1
|
Carretié L, Fernández-Folgueiras U, Kessel D, Alba G, Veiga-Zarza E, Tapia M, Álvarez F. An extremely fast neural mechanism to detect emotional visual stimuli: A two-experiment study. PLoS One 2024; 19:e0299677. [PMID: 38905211 PMCID: PMC11192326 DOI: 10.1371/journal.pone.0299677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 06/23/2024] Open
Abstract
Defining the brain mechanisms underlying initial emotional evaluation is a key but unexplored clue to understanding affective processing. Event-related potentials (ERPs), especially suited for investigating this issue, were recorded in two experiments (n = 36 and n = 35). We presented emotionally negative (spiders) and neutral (wheels) silhouettes homogenized regarding their visual parameters. In Experiment 1, stimuli appeared at fixation or in the periphery (200 trials per condition and location), the former eliciting a N40 (39 milliseconds) and a P80 (or C1: 80 milliseconds) component, and the latter only a P80. In Experiment 2, stimuli were presented only at fixation (500 trials per condition). Again, an N40 (45 milliseconds) was observed, followed by a P100 (or P1: 105 milliseconds). Analyses revealed significantly greater N40-C1P1 peak-to-peak amplitudes for spiders in both experiments, and ANCOVAs showed that these effects were not explained by C1P1 alone, but that processes underlying N40 significantly contributed. Source analyses pointed to V1 as an N40 focus (more clearly in Experiment 2). Sources for C1P1 included V1 (P80) and V2/LOC (P80 and P100). These results and their timing point to low-order structures (such as visual thalamic nuclei or superior colliculi) or the visual cortex itself, as candidates for initial evaluation structures.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Dominique Kessel
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Guzmán Alba
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Tapia
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Álvarez
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Marcar VL, Wolf M. Modulation of the neuronal response in human primary visual cortex by re-entrant projections during retinal input processing as manifest in the visual evoked potential. Heliyon 2024; 10:e30752. [PMID: 38770287 PMCID: PMC11103468 DOI: 10.1016/j.heliyon.2024.e30752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Initial deflections in the visual evoked potential (VEP) reflect the neuronal process of extracting features from the retinal input; a process not modulated by re-entrant projections. Later deflections in the VEP reflect the neuronal process of combining features into an object, a process referred to as 'object closure' and modulated by re-entrant projections. Our earlier work indicated that the VEP reflects independent neuronal responses processing temporal - and spatial luminance contrast and that these responses arise from an interaction between forward and re-entrant input. In this earlier work, changing the temporal luminance contrast property of a stimulus altered its spatial luminance contrast property. We recorded the VEP in 12 volunteers viewing image pairs of a windmill, regular dartboard or an RMS dartboard rotated by either Π/4, Π/2, 3Π/4 or Π radians with respect to each other. The windmill and regular dartboard had identical white to black ratio, while the two dartboards identical contrast edges per unit area. Rotation varied temporal luminance contrast of a stimulus without affecting its spatial luminance contrast. N75, P100, N135 and P240 amplitude and latency were compared and a source localisation and temporal frequency analysis performed. P100 amplitude signals a neuronal response processing temporal luminance contrast that is modulated by re-entrant projections with fast axonal conduction velocities. N135 and P240 signal the neuronal response processing spatial luminance contrast and is modulated by re-entrant projections with slow axonal conduction velocities. The dorsal stream is interconnected by fast axonal conduction velocities, the ventral stream by slow axonal conduction velocities.
Collapse
Affiliation(s)
- Valentine L. Marcar
- University Hospital Zürich, Biomedical Optics Research Laboratory (BORL), Frauenklinikstrasse 10, CH-8091, Zürich, Switzerland
- University Hospital Zürich, Comprehensive Cancer Center Zürich (CCCZ), Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Martin Wolf
- University Hospital Zürich, Biomedical Optics Research Laboratory (BORL), Frauenklinikstrasse 10, CH-8091, Zürich, Switzerland
| |
Collapse
|
3
|
Ishida T, Nittono H. Visual omitted stimulus potentials are not retinotopic. Neurosci Lett 2024; 830:137777. [PMID: 38621505 DOI: 10.1016/j.neulet.2024.137777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Omitted stimulus potentials (OSPs) are elicited in response to the omission of expected stimuli and are thought to reflect prediction errors. If prediction errors are signaled in the sensory cortex, OSPs are expected to be generated in the sensory cortex. The present study investigated the involvement of the early visual cortex in the generation of OSPs by testing whether omitted visual stimuli elicit brain responses in a spatially specific manner. Checkerboard pattern stimuli were presented alternately in the upper and lower visual fields, and the stimuli were omitted in 10 % of the trials. Event-related potentials were recorded from 33 participants. While a retinotopic C1 component was evoked by real visual stimuli, omitted stimuli did not produce any response reflecting retinotopy but did elicit a visual mismatch negativity, which was larger for omitted stimuli expected in the lower visual field than for those in the upper visual field. These results suggest that omitted visual stimuli are processed in a different pathway than actual stimuli.
Collapse
Affiliation(s)
- Tomomi Ishida
- Graduate School of Human Sciences, Osaka University, Osaka, Japan.
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing. BIOLOGY 2022; 11:biology11121720. [PMID: 36552230 PMCID: PMC9774938 DOI: 10.3390/biology11121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The aim of this review is to summarise current knowledge about flickering light and the underlying processes that occur during its processing in the brain. Despite the growing interest in the topic of flickering light, its clinical applications are still not well understood. Studies using EEG indicate an appearing synchronisation of brain wave frequencies with the frequency of flickering light, and hopefully, it could be used in memory therapy, among other applications. Some researchers have focused on using the flicker test as an indicator of arousal, which may be useful in clinical studies if the background for such a relationship is described. Since flicker testing has a risk of inducing epileptic seizures, however, every effort must be made to avoid high-risk combinations, which include, for example, red-blue light flashing at 15 Hz. Future research should focus on the usage of neuroimaging methods to describe the specific neuropsychological and neurophysiological processes occurring in the brain during the processing of flickering light so that its clinical utility can be preliminarily determined and randomised clinical trials can be initiated to test existing reports.
Collapse
|
6
|
Pre-Stimulus Alpha-Band Phase Gates Early Visual Cortex Responses. Neuroimage 2022; 253:119060. [PMID: 35283286 DOI: 10.1016/j.neuroimage.2022.119060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus - suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.
Collapse
|
7
|
Carretié L, Fernández-Folgueiras U, Álvarez F, Cipriani GA, Tapia M, Kessel D. Fast Unconscious Processing of Emotional Stimuli in Early Stages of the Visual Cortex. Cereb Cortex 2022; 32:4331-4344. [DOI: 10.1093/cercor/bhab486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Several cortical and subcortical brain areas have been reported to be sensitive to the emotional content of subliminal stimuli. However, the timing of these activations remains unclear. Our scope was to detect the earliest cortical traces of emotional unconscious processing of visual stimuli by recording event-related potentials (ERPs) from 43 participants. Subliminal spiders (emotional) and wheels (neutral), sharing similar low-level visual parameters, were presented at two different locations (fixation and periphery). The differential (peak-to-peak) amplitude from CP1 (77 ms from stimulus onset) to C2 (100 ms), two early visual ERP components originated in V1/V2 according to source localization analyses, was analyzed via Bayesian and traditional frequentist analyses. Spiders elicited greater CP1–C2 amplitudes than wheels when presented at fixation. This fast effect of subliminal stimulation—not reported previously to the best of our knowledge—has implications in several debates: 1) The amygdala cannot be mediating these effects, 2) latency of other evaluative structures recently proposed, such as the visual thalamus, is compatible with these results, 3) the absence of peripheral stimuli effects points to a relevant role of the parvocellular visual system in unconscious processing.
Collapse
|
8
|
Du H, Shen X, Du X, Zhao L, Zhou W. Altered Visual Cortical Excitability Is Associated With Psychopathological Symptoms in Major Depressive Disorder. Front Psychiatry 2022; 13:844434. [PMID: 35321224 PMCID: PMC8936091 DOI: 10.3389/fpsyt.2022.844434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies suggest that in people with major depressive disorder (MDD), there exists a perturbation of the normal balance between the excitatory and inhibitory neurotransmitter systems in the visual cortex, indicating the possibility of altered visual cortical excitability. However, investigations into the neural activities of the visual cortex in MDD patients yielded inconsistent findings. The present study aimed to evaluate the visual cortical excitability utilizing a paired-pulse stimulation paradigm in patients with MDD and to access the paired-pulse behavior of recording visual evoked potentials (VEPs) as a marker of MDD. We analyzed the amplitudes of VEPs and paired-pulse suppression (PPS) at four different stimulus onset asynchronies (SOAs) spanning 93 ms to 133 ms. Further, the relationship between PPS and the symptom severity of depression was investigated using Spearman's correlation. We found that, whereas the first VEP amplitude remained unchanged, the second VEP amplitude was significantly higher in the MDD group compared to the healthy controls. As a result, the amplitude ratio (second VEP amplitude/first VEP amplitude) increased, indicating reduced PPS and thus increased excitability in the visual cortex. Moreover, we found the amplitude ratios had a significantly positive correlation with the symptom severity of depression in MDD, indicating a clinically useful biomarker for MDD. Our findings provide new insights into the changes in the excitation-inhibition balance of visual cortex in MDD, which could pave the way for specific clinical interventions.
Collapse
Affiliation(s)
- Hongheng Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xue Shen
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xiaoyan Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Wenjun Zhou
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers. Sci Rep 2021; 11:22412. [PMID: 34789806 PMCID: PMC8599680 DOI: 10.1038/s41598-021-01854-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.
Collapse
|
10
|
Stankov AD, Touryan J, Gordon S, Ries AJ, Ki J, Parra LC. During natural viewing, neural processing of visual targets continues throughout saccades. J Vis 2021; 21:7. [PMID: 34491271 PMCID: PMC8431980 DOI: 10.1167/jov.21.10.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relatively little is known about visual processing during free-viewing visual search in realistic dynamic environments. Free-viewing is characterized by frequent saccades. During saccades, visual processing is thought to be suppressed, yet we know that the presaccadic visual content can modulate postsaccadic processing. To better understand these processes in a realistic setting, we study here saccades and neural responses elicited by the appearance of visual targets in a realistic virtual environment. While subjects were being driven through a 3D virtual town, they were asked to discriminate between targets that appear on the road. Using a system identification approach, we separated overlapping and correlated activity evoked by visual targets, saccades, and button presses. We found that the presence of a target enhances early occipital as well as late frontocentral saccade-related responses. The earlier potential, shortly after 125 ms post-saccade onset, was enhanced for targets that appeared in the peripheral vision as compared to the central vision, suggesting that fast peripheral processing initiated before saccade onset. The later potential, at 195 ms post-saccade onset, was strongly modulated by the visibility of the target. Together these results suggest that, during natural viewing, neural processing of the presaccadic visual stimulus continues throughout the saccade, apparently unencumbered by saccadic suppression.
Collapse
Affiliation(s)
- Atanas D Stankov
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| | - Jonathan Touryan
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,
| | | | - Anthony J Ries
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,
| | - Jason Ki
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.,
| |
Collapse
|
11
|
Human Sensory Cortex Contributes to the Long-Term Storage of Aversive Conditioning. J Neurosci 2021; 41:3222-3233. [PMID: 33622774 DOI: 10.1523/jneurosci.2325-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
Growing animal data evince a critical role of the sensory cortex in the long-term storage of aversive conditioning, following acquisition and consolidation in the amygdala. Whether and how this function is conserved in the human sensory cortex is nonetheless unclear. We interrogated this question in a human aversive conditioning study using multidimensional assessments of conditioning and long-term (15 d) retention. Conditioned stimuli (CSs; Gabor patches) were calibrated to differentially activate the parvocellular (P) and magnocellular (M) visual pathways, further elucidating cortical versus subcortical mechanisms. Full-blown conditioning and long-term retention emerged for M-biased CS (vs limited effects for P-biased CS), especially among anxious individuals, in all four dimensions assessed: threat appraisal (threat ratings), physiological arousal (skin conductance response), perceptual learning [discrimination sensitivity (d') and response speed], and cortical plasticity [visual evoked potentials (VEPs) and cortical current density]. Interestingly, while behavioral, physiological, and VEP effects were comparable at immediate and delayed assessments, the cortical substrates evolved markedly over time, transferring from high-order cortices [inferotemporal/fusiform cortex and orbitofrontal cortex (OFC)] immediately to the primary and secondary visual cortex after the delay. In sum, the contrast between P- and M-biased conditioning confirms privileged conditioning acquisition via the subcortical pathway while the immediate cortical plasticity lends credence to the triadic amygdala-OFC-fusiform network thought to underlie threat processing. Importantly, long-term retention of conditioning in the basic sensory cortices supports the conserved role of the human sensory cortex in the long-term storage of aversive conditioning.SIGNIFICANCE STATEMENT A growing network of neural substrates has been identified in threat learning and memory. The sensory cortex plays a key role in long-term threat memory in animals, but such a function in humans remains unclear. To explore this problem, we conducted multidimensional assessments of immediate and delayed (15 d) effects of human aversive conditioning. Behavioral, physiological, and scalp electrophysiological data demonstrated conditioning effects and long-term retention. High-density EEG intracranial source analysis further revealed the cortical underpinnings, implicating high-order cortices immediately and primary and secondary visual cortices after the long delay. Therefore, while high-order cortices support aversive conditioning acquisition (i.e., threat learning), the human sensory cortex (akin to the animal homolog) underpins long-term storage of conditioning (i.e., long-term threat memory).
Collapse
|
12
|
Marcar VL, Wolf M. An investigation into the relationship between stimulus property, neural response and its manifestation in the visual evoked potential involving retinal resolution. Eur J Neurosci 2021; 53:2612-2628. [PMID: 33448503 DOI: 10.1111/ejn.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
The visual evoked potential (VEP) has been shown to reflect the size of the neural population activated by a processing mechanism selective to the temporal - and spatial luminance contrast property of a stimulus. We set out to better understand how the factors determining the neural response associated with these mechanisms. To do so we recorded the VEP from 14 healthy volunteers viewing two series of pattern reversing stimuli with identical temporal-and spatial luminance contrast properties. In one series the size of the elements increased towards the edge of the image, in the other it decreased. In the former element size was congruent with receptive field size across eccentricity, in the later it was incongruent. P100 amplitude to the incongruent series exceeded that obtained to the congruent series. Using electric dipoles due the excitatory neural response we accounted for this using dipole cancellation of electric dipoles of opposite polarity originating in supra- and infragranular layers of V1. The phasic neural response in granular lamina of V1 exhibited magnocellular characteristics, the neural response outside of the granular lamina exhibited parvocellular characteristics and was modulated by re-entrant projections. Using electric current density, we identified areas of the dorsal followed by areas of the ventral stream as the source of the re-entrant signal modulating infragranular activity. Our work demonstrates that the VEP does not signal reflect the overall level of a neural response but is the result of an interaction between electric dipoles originating from neural responses in different lamina of V1.
Collapse
Affiliation(s)
- Valentine L Marcar
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Herde L, Uhl J, Rauss K. Anatomic and functional asymmetries interactively shape human early visual cortex responses. J Vis 2020; 20:3. [PMID: 32503040 PMCID: PMC7416905 DOI: 10.1167/jov.20.6.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early visual processing is surprisingly flexible even in the adult brain. This flexibility involves both long-term structural plasticity and online adaptations conveyed by top-down feedback. Although this view is supported by rich evidence from both human behavioral studies and invasive electrophysiology in nonhuman models, it has proven difficult to close the gap between species. In particular, it remains debated whether noninvasive measures of neural activity can capture top-down modulations of the earliest stages of processing in the human visual cortex. We previously reported modulations of retinotopic C1, the earliest component of the human visual evoked potential. However, these effects were selectively observed in the upper visual field (UVF). Here we test whether this asymmetry is linked to an interaction between differences in spatial resolution across the visual field and the specific stimuli used in previous studies. We measured visual evoked potentials in response to task-irrelevant, high-contrast textures of different densities in a comparatively large sample of healthy volunteers (N = 31) using high-density electroencephalogram. Our results show differential response profiles for upper and lower hemifields, with UVF responses saturating at higher stimulus densities. In contrast, lower visual field responses did not increase, and even showed a tendency toward a decrease at the highest density tested. We propose that these findings reflect feature- and task-specific pooling of signals from retinotopic regions with different sensitivity profiles. Such complex interactions between anatomic and functional asymmetries need to be considered to resolve whether human early visual cortex activity is modulated by top-down factors.
Collapse
|
14
|
Chen L, Wu B, Qiao C, Liu DQ. Resting EEG in alpha band predicts individual differences in visual size perception. Brain Cogn 2020; 145:105625. [PMID: 32932108 DOI: 10.1016/j.bandc.2020.105625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022]
Abstract
Human visual size perception results from an interaction of external sensory information and internal state. The cognitive mechanisms involved in the processing of context-dependent visual size perception have been found to be innate in nature to some extent, suggesting that visual size perception might correlate with human intrinsic brain activity. Here we recorded human resting alpha activity (8-12 Hz), which is an inverse indicator of sustained alertness. Moreover, we measured an object's perceived size in a two-alternative forced-choice manner and the Ebbinghaus illusion magnitude which is a classic illustration of context-dependent visual size perception. The results showed that alpha activity along the ventral visual pathway, including left V1, right LOC and bilateral inferior temporal gyrus, negatively correlated with an object's perceived size. Moreover, alpha activity in the left superior temporal gyrus positively correlated with size discrimination threshold and size illusion magnitude. The findings provide clear evidence that human visual size perception scales as a function of intrinsic alertness, with higher alertness linking to larger perceived size of objects and better performance in size discrimination and size illusion tasks, and suggest that individual variation in resting-state brain activity provides a neural explanation for individual variation in cognitive performance of normal participants.
Collapse
Affiliation(s)
- Lihong Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, PR China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Baoyu Wu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, PR China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China
| | - Congying Qiao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, PR China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, PR China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| |
Collapse
|
15
|
Amadeo MB, Campus C, Gori M. Visual representations of time elicit early responses in human temporal cortex. Neuroimage 2020; 217:116912. [PMID: 32389726 DOI: 10.1016/j.neuroimage.2020.116912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/29/2022] Open
Abstract
Time perception is inherently part of human life. All human sensory modalities are always involved in the complex task of creating a temporal representation of the external world. However, when representing time, people primarily rely on auditory information. Since the auditory system prevails in many audio-visual temporal tasks, one may expect that the early recruitment of the auditory network is necessary for building a highly resolved and flexible temporal representation in the visual modality. To test this hypothesis, we asked 17 healthy participants to temporally bisect three consecutive flashes while we recorded EEG. We demonstrated that visual stimuli during temporal bisection elicit an early (50-90 ms) response of an extended area of the temporal cortex, likely including auditory cortex too. The same activation did not appear during an easier spatial bisection task. These findings suggest that the brain may use auditory representations to deal with complex temporal representation in the visual system.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152, Genova, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova, via all'Opera Pia, 13, 16145, Genova, Italy.
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152, Genova, Italy.
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83, 16152, Genova, Italy.
| |
Collapse
|
16
|
Spatial attention affects the early processing of neutral versus fearful faces when they are task-irrelevant: a classifier study of the EEG C1 component. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:123-137. [PMID: 30341623 DOI: 10.3758/s13415-018-00650-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
EEG studies suggest that the emotional content of visual stimuli is processed rapidly. In particular, the C1 component, which occurs up to 100 ms after stimulus onset and likely reflects activity in primary visual cortex V1, has been reported to be sensitive to emotional faces. However, difficulties replicating these results have been reported. We hypothesized that the nature of the task and attentional condition are key to reconcile the conflicting findings. We report three experiments of EEG activity during the C1 time range elicited by peripherally presented neutral and fearful faces under various attentional conditions: the faces were spatially attended or unattended and were either task-relevant or not. Using traditional event-related potential analysis, we found that the early activity changed depending on facial expression, attentional condition, and task. In addition, we trained classifiers to discriminate the different conditions from the EEG signals. Although the classifiers were not able to discriminate between facial expressions in any condition, they uncovered differences between spatially attended and unattended faces but solely when these were task-irrelevant. In addition, this effect was only present for neutral faces. Our study provides further indication that attention and task are key parameters when measuring early differences between emotional and neutral visual stimuli.
Collapse
|
17
|
Akyuz S, Pavan A, Kaya U, Kafaligonul H. Short- and long-term forms of neural adaptation: An ERP investigation of dynamic motion aftereffects. Cortex 2020; 125:122-134. [PMID: 31981892 DOI: 10.1016/j.cortex.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
Adaptation is essential to interact with a dynamic and changing environment, and can be observed on different timescales. Previous studies on a motion paradigm called dynamic motion aftereffect (dMAE) showed that neural adaptation can establish even in very short timescales. However, the neural mechanisms underlying such rapid form of neural plasticity is still debated. In the present study, short- and long-term forms of neural plasticity were investigated using dynamic motion aftereffect combined with EEG (Electroencephalogram). Participants were adapted to directional drifting gratings for either short (640 msec) or long (6.4 sec) durations. Both adaptation durations led to motion aftereffects on the perceived direction of a dynamic and directionally ambiguous test pattern, but the long adaptation produced stronger dMAE. In line with behavioral results, we found robust changes in the event-related potentials elicited by the dynamic test pattern within 64-112 msec time range. These changes were mainly clustered over occipital and parieto-occipital scalp sites. Within this time range, the aftereffects induced by long adaptation were stronger than those by short adaptation. Moreover, the aftereffects by each adaptation duration were in the opposite direction. Overall, these EEG findings suggest that dMAEs reflect changes in cortical areas mediating low- and mid-level visual motion processing. They further provide evidence that short- and long-term forms of motion adaptation lead to distinct changes in neural activity, and hence support the view that adaptation is an active time-dependent process which involves different neural mechanisms.
Collapse
Affiliation(s)
- Sibel Akyuz
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Andrea Pavan
- School of Psychology, University of Lincoln, Lincoln, UK
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
18
|
Fong CY, Law WHC, Braithwaite JJ, Mazaheri A. Differences in early and late pattern-onset visual-evoked potentials between self- reported migraineurs and controls. NEUROIMAGE-CLINICAL 2019; 25:102122. [PMID: 31931401 PMCID: PMC6957816 DOI: 10.1016/j.nicl.2019.102122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022]
Abstract
Migraineurs had an enhanced N2 evoked by gratings with a spatial frequency of 13 cpd. Migraineurs had an attenuated occipital late negativity (LN) for viewing all gratings. Hyperexcitable controls showed similar VEP pattern compared to migraineurs. Enhanced N2 deflection could be driven by cortical hyperexcitation. LN reduction could reflect inhibitory control during processing of aversive stimuli.
Striped patterns have been shown to induce strong visual illusions and discomforts to migraineurs in previous literature. Previous research has suggested that these unusual visual symptoms to be linked with the hyperactivity on the visual cortex of migraine sufferers. The present study searched for evidence supporting this hypothesis by comparing the visual evoked potentials (VEPs) elicited by striped patterns of specific spatial frequencies (0.5, 3, and 13 cycles-per-degree) between a group of 29 migraineurs (17 with aura/12 without) and 31 non-migraineurs. In addition, VEPs to the same stripped patterns were compared between non-migraineurs who were classified as hyperexcitable versus non-hyperexcitable using a previously established behavioural pattern glare task. We found that the migraineurs had a significantly increased N2 amplitude for stimuli with 13 cpd gratings but an attenuated late negativity (LN: 400 – 500 ms after the stimuli onset) for all the spatial frequencies. Interestingly, non-migraineurs who scored as hyperexcitable appeared to have similar response patterns to the migraineurs, albeit in an attenuated form. We propose that the enhanced N2 could reflect disruption of the balance between parvocellular and magnocellular pathway, which is in support of the cortical hyperexcitation hypothesis in migraineurs. In addition, the attenuation of the late negativity could reflect a top-down feedback mechanism to suppress visual processing of an aversive stimulus.
Collapse
Affiliation(s)
- Chun Yuen Fong
- School of Psychology, University of Birmingham, B15 2TT, UK.
| | | | | | - Ali Mazaheri
- School of Psychology, University of Birmingham, B15 2TT, UK; Centre of Human Brain Health, University of Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
Center EG, Knight R, Fabiani M, Gratton G, Beck DM. Examining the role of feedback in TMS-induced visual suppression: A cautionary tale. Conscious Cogn 2019; 75:102805. [DOI: 10.1016/j.concog.2019.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022]
|
20
|
Wynn JK, Engel SA, Lee J, Reavis EA, Green MF. Evidence for intact stimulus-specific neural adaptation for visual objects in schizophrenia and bipolar disorder: An ERP study. PLoS One 2019; 14:e0221409. [PMID: 31430347 PMCID: PMC6701832 DOI: 10.1371/journal.pone.0221409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022] Open
Abstract
People with schizophrenia (SZ) or bipolar disorder (BD) experience dysfunction in visual processing. Dysfunctional neural tuning, in which neurons and neuronal populations are selectively activated by specific features of visual stimuli, may contribute to these deficits. Few studies have examined this possibility and there are inconsistent findings of tuning deficits in the literature. We utilized an event-related potential (ERP) paradigm to examine neural adaptation for visual objects, a measure of neural tuning whereby neurons respond less strongly to the repeated presentation of the same stimulus. Seventy-seven SZ, 53 BD, and 49 healthy comparison participants (HC) were examined. In three separate conditions, pictures of objects were presented repeatedly: the same object (SS), different objects from the same category (e.g., two different vases; SD), or different objects from different categories (e.g., a barrel and a clock, DD). Mass-univariate cluster-based permutation analyses identified electrodes and time-windows in which there were significant differences between the SS vs. DD and the SD vs. DD conditions. Mean ERP amplitudes were extracted from these clusters and analyzed for group differences. Results revealed a significant condition difference over parieto-occipital electrodes for the SS-DD comparison between 109–164 ms and for the SD-DD comparison between 78–203 ms, with larger amplitudes in the DD compared to either SS or SD condition. However, there were no significant differences in the pattern of results between groups. Thus, while we found neural adaptation effects using this ERP paradigm, we did not find evidence of group differences. Our results suggest that people with SZ or BD may not exhibit deficits in neural tuning for processing of visual objects using this EEG task with rapidly presented stimuli. However, the results are inconsistent with other studies using different methodologies (e.g., fMRI, behavioral tasks) that have found tuning deficits in people with schizophrenia.
Collapse
Affiliation(s)
- Jonathan K. Wynn
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, United States of America
- * E-mail:
| | - Stephen A. Engel
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Junghee Lee
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, United States of America
| | - Eric A. Reavis
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, United States of America
| | - Michael F. Green
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Wong ACN, Ng TYK, Lui KFH, Yip KHM, Wong YK. Visual training with musical notes changes late but not early electrophysiological responses in the visual cortex. J Vis 2019; 19:8. [PMID: 31318402 DOI: 10.1167/19.7.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual expertise with musical notation is unique. Fluent music readers show selectively higher activity to musical notes than to other visually similar patterns in both the retinotopic and higher-level visual areas and both very early (e.g., C1) and later (e.g., N170) visual event-related potential (ERP) components. This is different from domains such as face and letter perception, of which the neural expertise marker is typically found in the higher-level ventral visual areas and later (e.g., N170) ERP components. An intriguing question concerns whether the visual skills and neural selectivity observed in music-reading experts are a result of the effects of extensive visual experience with musical notation. The current study aimed to investigate the causal relationship between visual experience and its neural changes with musical notation. Novices with no formal musical training experience were trained to visually discriminate between note patterns in the laboratory for 10-26 hr such that their performance was comparable with fluent music readers. The N170 component became more selective for musical notes after training. Training was not, however, followed by changes in the earlier C1 component. The findings show that visual training is enough for causing changes in the responses of the higher-level visual areas to musical notation while the engagement of the early visual areas may involve additional nonvisual factors.
Collapse
Affiliation(s)
- Alan C-N Wong
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Terri Y K Ng
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kelvin F H Lui
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ken H M Yip
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
22
|
Anssari N, Vosoughi R, Mullen K, Mansouri B. Selective Colour Vision Deficits in Multiple Sclerosis at Different Temporal Stages. Neuroophthalmology 2019; 44:16-23. [PMID: 32076444 DOI: 10.1080/01658107.2019.1615960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022] Open
Abstract
Multiple sclerosis (MS) without optic neuritis causes color-vision deficit but the evidence for selective color deficits in parvocellular-Red/Green (PC-RG) and koniocellular-Blue/Yellow (KC-BY) pathways is inconclusive. We investigated selective color-vision deficits at different MS stages. Thirty-one MS and twenty normal participants were tested for achromatic, red-green and blue-yellow sinewave-gratings (0.5 and 2 cycles-per-degree (cpd)) contrast orientation discrimination threshold. Red-green mean threshold at 0.5cpd in established-MS and blue-yellow mean threshold in all MS participants were abnormal. These findings show blue-yellow versus red-green color test is useful in differentiating MS chronicity, which helps to better understand the mechanism of colour-vision involvement in MS.
Collapse
Affiliation(s)
- Neda Anssari
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Reza Vosoughi
- Section of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Kathy Mullen
- Department of Ophthlmology, McGill University, Montreal, Canada
| | - Behzad Mansouri
- Section of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Contrast and spatial frequency modulation for diagnosis of amblyopia: An electrophysiological approach. J Curr Ophthalmol 2019; 31:72-79. [PMID: 30899850 PMCID: PMC6407155 DOI: 10.1016/j.joco.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/15/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose To evaluate the diagnostic value of visual evoked potentials (VEPs) and to find out which test setting has the most sensitivity and specificity for amblyopia diagnosis. Methods Thirty-three adult anisometropic amblyopes were intended in this study and were tested for visual evoked potentials with different stimulus conditions including three spatial frequencies [1, 2, and 4-cycles-per-degree (cpd)] at four contrast levels (100, 50, 25, and 5%). We also tested psychophysical contrast sensitivity and compared the results with electrophysiological ones. We plotted Receiver Operating Characteristic (ROC) curve for each VEP recording and psychophysical contrast sensitivity to evaluate the area under the curve, sensitivity, specificity, and cut-point value of each test stimulus for detecting amblyopic eyes. Results Thirty-three amblyopic and 33 non-amblyopic eyes were examined for psychophysical contrast sensitivity and VEPs. Area under the ROC curve (AURC) findings showed that VEP with different stimulus settings can significantly detect amblyopic eyes, as well as psychophysical contrast sensitivity test. We found that P100 amplitudes had the largest AURC in response to stimuli of 2-cpd spatial frequency at 50 (P < 0.001) and 25% (P < 0.001) contrast levels, respectively. Cut-off amplitudes for these stimuli were 8.65 and 4.50 μV, which had a sensitivity of 0.758 and 0.697 and a specificity of 0.788 and 0.848, respectively. The sensitivity and specificity of VEP P100 amplitude in response to the stimuli with 2 cpd spatial frequency and 50 and 25% contrast were greater than the findings obtained from psychophysical contrast sensitivity test. Conclusion According to our findings, assessment of VEP amplitudes in response to stimuli of 2-cpd spatial frequency at 50 and 25% contrast levels can best detect amblyopia with highest sensitivity and specificity and thus, are the protocols of choice for detection of amblyopic eyes.
Collapse
|
24
|
Stronger responses in the visual cortex of sighted compared to blind individuals during auditory space representation. Sci Rep 2019; 9:1935. [PMID: 30760758 PMCID: PMC6374481 DOI: 10.1038/s41598-018-37821-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
It has been previously shown that the interaction between vision and audition involves early sensory cortices. However, the functional role of these interactions and their modulation due to sensory impairment is not yet understood. To shed light on the impact of vision on auditory spatial processing, we recorded ERPs and collected psychophysical responses during space and time bisection tasks in sighted and blind participants. They listened to three consecutive sounds and judged whether the second sound was either spatially or temporally further from the first or the third sound. We demonstrate that spatial metric representation of sounds elicits an early response of the visual cortex (P70) which is different between sighted and visually deprived individuals. Indeed, only in sighted and not in blind people P70 is strongly selective for the spatial position of sounds, mimicking many aspects of the visual-evoked C1. These results suggest that early auditory processing associated with the construction of spatial maps is mediated by visual experience. The lack of vision might impair the projection of multi-sensory maps on the retinotopic maps used by the visual cortex.
Collapse
|
25
|
Zemon VM, Gordon J. Quantification and statistical analysis of the transient visual evoked potential to a contrast‐reversing pattern: A frequency‐domain approach. Eur J Neurosci 2018; 48:1765-1788. [DOI: 10.1111/ejn.14049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Vance M. Zemon
- Ferkauf Graduate School of PsychologyYeshiva University New York New York
| | - James Gordon
- Department of PsychologyHunter CollegeCity University of New York New York New York
| |
Collapse
|
26
|
Pitzalis S, Strappini F, Bultrini A, Di Russo F. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy. Hum Brain Mapp 2018. [PMID: 29536594 DOI: 10.1002/hbm.24046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy.,Santa Lucia Foundation, IRCCS, Rome, Italy
| | | | - Alessandro Bultrini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy.,Santa Lucia Foundation, IRCCS, Rome, Italy
| |
Collapse
|
27
|
Spatial localization of sound elicits early responses from occipital visual cortex in humans. Sci Rep 2017; 7:10415. [PMID: 28874681 PMCID: PMC5585168 DOI: 10.1038/s41598-017-09142-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Much evidence points to an interaction between vision and audition at early cortical sites. However, the functional role of these interactions is not yet understood. Here we show an early response of the occipital cortex to sound that it is strongly linked to the spatial localization task performed by the observer. The early occipital response to a sound, usually absent, increased by more than 10-fold when presented during a space localization task, but not during a time localization task. The response amplification was not only specific to the task, but surprisingly also to the position of the stimulus in the two hemifields. We suggest that early occipital processing of sound is linked to the construction of an audio spatial map that may utilize the visual map of the occipital cortex.
Collapse
|
28
|
Thigpen NN, Kappenman ES, Keil A. Assessing the internal consistency of the event-related potential: An example analysis. Psychophysiology 2017; 54:123-138. [PMID: 28000264 DOI: 10.1111/psyp.12629] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Abstract
ERPs are widely and increasingly used to address questions in psychophysiological research. As discussed in this special issue, a renewed focus on questions of reliability and stability marks the need for intuitive, quantitative descriptors that allow researchers to communicate the robustness of ERP measures used in a given study. This report argues that well-established indices of internal consistency and effect size meet this need and can be easily extracted from most ERP datasets, as demonstrated with example analyses using a representative dataset from a feature-based visual selective attention task. We demonstrate how to measure the internal consistency of three aspects commonly considered in ERP studies: voltage measurements for specific time ranges at selected sensors, voltage dynamics across all time points of the ERP waveform, and the distribution of voltages across the scalp. We illustrate methods for quantifying the robustness of experimental condition differences, by calculating effect size for different indices derived from the ERP. The number of trials contributing to the ERP waveform was manipulated to examine the relationship between signal-to-noise ratio (SNR), internal consistency, and effect size. In the present example dataset, satisfactory consistency (Cronbach's alpha > 0.7) of individual voltage measurements was reached at lower trial counts than were required to reach satisfactory effect sizes for differences between experimental conditions. Comparing different metrics of robustness, we conclude that the internal consistency and effect size of ERP findings greatly depend on the quantification strategy, the comparisons and analyses performed, and the SNR.
Collapse
Affiliation(s)
- Nina N Thigpen
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida, USA
| | - Emily S Kappenman
- UC Davis Center for Mind & Brain, University of California, Davis, California, USA
| | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans. Brain Topogr 2017; 30:450-460. [PMID: 28474167 DOI: 10.1007/s10548-016-0530-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 10/19/2022]
Abstract
Decades of intracranial electrophysiological investigation into the primary visual cortex (V1) have produced many fundamental insights into the computations carried out in low-level visual circuits of the brain. Some of the most important work has been simply concerned with the precise measurement of neural response variations as a function of elementary stimulus attributes such as contrast and size. Surprisingly, such simple but fundamental characterization of V1 responses has not been carried out in human electrophysiology. Here we report such a detailed characterization for the initial "C1" component of the scalp-recorded visual evoked potential (VEP). The C1 is known to be dominantly generated by initial afferent activation in V1, but is difficult to record reliably due to interindividual anatomical variability. We used pattern-pulse multifocal VEP mapping to identify a stimulus position that activates the left lower calcarine bank in each individual, and afterwards measured robust negative C1s over posterior midline scalp to gratings presented sequentially at that location. We found clear and systematic increases in C1 peak amplitude and decreases in peak latency with increasing size as well as with increasing contrast. With a sample of 15 subjects and ~180 trials per condition, reliable C1 amplitudes of -0.46 µV were evoked at as low a contrast as 3.13% and as large as -4.82 µV at 100% contrast, using stimuli of 3.33° diameter. A practical implication is that by placing sufficiently-sized stimuli to target favorable calcarine cortical loci, robust V1 responses can be measured at contrasts close to perceptual thresholds, which could greatly facilitate principled studies of early visual perception and attention.
Collapse
|
30
|
Zueva MV, Tsapenko IV, Lantukh EP, Maglakelidze NM. [Functional examinations of visual channels: physiological basis]. Vestn Oftalmol 2017; 133:97-102. [PMID: 28291207 DOI: 10.17116/oftalma2017133197-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, technical details of visual evoked potentials (VEP) assessment and pattern electroretinography (PERG) are reviewed. Both methods are used to perform an objective functional examination of visual channels and to clarify the level, at which they have been damaged. Contributions of parvo- (P), magno- (M) and koniocellular (K) systems to the morphology of PERG and VEP responses are discussed with account to test conditions, selectively supportive of the activity of particular cell populations. The review analyzes the physiological role of such stimulation parameters as brightness and color contrast of the pattern elements as well as spatial and temporal frequency in detecting dysfunction of color channels and mistuning of the P- and M- pathways. Different times taken for neuronal integration and signal conduction along the M- and P- pathways determine the timing of the P- and M- VEP components, allowing us to judge their contribution to VEP morphology from the same recording.
Collapse
Affiliation(s)
- M V Zueva
- Moscow Helmholtz Research Institute of Eye Diseases, Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya St., Moscow, Russian Federation, 105062
| | - I V Tsapenko
- Moscow Helmholtz Research Institute of Eye Diseases, Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya St., Moscow, Russian Federation, 105062
| | - E P Lantukh
- Moscow Helmholtz Research Institute of Eye Diseases, Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya St., Moscow, Russian Federation, 105062
| | - N M Maglakelidze
- Moscow Helmholtz Research Institute of Eye Diseases, Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya St., Moscow, Russian Federation, 105062
| |
Collapse
|
31
|
Marcar VL, Jäncke L. To see or not to see; the ability of the magno- and parvocellular response to manifest itself in the VEP determines its appearance to a pattern reversing and pattern onset stimulus. Brain Behav 2016; 6:e00552. [PMID: 27843702 PMCID: PMC5102647 DOI: 10.1002/brb3.552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The relationship between stimulus property, brain activity, and the VEP is still a matter of uncertainty. METHOD We recorded the VEP of 43 volunteers when viewing a series of dartboard images presented as both a pattern reversing and pattern onset/offset stimulus. Across the dartboard images, the total stimulus area undergoing a luminance contrast change was varied in a graded manner. RESULTS We confirmed the presence of two independent neural processing stages. The amplitude of VEP components across our pattern reversing stimuli signaled a phasic neural response based on a temporal luminance contrast selective mechanism. The amplitude of VEP components across the pattern onset stimuli signaled both a phasic and a tonic neural response based on a temporal- and spatial luminance contrast selective mechanism respectively. Oscillation frequencies in the VEP suggested modulation of the phasic neural response by feedback from areas of the dorsal stream, while feedback from areas of the ventral stream modulated the tonic neural response. Each processing stage generated a sink and source phase in the VEP. Source localization indicated that during the sink phase electric current density was highest in V1, while during the source phase electric current density was highest in extra-striate cortex. Our model successfully predicted the appearance of the VEP to our images whether presented as a pattern reversing or a pattern onset/offset stimulus. CONCLUSIONS Focussing on the effects of a phasic and tonic response rather than contrast response function on the VEP, enabled us to develop a theory linking stimulus property, neural activity and the VEP.
Collapse
Affiliation(s)
| | - Lutz Jäncke
- Department of PsychologyUniversity of ZürichZürich‐OerlikonSwitzerland
| |
Collapse
|
32
|
Cacioppo S, Weiss RM, Cacioppo JT. Dynamic spatiotemporal brain analyses of the visual checkerboard task: Similarities and differences between passive and active viewing conditions. Psychophysiology 2016; 53:1496-506. [PMID: 27393016 DOI: 10.1111/psyp.12723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/10/2016] [Indexed: 12/01/2022]
Abstract
We introduce a new analytic technique for the microsegmentation of high-density EEG to identify the discrete brain microstates evoked by the visual reversal checkerboard task. To test the sensitivity of the present analytic approach to differences in evoked brain microstates across experimental conditions, subjects were instructed to (a) passively view the reversals of the checkerboard (passive viewing condition), or (b) actively search for a target stimulus that may appear at the fixation point, and they were offered a monetary reward if they correctly detected the stimulus (active viewing condition). Results revealed that, within the first 168 ms of a checkerboard presentation, the same four brain microstates were evoked in the passive and active viewing conditions, whereas the brain microstates evoked after 168 ms differed between these two conditions, with more brain microstates elicited in the active than in the passive viewing condition. Additionally, distinctions were found in the active condition between a change in a scalp configuration that reflects a change in microstate and a change in scalp configuration that reflects a change in the level of activation of the same microstate. Finally, the bootstrapping procedure identified that two microstates lacked robustness even though statistical significance thresholds were met, suggesting these microstates should be replicated prior to placing weight on their generalizability across individuals. These results illustrate the utility of the analytic approach and provide new information about the spatiotemporal dynamics of the brain states underlying passive and active viewing in the visual checkerboard task.
Collapse
Affiliation(s)
- Stephanie Cacioppo
- Department of Psychiatry and Behavioral Neuroscience, and High-Performance Electrical Neuroimaging Laboratory, Biological Sciences Division, The University of Chicago Prtizker School of Medicine, Chicago, Illinois, USA.
| | - Robin M Weiss
- Research Computing Center, University of Chicago, Chicago, Illinois, USA
| | - John T Cacioppo
- Department of Psychology and Center for Cognitive and Social Neuroscience, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Anken J, Knebel JF, Crottaz-Herbette S, Matusz PJ, Lefebvre J, Murray MM. Cue-dependent circuits for illusory contours in humans. Neuroimage 2016; 129:335-344. [DOI: 10.1016/j.neuroimage.2016.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022] Open
|
34
|
On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials. Brain Topogr 2016; 29:506-14. [DOI: 10.1007/s10548-016-0475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
35
|
Kiiski HSM, Ní Riada S, Lalor EC, Gonçalves NR, Nolan H, Whelan R, Lonergan R, Kelly S, O'Brien MC, Kinsella K, Bramham J, Burke T, Ó Donnchadha S, Hutchinson M, Tubridy N, Reilly RB. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis. PLoS One 2016; 11:e0146084. [PMID: 26726800 PMCID: PMC4699709 DOI: 10.1371/journal.pone.0146084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/11/2015] [Indexed: 01/21/2023] Open
Abstract
Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis.
Collapse
Affiliation(s)
- Hanni S. M. Kiiski
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Sinéad Ní Riada
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Edmund C. Lalor
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Nuno R. Gonçalves
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Hugh Nolan
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert Whelan
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, UCD College of Human Sciences, University College Dublin, Dublin, Ireland
| | - Róisín Lonergan
- Department of Neurology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Siobhán Kelly
- Department of Neurology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Marie Claire O'Brien
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, UCD College of Human Sciences, University College Dublin, Dublin, Ireland
| | - Katie Kinsella
- Department of Neurology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Jessica Bramham
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, UCD College of Human Sciences, University College Dublin, Dublin, Ireland
| | - Teresa Burke
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, UCD College of Human Sciences, University College Dublin, Dublin, Ireland
- School of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
| | - Seán Ó Donnchadha
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, UCD College of Human Sciences, University College Dublin, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Niall Tubridy
- Department of Neurology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Richard B. Reilly
- Neural Engineering Group, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Engineering, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Rokszin AA, Győri-Dani D, Nyúl LG, Csifcsák G. Electrophysiological correlates of top-down effects facilitating natural image categorization are disrupted by the attenuation of low spatial frequency information. Int J Psychophysiol 2015; 100:19-27. [PMID: 26707649 DOI: 10.1016/j.ijpsycho.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022]
Abstract
The modulatory effects of low and high spatial frequencies on the posterior C1, P1 and N1 event-related potential (ERP) amplitudes have long been known from previous electrophysiological studies. There is also evidence that categorization of complex natural images relies on top-down processes, probably by facilitating contextual associations during the recognition process. However, to our knowledge, no study has investigated so far how such top-down effects are manifested in scalp ERPs, when presenting natural images with attenuated low or high spatial frequency information. Twenty-one healthy subjects participated in an animal vs. vehicle categorization task with intact grayscale stimuli and images predominantly containing high (HSF) or low spatial frequencies (LSF). ERP scalp maps and amplitudes/latencies measured above occipital, parietal and frontocentral sites were compared among the three stimulus conditions. Although early occipital components (C1 and P1) were modulated by spatial frequencies, the time range of the N1 was the earliest to show top-down effects for images with unmodified low spatial frequency spectrum (intact and LSF stimuli). This manifested in ERP amplitude changes spreading to anterior scalp sites and shorter posterior N1 latencies. Finally, the frontocentral N350 and the centroparietal LPC were differently influenced by spatial frequency filtering, with the LPC being the only component to show an amplitude and latency modulation congruent with the behavioral responses (sensitivity index and reaction times). Our results strengthen the coarse-to-fine model of object recognition and provide electrophysiological evidence for low spatial frequency-based top-down effects within the first 200 ms of visual processing.
Collapse
Affiliation(s)
- Adrienn Aranka Rokszin
- Doctoral School of Education, Faculty of Arts, University of Szeged, Petőfi Sándor sgt. 30-34, 6722 Szeged, Hungary
| | - Dóra Győri-Dani
- Doctoral School of Education, Faculty of Arts, University of Szeged, Petőfi Sándor sgt. 30-34, 6722 Szeged, Hungary
| | - László G Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, University of Szeged, Árpád tér 2, 6720 Szeged, Hungary
| | - Gábor Csifcsák
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Arts, University of Szeged, Egyetem u. 2, 6722 Szeged, Hungary.
| |
Collapse
|
37
|
Crewther DP, Crewther D, Bevan S, Goodale MA, Crewther SG. Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150226. [PMID: 27019719 PMCID: PMC4807440 DOI: 10.1098/rsos.150226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Saccadic suppression-the reduction of visual sensitivity during rapid eye movements-has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35-45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80-160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement.
Collapse
Affiliation(s)
- David P. Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Daniel Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Stephanie Bevan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Melvyn A. Goodale
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
38
|
Leone LM, McCourt ME. Dissociation of perception and action in audiovisual multisensory integration. Eur J Neurosci 2015; 42:2915-22. [PMID: 26417674 PMCID: PMC4715611 DOI: 10.1111/ejn.13087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
The ‘temporal rule’ of multisensory integration (MI) proposes that unisensory stimuli, and the neuronal responses they evoke, must fall within a window of integration. Ecological validity demands that MI should occur only for physically simultaneous events (which may give rise to non‐simultaneous neural activations), and spurious neural response simultaneities unrelated to environmental multisensory occurrences must somehow be rejected. Two experiments investigated the requirements of simultaneity for facilitative MI. Experiment 1 employed an reaction time (RT)/race model paradigm to measure audiovisual (AV) MI as a function of AV stimulus‐onset asynchrony (SOA) under fully dark adapted conditions for visual stimuli that were either rod‐ or cone‐isolating. Auditory stimulus intensity was constant. Despite a 155‐ms delay in mean RT to the scotopic vs. photopic stimulus, facilitative AV MI in both conditions occurred exclusively at an AV SOA of 0 ms. Thus, facilitative MI demands both physical and physiological simultaneity. Experiment 2 investigated the accuracy of simultaneity and temporal order judgements under the same stimulus conditions. Judgements of AV stimulus simultaneity or temporal order were significantly influenced by stimulus intensity, indicating different simultaneity requirements for these tasks. The possibility was considered that there are mechanisms by which the nervous system may take account of variations in response latency arising from changes in stimulus intensity in order to selectively integrate only those physiological simultaneities that arise from physical simultaneities. It was proposed that separate subsystems for AV MI exist that pertain to action and perception.
Collapse
Affiliation(s)
- Lynnette M Leone
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, 58108, USA
| | - Mark E McCourt
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
39
|
Mahoney JR, Molholm S, Butler JS, Sehatpour P, Gomez-Ramirez M, Ritter W, Foxe JJ. Keeping in touch with the visual system: spatial alignment and multisensory integration of visual-somatosensory inputs. Front Psychol 2015; 6:1068. [PMID: 26300797 PMCID: PMC4525670 DOI: 10.3389/fpsyg.2015.01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/13/2015] [Indexed: 11/21/2022] Open
Abstract
Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration (MSI) at very early sensory processing levels. While MSI is said to be governed by stimulus properties including space, time, and magnitude, violations of these rules have been documented. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory (VS) integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V + S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55 ms). In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to VS pairings.
Collapse
Affiliation(s)
- Jeannette R Mahoney
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; Division of Cognitive and Motor Aging, Department of Neurology, Albert Einstein College of Medicine, New York NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA ; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, New York NY, USA
| | - John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA
| | - Pejman Sehatpour
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA
| | - Manuel Gomez-Ramirez
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA
| | - Walter Ritter
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA ; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, New York NY, USA
| |
Collapse
|
40
|
Núñez D, Oelkers-Ax R, de Haan S, Ludwig M, Sattel H, Resch F, Weisbrod M, Fuchs T. Do deficits in the magnocellular priming underlie visual derealization phenomena? Preliminary neurophysiological and self-report results in first-episode schizophrenia patients. Schizophr Res 2014; 159:441-9. [PMID: 25239127 DOI: 10.1016/j.schres.2014.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Early visual impairments probably partially caused by impaired interactions between magnocellular (M) and parvocellular (P) pathways (M priming deficit), and disturbances of basic self-awareness or self-disorders (SDs) are core features of schizophrenia. The relationships between these features have not yet been studied. We hypothesized that the M priming was impaired in first-episode patients and that this deficit was associated with visual aspects of SDs. AIM To investigate early visual processing in a sample of first-episode schizophrenia patients and to explore the relationships between M and P functioning and visual aspects of SDs addressed by the Examination of Anomalous Self-Experience (EASE) interview. METHOD Nine stimulating conditions were used to investigate M and P pathways and their interaction in a pattern reversal visually evoked potential (VEP) paradigm. N80 at mixed M- and P-conditions was used to investigate magnocellular priming. Generators were analyzed using source localization (Brain Electrical Source Analysis software: BESA). VEPs of nineteen first-episode schizophrenia patients were compared to those of twenty matched healthy controls by a bootstrap resample procedure. Visual aspects of SDs were analyzed through a factor analysis to separate symptom clusters of derealization phenomena. Thereafter, the associations between the main factors and the N80 component were explored using linear mixed models. RESULTS Factor analyses separated two EASE factors ("distance to the world", and "intrusive world"). The N80 component was represented by a single dipole located in the occipital visual cortex. The bootstrap analysis yielded significant amplitude reductions and prolonged latencies in first-episode patients relative to controls in response to mixed M-P conditions, and normal amplitudes and latencies in response to isolated P- and M-biased stimulation. Exploratory analyses showed significant negative correlations between the N80 amplitude values at mixed M-P conditions and the EASE factor "distance to the world", i.e. relatively higher amplitudes in the patient group were associated with higher subjective perceived derealization ("distance to the world"). CONCLUSIONS The early VEP component N80 evoked by mixed M-P conditions is assumed to be a correlate of M priming, and showed reduced amplitudes and longer latencies in first-episode patients. It probably reflects a hypoactivation of the M-pathway. The negative association between visual SDs (derealization phenomena characterized by visual experiences of being more distant to the world), and the M priming deficit was counterintuitive. It might indicate a dysregulated activity of the M-pathway in patients with SDs. Further research is needed to better understand this preliminary finding.
Collapse
Affiliation(s)
- D Núñez
- Faculty of Psychology, University de Talca, Chile; Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany.
| | - R Oelkers-Ax
- Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany; Department of Child and Adolescent Psychiatry, University of Heidelberg, Blumenstraße 8, 69115 Heidelberg, Germany.
| | - S de Haan
- Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany
| | - M Ludwig
- Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany
| | - H Sattel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universitaet Muenchen, Langerstraße 3, 81675 Munich, Germany.
| | - F Resch
- Department of Child and Adolescent Psychiatry, University of Heidelberg, Blumenstraße 8, 69115 Heidelberg, Germany.
| | - M Weisbrod
- Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany; Klinikum Karlsbad-Langensteinbach, Guttmannstrasse 1, 76307 Karlsbad, Germany.
| | - T Fuchs
- Psychiatry Department, Centre for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany.
| |
Collapse
|
41
|
Tapia E, Beck DM. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation. Front Psychol 2014; 5:1173. [PMID: 25374548 PMCID: PMC4204434 DOI: 10.3389/fpsyg.2014.01173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.
Collapse
Affiliation(s)
- Evelina Tapia
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA
| | - Diane M Beck
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA ; Department of Psychology, University of Illinois Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
42
|
The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping. Neuroimage 2014; 90:360-73. [PMID: 24365674 DOI: 10.1016/j.neuroimage.2013.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 11/21/2022] Open
Abstract
The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent.
Collapse
|
43
|
Wong YK, Peng C, Fratus KN, Woodman GF, Gauthier I. Perceptual expertise and top-down expectation of musical notation engages the primary visual cortex. J Cogn Neurosci 2014; 26:1629-43. [PMID: 24666163 DOI: 10.1162/jocn_a_00616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Most theories of visual processing propose that object recognition is achieved in higher visual cortex. However, we show that category selectivity for musical notation can be observed in the first ERP component called the C1 (measured 40-60 msec after stimulus onset) with music-reading expertise. Moreover, the C1 note selectivity was observed only when the stimulus category was blocked but not when the stimulus category was randomized. Under blocking, the C1 activity for notes predicted individual music-reading ability, and behavioral judgments of musical stimuli reflected music-reading skill. Our results challenge current theories of object recognition, indicating that the primary visual cortex can be selective for musical notation within the initial feedforward sweep of activity with perceptual expertise and with a testing context that is consistent with the expertise training, such as blocking the stimulus category for music reading.
Collapse
|
44
|
Benwell CSY, Harvey M, Thut G. On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length. Neuroimage 2014; 86:370-80. [PMID: 24128738 PMCID: PMC3980346 DOI: 10.1016/j.neuroimage.2013.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022] Open
Abstract
Healthy participants tend to show systematic biases in spatial attention, usually to the left. However, these biases can shift rightward as a result of a number of experimental manipulations. Using electroencephalography (EEG) and a computerized line bisection task, here we investigated for the first time the neural correlates of changes in spatial attention bias induced by line-length (the so-called line-length effect). In accordance with previous studies, an overall systematic left bias (pseudoneglect) was present during long line but not during short line bisection performance. This effect of line-length on behavioral bias was associated with stronger right parieto-occipital responses to long as compared to short lines in an early time window (100-200ms) post-stimulus onset. This early differential activation to long as compared to short lines was task-independent (present even in a non-spatial control task not requiring line bisection), suggesting that it reflects a reflexive attentional response to long lines. This was corroborated by further analyses source-localizing the line-length effect to the right temporo-parietal junction (TPJ) and revealing a positive correlation between the strength of this effect and the magnitude by which long lines (relative to short lines) drive a behavioral left bias across individuals. Therefore, stimulus-driven left bisection bias was associated with increased right hemispheric engagement of areas of the ventral attention network. This further substantiates that this network plays a key role in the genesis of spatial bias, and suggests that post-stimulus TPJ-activity at early information processing stages (around the latency of the N1 component) contributes to the left bias.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology, University of Glasgow, Glasgow G12 8QB, UK.
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
45
|
Murd C, Kreegipuu K, Kuldkepp N, Raidvee A, Tamm M, Allik J. Visual evoked potentials to change in coloration of a moving bar. Front Hum Neurosci 2014; 8:19. [PMID: 24478683 PMCID: PMC3900876 DOI: 10.3389/fnhum.2014.00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
In our previous study we found that it takes less time to detect coloration change in a moving object compared to coloration change in a stationary one (Kreegipuu etal., 2006). Here, we replicated the experiment, but in addition to reaction times (RTs) we measured visual evoked potentials (VEPs), to see whether this effect of motion is revealed at the cortical level of information processing. We asked our subjects to detect changes in coloration of stationary (0(°)/s) and moving bars (4.4 and 17.6(°)/s). Psychophysical results replicate the findings from the previous study showing decreased RTs to coloration changes with increase of velocity of the color changing stimulus. The effect of velocity on VEPs was opposite to the one found on RTs. Except for component N1, the amplitudes of VEPs elicited by the coloration change of faster moving objects were reduced than those elicited by the coloration change of slower moving or stationary objects. The only significant effect of velocity on latency of peaks was found for P2 in frontal region. The results are discussed in the light of change-to-change interval and the two methods reflecting different processing mechanisms.
Collapse
Affiliation(s)
- Carolina Murd
- Institute of Psychology, University of Tartu, TartuEstonia
- Doctoral School of Behavioural, Social and Health Sciences, University of Tartu, TartuEstonia
- Institute of Public Law, University of Tartu, TallinnEstonia
| | | | - Nele Kuldkepp
- Institute of Psychology, University of Tartu, TartuEstonia
- Doctoral School of Behavioural, Social and Health Sciences, University of Tartu, TartuEstonia
| | - Aire Raidvee
- Institute of Psychology, University of Tartu, TartuEstonia
| | - Maria Tamm
- Institute of Psychology, University of Tartu, TartuEstonia
- Doctoral School of Behavioural, Social and Health Sciences, University of Tartu, TartuEstonia
| | - Jüri Allik
- Institute of Psychology, University of Tartu, TartuEstonia
- Estonian Academy of SciencesEstonia
| |
Collapse
|
46
|
On using isoluminant stimuli to separate magno- and parvocellular responses in psychophysical experiments-a few words of caution. Behav Res Methods 2013; 45:637-45. [PMID: 23292567 DOI: 10.3758/s13428-012-0290-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isoluminant (or equiluminant) color stimuli (i.e., those that contain variations only in chromaticity) have been employed in attempts to separate magno- and parvocellular responses in psychophysical and noninvasive electrophysiological experiments. The justification for this has been the assumption that magnocellular cells, unlike parvocellular neurons, do not respond to stimuli varying only in hue. However, several problems are associated with this notion: (1) under many conditions, magnocellular neurons are not fully silenced at isoluminance, and (2) in many circumstances, parvocellular responses are substantially reduced at isoluminance. To rely upon isoluminant stimuli to "bias" stimuli toward the parvocellular system also faces obstacles. Therefore, caution is required when attempting to use isoluminant color to separate magno- and parvocellular responses.
Collapse
|
47
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|
48
|
Murray MM, Herrmann CS. Illusory contours: a window onto the neurophysiology of constructing perception. Trends Cogn Sci 2013; 17:471-81. [PMID: 23928336 DOI: 10.1016/j.tics.2013.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/28/2022]
Abstract
Seeing seems effortless, despite the need to segregate and integrate visual information that varies in quality, quantity, and location. The extent to which seeing passively recapitulates the external world is challenged by phenomena such as illusory contours, an example of visual completion whereby borders are perceived despite their physical absence in the image. Instead, visual completion and seeing are increasingly conceived as active processes, dependent on information exchange across neural populations. How this is instantiated in the brain remains controversial. Divergent models emanate from single-unit and population-level electrophysiology, neuroimaging, and neurostimulation studies. We reconcile discrepant findings from different methods and disciplines, and underscore the importance of taking into account spatiotemporal brain dynamics in generating models of brain function and perception.
Collapse
Affiliation(s)
- Micah M Murray
- The Functional Electrical Neuroimaging Laboratory, Neuropsychology and Neurorehabilitation Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
49
|
Leone LM, McCourt ME. The roles of physical and physiological simultaneity in audiovisual multisensory facilitation. Iperception 2013; 4:213-28. [PMID: 24349682 PMCID: PMC3859565 DOI: 10.1068/i0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/12/2012] [Indexed: 10/27/2022] Open
Abstract
A series of experiments measured the audiovisual stimulus onset asynchrony (SOAAV), yielding facilitative multisensory integration. We evaluated (1) the range of SOAAV over which facilitation occurred when unisensory stimuli were weak; (2) whether the range of SOAAV producing facilitation supported the hypothesis that physiological simultaneity of unisensory activity governs multisensory facilitation; and (3) whether AV multisensory facilitation depended on relative stimulus intensity. We compared response-time distributions to unisensory auditory (A) and visual (V) stimuli with those to AV stimuli over a wide range (300 and 20 ms increments) of SOAAV, across four conditions of varying stimulus intensity. In condition 1, the intensity of unisensory stimuli was adjusted such that d' ≈ 2. In condition 2, V stimulus intensity was increased (d' > 4), while A stimulus intensity was as in condition 1. In condition 3, A stimulus intensity was increased (d' > 4) while V stimulus intensity was as in condition 1. In condition 4, both A and V stimulus intensities were increased to clearly suprathreshold levels (d' > 4). Across all conditions of stimulus intensity, significant multisensory facilitation occurred exclusively for simultaneously presented A and V stimuli. In addition, facilitation increased as stimulus intensity increased, in disagreement with inverse effectiveness. These results indicate that the requirements for facilitative multisensory integration include both physical and physiological simultaneity.
Collapse
Affiliation(s)
- Lynnette M Leone
- Center for Visual and Cognitive Neuroscience, Department of Psychology, NDSU Department 2765, P.O. Box 6050, College of Science and Mathematics, North Dakota State University, Fargo, ND 58105-6050, USA; e-mail:
| | - Mark E McCourt
- Center for Visual and Cognitive Neuroscience, Department of Psychology, NDSU Department 2765, P.O. Box 6050, College of Science and Mathematics, North Dakota State University, Fargo, ND 58105-6050, USA; e-mail:
| |
Collapse
|
50
|
Frey HP, Molholm S, Lalor EC, Russo NN, Foxe JJ. Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder. Eur J Neurosci 2013; 38:2125-38. [PMID: 23692590 DOI: 10.1111/ejn.12243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Abstract
A key feature of early visual cortical regions is that they contain discretely organized retinotopic maps. Titration of these maps must occur through experience, and the fidelity of their spatial tuning will depend on the consistency and accuracy of the eye movement system. Anomalies in fixation patterns and the ballistics of eye movements are well documented in autism spectrum disorder (ASD), with off-center fixations a hallmark of the phenotype. We hypothesized that these atypicalities might affect the development of visuo-spatial maps and specifically that peripheral inputs might receive altered processing in ASD. Using high-density recordings of visual evoked potentials (VEPs) and a novel system-identification approach known as VESPA (visual evoked spread spectrum analysis), we assessed sensory responses to centrally and peripherally presented stimuli. Additionally, input luminance was varied to bias responsiveness to the magnocellular system, given previous suggestions of magnocellular-specific deficits in ASD. Participants were 22 ASD children (7-17 years of age) and 31 age- and performance-IQ-matched neurotypical controls. Both VEP and VESPA responses to central presentations were indistinguishable between groups. In contrast, peripheral presentations resulted in significantly greater early VEP and VESPA amplitudes in the ASD cohort. We found no evidence that anomalous enhancement was restricted to magnocellular-biased responses. The extent of peripheral response enhancement was related to the severity of stereotyped behaviors and restricted interests, cardinal symptoms of ASD. The current results point to differential visuo-spatial cortical mapping in ASD, shedding light on the consequences of peculiarities in gaze and stereotyped visual behaviors often reported by clinicians working with this population.
Collapse
Affiliation(s)
- Hans-Peter Frey
- Department of Pediatrics and Neuroscience, The Sheryl and Daniel R Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|