. Two children (9%) were attending to school, 14 (64%) were not regularly playing with friends. Fourteen children (64%) had significant communication delays, 12 (55%) had significant problems in daily living skills, and 12 (55%) in social skills. Mean adaptive behavior composite score was 65.5 ± 16.8 (low), children with feeding disorders had significantly more low adaptive behavior composite scores than children with no feeding disorder diagnosis (p = 0.001). CONCLUSIONS Our results imply that children with OAs from Turkey, a middle-income country had major difficulties in functioning, activities, participation and contextual factors. Feeding problems appeared as a risk factor for lower adaptive functioning. ICF-based assessments and interventions are urgently needed in the management of children with OAs.
Collapse
Affiliation(s)
- Ezgi Özalp Akin
- Ankara University School of Medicine, Department of Pediatrics, Developmental-Behavioral Pediatrics Division, Turkey.
| | - Bahar Bingoler Pekcici
- Ankara University School of Medicine, Department of Pediatrics, Developmental-Behavioral Pediatrics Division, Turkey
| | - Fatma Tuba Eminoglu
- Ankara University School of Medicine, Department of Pediatrics, Pediatric Metabolism Division, Turkey
| |
Collapse
|
17
|
Mepham JR, MacFabe DF, Boon FH, Foley KA, Cain DP, Ossenkopp KP. Examining the non-spatial pretraining effect on a water maze spatial learning task in rats treated with multiple intracerebroventricular (ICV) infusions of propionic acid: Contributions to a rodent model of ASD. Behav Brain Res 2021; 403:113140. [PMID: 33508348 DOI: 10.1016/j.bbr.2021.113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.
Collapse
Affiliation(s)
- Jennifer R Mepham
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Derrick F MacFabe
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Francis H Boon
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Kelly A Foley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Donald P Cain
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada.
| |
Collapse
|
18
|
Zhu C, Gong H, Luo P, Dong L, Zhang G, Shi X, Rong W. Oral Administration of Penicillin or Streptomycin May Alter Serum Serotonin Level and Intestinal Motility via Different Mechanisms. Front Physiol 2021; 11:605982. [PMID: 33424630 PMCID: PMC7785965 DOI: 10.3389/fphys.2020.605982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background/Aims Enterochromaffin cells (EC cells) constitute the largest population of enteroendocrine cells and release serotonin (5-HT) in response to mechanical and chemical cues of the gastrointestinal tract (GIT). How EC cells respond to altered microbiota such as due to antibiotic treatments remain poorly understood. We hypothesized that the pacemaker channel HCN2 might contribute to the regulation of EC cells functions and their responses to antibiotics-induced changes in intestinal flora. Methods Mice were given either penicillin or streptomycin or both in drinking water for 10 consecutive days. The changes in the profile of short chain fatty acids (SCFAs) in the cecum following penicillin or streptomycin treatments were tested by GC-MS. Serum 5-HT content, whole intestinal transit time, fecal water content, cecum weight and expression of HCN2 and TPH1 in cecal mucosa were measured. Ivabradine (a HCN channels blocker) was used to explore the role of HCN2 in penicillin-induced changes in 5-HT availability and intestinal motility. Results HCN2 immunofluorescence was detected on intestinal EC cells. Both penicillin and streptomycin caused significant reduction in total SCFAs in the cecum, with the penicillin-treated group showing greater reductions in butyrate, isobutyrate and isovalerate levels than the streptomycin group. The expression of HCN2 was increased in the mice treated with penicillin, whereas TPH1 expression was increased in the mice treated with streptomycin. Mice treated with antibiotics all had larger and heavier cecum, elevated serum 5-HT level and increased fecal water content. Besides, mice treated with penicillin had prolonged intestinal transit time. Intraperitoneal injection of Ivabradine attenuated the effect of penicillin on serum 5-HT level, cecum size and weight, intestinal motility, and fecal water content. Conclusion Disruptions of the intestinal flora structure due to oral administration of penicillin may significantly increase serum 5-HT level and inhibit intestinal motility, at least partially through up-regulating the expression of HCN2. Oral administration of streptomycin may alter 5-HT availability by up-regulating TPH1 expression thus increasing synthesis of 5-HT. Alterations of intestinal flora composition due to exposure to different antibiotics may regulate 5-HT availability and intestinal motility through different mechanisms.
Collapse
Affiliation(s)
- Cuihong Zhu
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huashan Gong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Zhang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Ogbu D, Xia E, Sun J. Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol 2020; 10:200063. [PMID: 32634371 PMCID: PMC7574554 DOI: 10.1098/rsob.200063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome regulates a relationship with the brain known as the gut–microbiota–brain (GMB) axis. This interaction is influenced by immune cells, microbial metabolites and neurotransmitters. Recent findings show gut dysbiosis is prevalent in autism spectrum disorder (ASD) as well as attention deficit hyperactivity disorder (ADHD). There are previously established negative correlations among vitamin D, vitamin D receptor (VDR) levels and severity of ASD as well as ADHD. Both vitamin D and VDR are known to regulate homeostasis in the brain and the intestinal microbiome. This review summarizes the growing relationship between vitamin D/VDR signalling and the GMB axis in ASD and ADHD. We focus on current publications and summarize the progress of GMB in neurodevelopmental disorders, describe effects and mechanisms of vitamin D/VDR in regulating the microbiome and synoptically highlight the potential applications of targeting vitamin D/VDR signalling in neurodevelopment disorders.
Collapse
Affiliation(s)
- Destiny Ogbu
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago 60612, IL, USA
| | - Eric Xia
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago 60612, IL, USA.,Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago 60612, IL, USA.,UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
20
|
Propionic acid induced behavioural effects of relevance to autism spectrum disorder evaluated in the hole board test with rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109794. [PMID: 31639413 DOI: 10.1016/j.pnpbp.2019.109794] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorders (ASD) are a set of neurodevelopmental disorders characterized by abnormal social interactions, impaired language, and stereotypic and repetitive behaviours. Among genetically susceptible subpopulations, gut and dietary influences may play a role in etiology. Propionic acid (PPA), produced by enteric gut bacteria, crosses both the gut-blood and the blood-brain barrier. Previous research has demonstrated that repeated intracerebroventricular (ICV) infusions of PPA in adult rats produce behavioural and neuropathological changes similar to those seen in ASD patients, including hyperactivity, stereotypy, and repetitive movements. The current study examined dose and time related changes of exploratory and repetitive behaviours with the use of the hole-board task. Adult male Long-Evans rats received ICV infusions twice a day, 4 h apart, of either buffered PPA (low dose 0.052 M or high dose 0.26 M, pH 7.5, 4 μL/infusion) or phosphate buffered saline (PBS, 0.1 M) for 7 consecutive days. Locomotor activity and hole-poke behaviour were recorded daily in an automated open field apparatus (Versamax), equipped with 16 open wells, for 30 min immediately after the second infusion. In a dose dependent manner PPA infused rats displayed significantly more locomotor activity, stereotypic behaviour and nose-pokes than PBS infused rats. Low-dose PPA animals showed locomotor activity levels similar to those of PBS animals at the start of the infusion schedule, but gradually increased to levels comparable to those of high-dose PPA animals by the end of the infusion schedule, demonstrating a dose and time dependent effect of the PPA treatments.
Collapse
|
21
|
Curnock R, Heaton ND, Vilca-Melendez H, Dhawan A, Hadzic N, Vara R. Liver Transplantation in Children With Propionic Acidemia: Medium-Term Outcomes. Liver Transpl 2020; 26:419-430. [PMID: 31715057 DOI: 10.1002/lt.25679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Liver transplantation (LT) for patients with propionic acidemia (PA) is an emerging therapeutic option. We present a retrospective review of patients with PA who underwent LT at a tertiary liver center between 1995 and 2015. A total of 14 children were identified (8 males) with median age at initial presentation of 3 days (range, 0-77 days). Pretransplant median protein restriction was 1 g/kg/day (range, 0.63-1.75 g/kg/day), 71% required supportive feeding, and 86% had developmental delay. Frequent metabolic decompensations (MDs) were the main indication for LT with a median age at transplantation of 2.4 years (range, 0.8-7.1 years). Only 1 graft was from a living donor, and 13 were from deceased donors (4 auxiliary). The 2-year patient survival was 86%, and overall study and graft survival was 79% and 69%, respectively. Three patients died after LT: at 43 days (biliary peritonitis), 225 days (acute-on-chronic rejection with multiorgan failure), and 13.5 years (posttransplant lymphoproliferative disease). Plasma glycine and propionylcarnitine remained elevated but reduced after transplant. Of 11 survivors, 5 had at least 1 episode of acute cellular rejection, 2 sustained a metabolic stroke (with full recovery), and 3 developed mild cardiomyopathy after LT. All have liberalized protein intake, and 9 had no further MDs: median episodes before transplant, 4 (range, 1-30); and median episodes after transplant, 0 (range, 0-5). All survivors made some developmental progress after LT, and none worsened at a median follow-up of 5.8 years (range, 2-23 years). LT in PA significantly reduces the frequency of MDs, can liberalize protein intake and improve quality of life, and should continue to be considered in selected cases.
Collapse
Affiliation(s)
- Richard Curnock
- Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, United Kingdom
| | - Nigel D Heaton
- Liver Transplantation Surgery, Institute for Liver Studies, King's College Hospital, London, United Kingdom
| | - Hector Vilca-Melendez
- Liver Transplantation Surgery, Institute for Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| | - Nedim Hadzic
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| | - Roshni Vara
- Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, United Kingdom
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| |
Collapse
|
22
|
Lobzhanidze G, Japaridze N, Lordkipanidze T, Rzayev F, MacFabe D, Zhvania M. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int J Dev Neurosci 2020; 80:139-156. [PMID: 31997401 DOI: 10.1002/jdn.10011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.
Collapse
Affiliation(s)
- Giorgi Lobzhanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Laboratory of Electron Microscopy, Research Center of Azerbaijan Medical University, Baku, Azerbaijan
| | - Derrick MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, ON, Canada.,Faculty of Medicine, Department of Microbiology, Center for Healthy Eating and Food Innovation, Maastricht University, Maastricht, the Netherlands
| | - Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
23
|
Cotrina ML, Ferreiras S, Schneider P. High prevalence of self-reported autism spectrum disorder in the Propionic Acidemia Registry. JIMD Rep 2020; 51:70-75. [PMID: 32071841 PMCID: PMC7012741 DOI: 10.1002/jmd2.12083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022] Open
Abstract
Propionic Acidemia (PA) is characterized by the accumulation of propionic acid (PPA), its toxic derivatives, and ammonia. The disease causes multiorgan damage, especially in heart, pancreas, and brain; seizures and intellectual disability are often described. Some PA children also show autism spectrum disorders (ASD). In this study, we have compiled data from 62 individuals from the Propionic Acidemia International Patient Registry and compared it to the published literature on the prevalence of autism in PA. The PA registry shows a significant proportion of ASD diagnoses that is consistent with the combined prevalence reported in the literature. It also shows that ASD in PA is gender balanced and it is diagnosed at older ages (median age 8 years) than in the national registry for autism (median age 4.3 years), which raises the possibility, among others, of PA specific risk factors affecting the natural history of ASD. Data from patient registries provide valuable information on studying the mechanisms involved in a rare disease, although more outreach effort must be done to increase participation and consistency in data entry.
Collapse
Affiliation(s)
| | - Sindy Ferreiras
- Department of BiologyQueensborough Community College (QCC)BaysideNew York
| | - Patricia Schneider
- Department of BiologyQueensborough Community College (QCC)BaysideNew York
| |
Collapse
|
24
|
Pillai NR, Stroup BM, Poliner A, Rossetti L, Rawls B, Shayota BJ, Soler-Alfonso C, Tunuguntala HP, Goss J, Craigen W, Scaglia F, Sutton VR, Himes RW, Burrage LC. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Mol Genet Metab 2019; 128:431-443. [PMID: 31757659 PMCID: PMC6898966 DOI: 10.1016/j.ymgme.2019.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Organic acidemias, especially propionic acidemia (PA) and methylmalonic acidemia (MMA), may manifest clinically within the first few hours to days of life. The classic presentation in the newborn period includes metabolic acidosis, hyperlactatemia, and hyperammonemia that is precipitated by unrestricted protein intake. Implementation of newborn screening to diagnose and initiate early treatment has facilitated a reduction in neonatal mortality and improved survival. Despite early diagnosis and appropriate management, these individuals are prone to have recurrent episodes of metabolic acidosis and hyperammonemia resulting in frequent hospitalizations. Liver transplantation (LT) has been proposed as a treatment modality to reduce metabolic decompensations which are not controlled by medical management. Published reports on the outcome of LT show heterogeneous results regarding clinical and biochemical features in the post transplantation period. As a result, we evaluated the outcomes of LT in our institution and compared it to the previously published data. STUDY DESIGN/METHODS We performed a retrospective chart review of nine individuals with PA or MMA who underwent LT and two individuals with MMA who underwent LT and kidney transplantation (KT). Data including number of hospitalizations, laboratory measures, cardiac and neurological outcomes, dietary protein intake, and growth parameters were collected. RESULTS The median age of transplantation for subjects with MMA was 7.2 years with a median follow up of 4.3 years. The median age of transplantation for subjects with PA was 1.9 years with a median follow up of 5.4 years. The survival rate at 1 year and 5 years post-LT was 100%. Most of our subjects did not have any episodes of hyperammonemia or pancreatitis post-LT. There was significant reduction in plasma glycine post-LT. One subject developed mild elevation in ammonia post-LT on an unrestricted protein diet, suggesting that protein restriction may be indicated even after LT. CONCLUSION In a large single center study of LT in MMA and PA, we show that LT may reduce the incidence of metabolic decompensation. Moreover, our data suggest that LT may be associated with reduced number of hospitalizations and improved linear growth in individuals with PA and MMA.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anna Poliner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | | | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hari Priya Tunuguntala
- Texas Children's Hospital, Houston, TX, USA; Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John Goss
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ryan Wallace Himes
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
25
|
Haijes HA, Jans JJM, Tas SY, Verhoeven-Duif NM, van Hasselt PM. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. J Inherit Metab Dis 2019; 42:730-744. [PMID: 31119747 DOI: 10.1002/jimd.12129] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
Over the last decades, advances in clinical care for patients suffering from propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) have resulted in improved survival. These advances were possible thanks to new pathophysiological insights. However, patients may still suffer from devastating complications which largely determine the unsatisfying overall outcome. To optimize our treatment strategies, better insight in the pathophysiology of complications is needed. Here, we perform a systematic data-analysis of cohort studies and case-reports on PA and MMA. For each of the prevalent and rare complications, we summarize the current hypotheses and evidence for the underlying pathophysiology of that complication. A common hypothesis on pathophysiology of many of these complications is that mitochondrial impairment plays a major role. Assuming that complications in which mitochondrial impairment may play a role are overrepresented in monogenic mitochondrial diseases and, conversely, that complications in which mitochondrial impairment does not play a role are underrepresented in mitochondrial disease, we studied the occurrence of the complications in PA and MMA in mitochondrial and other monogenic diseases, using data provided by the Human Phenotype Ontology. Lastly, we combined this with evidence from literature to draw conclusions on the possible role of mitochondrial impairment in each complication. Altogether, this review provides a comprehensive overview on what we, to date, do and do not understand about pathophysiology of complications occurring in PA and MMA and about the role of mitochondrial impairment herein.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Simone Y Tas
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Panjwani AA, Ji Y, Fahey JW, Palmer A, Wang G, Hong X, Zuckerman B, Wang X. Maternal Obesity/Diabetes, Plasma Branched-Chain Amino Acids, and Autism Spectrum Disorder Risk in Urban Low-Income Children: Evidence of Sex Difference. Autism Res 2019; 12:1562-1573. [PMID: 31400063 DOI: 10.1002/aur.2177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022]
Abstract
Maternal metabolic conditions are known risk factors for child autism spectrum disorder (ASD). Branched-chain amino acids (BCAAs) are also associated with ASD. We examined the joint associations of maternal metabolic conditions and BCAAs on the risk of child ASD and whether the associations differed by child's sex. We analyzed 789 mother-infant pairs, a subset of the Boston Birth Cohort, from a predominantly urban, low-income, minority population. Maternal plasma BCAAs were measured by liquid chromatography-tandem mass spectrometry in samples collected 24-72 hr postpartum. A composite BCAA score was created using factor analysis, and prepregnancy obesity and diabetes (ob/DM) were combined into one variable. Logistic regression was used to explore the role of BCAAs as mediators or cofactors with ob/DM and child's sex on ASD risk. BCAA-ob/DM and BCAA-sex interactions were also examined. Maternal BCAAs alone were not associated with ASD and did not mediate the path between ob/DM and ASD. In the presence of maternal ob/DM, BCAA score was significantly associated with ASD (adjusted OR 2.33, 95% CI 1.18, 4.60). Interactions were present for valine with ob/DM and for valine and isoleucine with male sex on ASD risk. The odds ratio (OR) for risk of ASD was the greatest with all three risk factors combined-male sex, above median BCAA score, and ob/DM (OR 10.79, 95% CI 4.40, 26.42). Similar patterns were found for other developmental disorders, though not as strong as for ASD. Additional studies are warranted to clarify the role of maternal BCAAs, ob/DM, and child's sex in ASD. Autism Res 2019, 12: 1562-1573. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study investigated whether maternal obesity/diabetes and maternal circulating branched-chain amino acids (BCAAs) can jointly affect child ASD risk and whether the associations differ by child's sex. We found that the risk of ASD was greater among mothers with obesity/diabetes who also had elevated concentrations of BCAAs and that this risk was even greater for male children. These findings provide new evidence on fetal origins of ASD and sex difference and warrant additional investigation.
Collapse
Affiliation(s)
- Anita A Panjwani
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jed W Fahey
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amanda Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD. Neurotox Res 2019; 35:823-837. [DOI: 10.1007/s12640-019-0002-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|