1
|
Lin LH, Zamuco RD, Shukla PS. Ovarian Clear Cell Carcinoma and Markers of Epithelial-Mesenchymal Transition (EMT): Immunohistochemical Characterization of Tumor Budding. Int J Gynecol Pathol 2023; 42:602-612. [PMID: 36706438 DOI: 10.1097/pgp.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor budding, largely considered a manifestation of epithelial-mesenchymal transition (EMT) is an established prognostic marker for several cancers. In a recent study, tumor budding was associated with poor clinical outcomes in early-stage ovarian clear cell carcinoma. Here, we evaluated the immune expression of 3 proteins shown to be associated with EMT (E-cadherin, β-catenin, and glypican-3) in 72 primary tumors of ovarian clear cell carcinoma with median follow-up of 39.47 mo. E-cadherin and β-catenin expression was further evaluated in tumor buds in 29 (40%) cases. In the tumor mass, diffuse membranous expression of E-cadherin and β-catenin was seen in 83% (60/72) and 81% (58/72) cases, respectively. Nuclear accumulation of E-cadherin was seen in 7 (10%) cases, while none of the cases showed nuclear β-catenin expression. Glypican-3 expression was diffuse in 33.3% (24/72), patchy in 29.2% (21/72), and absent in 37.5% (27/72) cases. Evaluation of tumor buds showed aberrant patterns of expression (complete loss/cytoplasmic accumulation/diminished, discontinuous incomplete membranous staining) of E-cadherin in 29/29 (100%) and of β-catenin in 26/29 (90%) cases. E-cadherin, β-catenin, and glypican-3 expression in the main tumor mass had no association with stage, lymph node status, recurrent/progressive disease, status at last follow-up, survival and histopathologic features ( P >0.05). Our finding of aberrant expression of both E-cadherin and β-catenin in tumor buds indicates involvement of Wnt signaling pathway/EMT in tumor budding and outlines its significance as a prognostic marker especially for early-stage ovarian clear cell carcinoma.
Collapse
|
2
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
3
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Qiang Z, Zhang H, Jin S, Yan C, Li Z, Tao L, Yu H. The prognostic value of arginase-1 and glypican-3 expression levels in patients after surgical intrahepatic cholangiocarcinoma resection. World J Surg Oncol 2021; 19:316. [PMID: 34715880 PMCID: PMC8556943 DOI: 10.1186/s12957-021-02426-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the prognostic value of arginase-1 (Arg-1) and glypican-3 (GPC-3) in patients with intrahepatic cholangiocarcinoma (ICC). Methods Two hundred and thirty-seven patients with ICC were included in this study. All patients had undergone radical surgery and had complete clinical information. Immunohistochemistry was used to assess the levels of Arg-1 and GPC-3 in ICC tissues. Univariate and multivariate analyses were conducted to identify independent risk factors in ICC. The relationship between Arg-1 and GPC-3 levels and patient survival was determined using the Kaplan-Meier method. Results High Arg-1 and GPC-3 expression levels were associated with poor prognosis in patients with ICC, and they could be as new prognostic biomarkers in ICC. Conclusion Arg-1 and GPC-3 can serve as independent prognostic biomarkers in ICC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02426-9.
Collapse
Affiliation(s)
- Zeyuan Qiang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Jin
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Cao Yan
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, Wang J, Yang Y, Wang G. Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Front Oncol 2021; 11:699475. [PMID: 34458143 PMCID: PMC8386172 DOI: 10.3389/fonc.2021.699475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Neoadjuvant chemoradiotherapy has been widely used in the treatment of locally advanced rectal cancer due to the excellent advantages of irradiation in cancer therapy. Unfortunately, not every patient can benefit from this treatment, therefore, it is of great significance to explore biomarkers that can predict irradiation sensitivity. In this study, we screened microRNAs (miRNAs) which were positively correlated with irradiation resistance and found that miRNA-552 and miRNA-183 families were positively correlated with the irradiation resistance of rectal cancer, and found that high expression of miRNA-96-5p enhanced the irradiation resistance of rectal cancer cells through direct regulation of the GPC3 gene and abnormal activation of the canonical Wnt signal transduction pathway. Based on the radioreactivity results of patient-derived xenograft models, this is the first screening report for radio-resistant biomarkers in rectal cancer. Our results suggest that miRNA-96-5p expression is an important factor affecting the radiation response of colorectal cancer cells.
Collapse
Affiliation(s)
- Fengpeng Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyue Wu
- Department of Oncology, Hebei Provincial People's Hospital, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiao Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congrong Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuguang Ren
- Laboratory Animal Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafan Yang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Alshammari FOFO, Al-Saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Glypican-1 Overexpression in Different Types of Breast Cancers. Onco Targets Ther 2021; 14:4309-4318. [PMID: 34366675 PMCID: PMC8334627 DOI: 10.2147/ott.s315200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Treatment of metastatic breast cancer patients is challenging and remains a major underlying cause of female mortality. Understanding molecular alterations in tumor development is critical to identify novel biomarkers and targets for cancer diagnosis and therapy. One of the aberrant cancer expressions gaining recent research interest is glypican-1. Several studies reported strong glypican-1 expression in various types of human cancers. However, none of these investigated glypican-1 expression in a large cohort of breast cancer histopathological subtypes. Patients and Methods Immunohistochemistry was used to assess glypican-1 expression in 220 breast cancer patients and its relation to demographic and clinical features, as well as important prognostic immunohistochemical markers for breast cancer. Results Intense glypican-1 expression was recognized in all breast cancer histopathological subtypes. Normal, healthy breast tissue displayed a heterogeneous low expression (20%). Importantly, a strong differential in glypican-1 expression was determined between normal and malignant breast tissues. Moreover, there was a significantly high rate of glypican-1 expression in advanced grades of breast cancer patients and larger tumor sizes. Unfortunately, the glypican-1 expression demonstrated no obvious relationship with the expression of various biomarkers in breast cancer. Conclusion This study may establish glypican-1 as a promising new therapeutic target for the development of therapy in breast cancer.
Collapse
Affiliation(s)
- Fatemah O F O Alshammari
- Department of Medical Lab technology, Faculty of health sciences, The Public Authority for Applied Education and Training, Kuwait, Kuwait
| | - Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-karak, Jordan
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-karak, Jordan
| | | | | |
Collapse
|
7
|
Grillo PK, Győrffy B, Götte M. Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J Cancer Res Clin Oncol 2021; 147:1937-1955. [PMID: 33742285 PMCID: PMC8164625 DOI: 10.1007/s00432-021-03597-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Purpose Dysregulated expression of proteoglycans influences the outcome and progression of numerous cancers. Several studies have investigated the role of individual glypicans in cancer, however, the impact of the whole glypican family of heparan sulfate proteoglycans on prognosis of a large patient cohort of breast cancer patients has not yet been investigated. In the present study, our aim was to investigate the prognostic power of the glypicans in breast cancer patients. Methods We used a public database including both gene expression data and survival information for 3951 breast cancer patients to determine the prognostic value of glypicans on relapse-free survival using Cox regression analysis. Moreover, we performed quantitative Real-Time PCR to determine glypican gene expression levels in seven representative breast cancer cell lines. Results We found that high GPC3 levels were associated with a better prognosis in overall breast cancer patients. When stratified by hormone receptor status, we found that in worse prognosis subtypes low GPC1 levels correlate with a longer relapse-free survival, and in more favorable subtypes low GPC6 was associated with longer survival. Conclusion Our study concludes that glypicans could act as subtype-specific biomarkers for the prognosis of breast cancer patients and sparks hope for future research on glypicans possibly eventually providing targets for the treatment of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03597-4.
Collapse
Affiliation(s)
- Paulina Karin Grillo
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
8
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
9
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
11
|
32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma. J Transl Med 2020; 18:295. [PMID: 32746924 PMCID: PMC7398316 DOI: 10.1186/s12967-020-02462-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background Treatment of hepatocellular carcinoma (HCC) using antibody-based targeted therapies, such as antibody conjugates and chimeric antigen receptor T (CAR-T) cell therapy, shows potent antitumor efficacy. Glypican-3 (GPC3) is an emerging HCC therapeutic target; therefore, antibodies against GPC3 would be useful tools for developing immunotherapies for HCC. Methods We isolated a novel human monoclonal antibody, 32A9, by phage display technology. We determined specificity, affinity, epitope and anti-tumor activity of 32A9, and developed 32A9-based immunotherapy technologies for evaluating the potency of HCC treatment in vitro or in vivo. Results 32A9 recognized human GPC3 with potent affinity and specificity. The epitope of 32A9 was located in the region of the GPC3 protein core close to the modification sites of the HS chain and outside of the Wnt-binding site of GPC3. The 32A9 antibody significantly inhibited HCC xenograft tumor growth in vivo. We then pursued two 32A9-based immunotherapeutic strategies by constructing an immunotoxin and CAR-T cells. The 32A9 immunotoxin exhibited specific cytotoxicity to GPC3-positive cancer cells, while 32A9 CAR-T cells efficiently eliminated GPC3-positive HCC cells in vitro and caused HCC xenograft tumor regressions in vivo. Conclusions Our study provides a rationale for 32A9 as a promising GPC3-specific antibody candidate for HCC immunotherapy.
Collapse
|
12
|
Guereño M, Delgado Pastore M, Lugones AC, Cercato M, Todaro L, Urtreger A, Peters MG. Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. Eur J Cell Biol 2020; 99:151096. [DOI: 10.1016/j.ejcb.2020.151096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
|
13
|
Listik E, Toma L. Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy. Oncotarget 2020; 11:828-845. [PMID: 32180897 PMCID: PMC7061737 DOI: 10.18632/oncotarget.27492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors, with which patients have a mean survival of 24 months. Glypican-1 has been previously shown to be overexpressed in human glioblastoma and to be negatively correlated with patient’s survival. This study aimed to investigate how glypican-1 influences the tumoral profile of human glioblastoma using in vitro cell line models. By downregulating the expression of glypican-1 in U-251 MG cells, we observed that the cellular growth and proliferation were highly reduced, in which cells were significantly shifted towards G0 as opposed to G1 phases. Cellular migration was severely affected, and glypican-1 majorly impacted the affinity towards laminin-binding of glioblastoma U-251 MG cells. This proteoglycan was highly prevalent in glioblastoma cells, being primarily localized in the cellular membrane and extracellular vesicles, occasionally with glypican-3. Glypican-1 could also be found in cell-cell junctions with syndecan-4 but was not identified in lipid rafts in this study. Glypican-1-silenced cells were much more susceptible to temozolomide than in U-251 MG itself. Therefore, we present evidence not only to support facts that glypican-1 is an elementary macromolecule in glioblastoma tumoral microenvironment but also to introduce this proteoglycan as a promising therapeutic target for this lethal tumor.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Wiedemeyer K, Köbel M, Koelkebeck H, Xiao Z, Vashisht K. High glypican-3 expression characterizes a distinct subset of ovarian clear cell carcinomas in Canadian patients: an opportunity for targeted therapy. Hum Pathol 2020; 98:56-63. [PMID: 32017945 DOI: 10.1016/j.humpath.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
Abstract
The expression frequency and distribution of glypican-3 (GPC3) was retrospectively assessed by immunohistochemistry in 316 accurately phenotyped ovarian clear cell carcinoma (OCCC) specimens from Canadian patients. The study aimed to evaluate the prevalence of this biomarker in OCCC in a mixed-ethnicity Canadian population and to evaluate associations of GPC3 expression with clinicopathological parameters. Tissue microarrays with napsin A or HNF1β positive and WT1-negative OCCC specimens were evaluated using a GPC3 antibody clone 1G12. Membranous, cytoplasmic, and Golgi pattern GPC3 expression was noted in 184 of 316 (58.2%) cases; 63 of 316 (20%) cases showed high GPC3 expression (>50% of tumor cells were positive). GPC3 expression was not associated with age, stage, and residual disease after primary surgery. High GPC3 expression did not correlate with a specific morphological pattern or the presence of endometriosis. Furthermore, GPC3 expression was not significantly associated with survival in the entire cohort. Statistically significant association of high GPC3 expression was noted with higher body mass index, napsin A positivity, estrogen receptor (ER) negativity, and ARID1A retention. In a stratified analysis by ARID1A status, high GPC3 expression was significantly associated with unfavorable outcomes in cases with loss of ARID1A (n=10; log rank p=0.0048). Women diagnosed with OCCC and high GPC3 expression were also more likely to receive adjuvant chemotherapy. Considering the tumor-specific membranous expression of GPC3 in 58% of cases and high interobserver reproducibility, GPC3 immunohistochemistry is a robust predictive test for inclusion in clinical trials for GPC3-targeted therapies for OCCC.
Collapse
Affiliation(s)
- Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, And Alberta Public Laboratories, Calgary, Alberta, Canada.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, And Alberta Public Laboratories, Calgary, Alberta, Canada
| | - Holly Koelkebeck
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| | - Zhan Xiao
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| | - Kapil Vashisht
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| |
Collapse
|
15
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
16
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
17
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
18
|
Motawi TMK, Sadik NAH, Sabry D, Shahin NN, Fahim SA. rs2267531, a promoter SNP within glypican-3 gene in the X chromosome, is associated with hepatocellular carcinoma in Egyptians. Sci Rep 2019; 9:6868. [PMID: 31053802 PMCID: PMC6499880 DOI: 10.1038/s41598-019-43376-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern in Egypt owing to the high prevalence of hepatitis C virus (HCV) infection. HCC incidence is characterized by obvious male predominance, yet the molecular mechanisms behind this gender bias are still unidentified. Functional variations in X-linked genes have more impact on males than females. Glypican-3 (GPC3) gene, located in the Xq26 region, has lately emerged as being potentially implicated in hepatocellular carcinogenesis. The current study was designed to examine the association of -784 G/C single nucleotide polymorphism (SNP) in GPC3 promoter region (rs2267531) with HCC susceptibility in male and female Egyptian HCV patients. Our results revealed a significant association between GPC3 and HCC risk in both males and females, evidenced by higher C allele and CC/C genotype frequencies in HCC patients when compared to controls. However, no such association was found when comparing HCV patients to controls. Moreover, GPC3 gene and protein expression levels were significantly higher in CC/C than in GG/G genotype carriers in males and females. The CC/C genotype exhibited a significant shorter overall survival than GG/G genotype in HCC patients. In conclusion, GPC3 rs2267531 on the X chromosome is significantly associated with HCC, but not with HCV infection, in the Egyptian population.
Collapse
Affiliation(s)
| | | | - Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nancy Nabil Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally Atef Fahim
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt.
| |
Collapse
|
19
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
20
|
Fernández D, Guereño M, Lago Huvelle MA, Cercato M, Peters MG. Signaling network involved in the GPC3-induced inhibition of breast cancer progression: role of canonical Wnt pathway. J Cancer Res Clin Oncol 2018; 144:2399-2418. [PMID: 30267212 DOI: 10.1007/s00432-018-2751-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We have shown that GPC3 overexpression in breast cancer cells inhibits in vivo tumor progression, by acting as a metastatic suppressor. GPC3-overexpressing cells are less clonogenic, viable and motile, while their homotypic adhesion is increased. We have presented evidences indicating that GPC3 inhibits canonical Wnt and Akt pathways, while non-canonical Wnt and p38MAPK cascades are activated. In this study, we aimed to investigate whether GPC3-induced Wnt signaling inhibition modulates breast cancer cell properties as well as to describe the interactions among pathways modulated by GPC3. METHODS Fluorescence microscopy, qRT-PCR microarray, gene reporter assay and Western blotting were performed to determine gene expression levels, signaling pathway activities and molecule localization. Lithium was employed to activate canonical Wnt pathway and treated LM3-GPC3 cell viability, migration, cytoskeleton organization and homotypic adhesion were assessed using MTS, wound healing, phalloidin staining and suspension growth assays, respectively. RESULTS We provide new data demonstrating that GPC3 blocks-also at a transcriptional level-both autocrine and paracrine canonical Wnt activities, and that this inhibition is required for GPC3 to modulate migration and homotypic adhesion. Our results indicate that GPC3 is secreted into the extracellular media, suggesting that secreted GPC3 competes with Wnt factors or interacts with them and thus prevents Wnt binding to Fz receptors. We also describe the complex network of interactions among GPC3-modulated signaling pathways. CONCLUSION GPC3 is operating through an intricate molecular signaling network. From the balance of these interactions, the inhibition of breast metastatic spread induced by GPC3 emerges.
Collapse
Affiliation(s)
- Dolores Fernández
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Macarena Guereño
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Amparo Lago Huvelle
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Magalí Cercato
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Giselle Peters
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina.
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. Trends Cancer 2018; 4:741-754. [PMID: 30352677 PMCID: PMC6209326 DOI: 10.1016/j.trecan.2018.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Glypicans are a group of cell-surface glycoproteins in which heparan sulfate (HS) glycosaminoglycan chains are covalently linked to a protein core. The glypican gene family is broadly conserved across animal species and plays important roles in biological processes. Glypicans can function as coreceptors for multiple signaling molecules known for regulating cell growth, motility, and differentiation. Some members of the glypican family, including glypican 2 (GPC2) and glypican 3 (GPC3), are expressed in childhood cancers and liver cancers, respectively. Antibody-based therapies targeting glypicans are being investigated in preclinical and clinical studies, with the goal of treating solid tumors that do not respond to standard therapies. These studies may establish glypicans as a new class of therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
23
|
Wang S, Chen N, Chen Y, Sun L, Li L, Liu H. Elevated GPC3 level promotes cell proliferation in liver cancer. Oncol Lett 2018; 16:970-976. [PMID: 29963171 PMCID: PMC6019913 DOI: 10.3892/ol.2018.8754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/29/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the biological role of glypican 3 (GPC3), and to identify its mechanism and clinical significance in the carcinogenesis of liver cancer. A total of 114 patients with liver cancer were involved. Their clinical data, hematoxylin and eosin-stained and Antigen Ki-67 protein (Ki-67) and GPC3 immunohistochemically-stained liver cancer tissue sections were analyzed to evaluate the correlation between the liver cancer proliferation, differentiation and GPC3 expression. Fluorescence microscopy, western blotting, MTT and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays were performed in HepG2 and HLE cell lines to investigate the potential mechanisms of action. Among the 114 patients with liver cancer enrolled in the present study, 12 exhibited well-differentiated liver cancer, of which 6 (50%) were positive for GPC3. A total of 30 cases exhibited poorly differentiated liver cancer; 26 (87%) of these expressed GPC3 and 11 cases (37%) demonstrated strong positive expression levels. The other 72 liver cancer cases were moderately differentiated; 75% (54/72) of these expressed GPC3 and 12.5% (9/72) exhibited strong positive expression levels. There was a significant association between the levels of GPC3 expression and liver cancer differentiation (χ2=16.306, P=0.008). Ki-67 staining as the criteria of the liver cancer cell proliferation index also indicated a cross correlation between liver cancer proliferation and GPC3 levels. Among the 39 liver cancer samples with a cell proliferation index <5%, only 2.6% (1/39) exhibited strong positive GPC3 staining, but of the 16 cases with a high cell proliferation index >50%, 6 exhibited strong GPC3 staining (37.5%). The difference of cell proliferation indexes between cancer cells were well, moderate and poorly differentiated, and was markedly significant (χ2=26.334, P=0.002), and suggested that liver cancer cell proliferation was positively correlated with GPC3 expression (r=0.316, P=0.001). Consistently, in vitro analysis indicated that GPC3 promoted HepG2 and HLE cell growth, which was more apparent in HepG2 cells. The RT-qPCR results indicated that GPC3 promoted proliferation through the Hedgehog (Hh) pathway in HepG2 cells, but not in HLE cells. In the present study, it was demonstrated that patients with liver cancer with higher GPC3 levels exhibited poorer differentiation and higher proliferation levels. In vitro GPC3 may promote liver cancer cell lines proliferation through the Hh pathway.
Collapse
Affiliation(s)
- Shanshan Wang
- Beijing You'An Hospital Affiliated to Capital Medical University, Beijing Institute of Hepatology, Beijing 100069, P.R. China.,Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, P.R. China
| | - Ning Chen
- Department of Gastrointestinal and Hepatology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Yuhan Chen
- Department of Gastrointestinal and Hepatology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Lin Sun
- Department of Pathology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Li Li
- Beijing You'An Hospital Affiliated to Capital Medical University, Beijing Institute of Hepatology, Beijing 100069, P.R. China
| | - Hui Liu
- Department of Pathology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
24
|
Biomolecular analysis of matrix proteoglycans as biomarkers in non small cell lung cancer. Glycoconj J 2018; 35:233-242. [DOI: 10.1007/s10719-018-9815-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023]
|
25
|
Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, Zhou X, Yang Y, Wang T, Bi J, Xia Z, Bai Z, Garkavtsev I, Zhang Z. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget 2018; 7:44406-44416. [PMID: 27259271 PMCID: PMC5190106 DOI: 10.18632/oncotarget.9763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is a prevalent tumor that is usually detected at an advanced metastatic stage. Currently, standard therapies are mostly ineffective. Here, we report that Glypican-3 (GPC3) is absent in invasive tumors and metastatic lymph nodes, in particular in aggressive and highly disseminated signet ring cell carcinomas. We demonstrate that loss of GPC3 correlates with poor overall survival in patients. Moreover, we show that absence of GPC3 causes up-regulation of MAPK/FoxM1 signaling and that blockade of this pathway alters cellular invasion. An inverse correlation between GPC3 and FoxM1 is also shown in patient samples. These data identify GPC3 as a potential metastasis suppressor gene and suggest its value as a prognostic marker in gastric cancer. Development of therapies targeting signaling downstream of GPC3 are warranted.
Collapse
Affiliation(s)
- Shiwei Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ana Batista
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Sheng Zhou
- Institute of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Tingting Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingtao Bi
- Department of General Surgery, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
| | - Zheng Xia
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Igor Garkavtsev
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
26
|
Wang S, Qiu M, Xia W, Xu Y, Mao Q, Wang J, Dong G, Xu L, Yang X, Yin R. Glypican-5 suppresses Epithelial-Mesenchymal Transition of the lung adenocarcinoma by competitively binding to Wnt3a. Oncotarget 2018; 7:79736-79746. [PMID: 27806326 PMCID: PMC5346747 DOI: 10.18632/oncotarget.12945] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that Glypican-5 (GPC5), one of the members of heparan sulfate proteoglycan, was a novel tumor metastasis suppressor in lung adenocarcinoma (LAC). However, it remains unclear how GPC5 suppresses lung cancer metastasis. Here, we found over-expression GPC5 induced significant Epithelial-Mesenchymal Transition (EMT) process of A549 cells in vitro. Bioinformatic analysis of RNA sequencing data indicated that GPC5 was co-expressed with EMT related markers, E-cadherin and Vimentin. Wnt/β-catenin signaling pathway was also significantly enriched after overexpressing GPC5. Further in vitro experiments demonstrated that overexpressing GPC5 could block the translocation of β-catenin from cytoplasm to nucleus and therefore inactivate the Wnt/β-catenin signaling pathway by competitively binding to Wnt3a. Subsequent rescue experiments demonstrated that GPC5-induced metastatic phenotype and EMT process suppression were significantly reversed when cells cultured in Wnt3a conditioned media. By establishing the metastatic model in severe combined immune deficiency (SCID) mice, we also demonstrated that overexpressing GPC5 suppressed LAC migration and accordingly alerted EMT related markers, which including up-regulated E-cadherin and down-regulated Vimentin in both lung and liver metastasis. Finally, clinical samples of LAC further validated that GPC5 expression was positively correlated with E-cadherin, and negatively correlated with both Twist1 and MMP2. Taken together, these data suggested that GPC5 is able to suppress the LAC metastasis by competitively binding to Wnt3a and inactivating the Wnt/β-catenin signaling pathway. Our findings expanded the role and the molecular mechanism of GPC5 on malignant bionomics of LAC.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Youtao Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Jie Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Xin Yang
- Department of Oncology, The Third Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
27
|
Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells. Oncotarget 2018; 7:60133-60154. [PMID: 27507057 PMCID: PMC5312374 DOI: 10.18632/oncotarget.11107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.
Collapse
|
28
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
29
|
Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 2017; 247:481-491. [PMID: 28722313 DOI: 10.1002/dvdy.24553] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program reactivated by tumor cells that leads to the switch from epithelial to mesenchymal phenotype. During EMT, cells are transcriptionally regulated to decrease E-cadherin expression while expressing mesenchymal markers such as vimentin, fibronectin, and N-cadherin. Growing body of evidences suggest that cells engaged in EMT undergo a metabolic reprograming process, redirecting glucose flux toward hexosamine biosynthesis pathway (HBP), which fuels aberrant glycosylation patterns that are extensively observed in cancer cells. HBP depends on nutrient availability to produce its end product UDP-GlcNAc, and for this reason is considered a metabolic sensor pathway. UDP-GlcNAc is the substrate used for the synthesis of major types of glycosylation, including O-GlcNAc and cell surface glycans. In general, the rate limiting enzyme of HBP, GFAT, is overexpressed in many cancer types that present EMT features as well as aberrant glycosylation. Moreover, altered levels of O-GlcNAcylation can modulate cell morphology and favor EMT. In this review, we summarize some of the current knowledge that correlates glucose metabolism, aberrant glycosylation and hyper O-GlcNAcylation supported by HBP that leads to EMT activation. Developmental Dynamics 247:481-491, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Carvalho-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Afratis NA, Karamanou K, Piperigkou Z, Vynios DH, Theocharis AD. The role of heparins and nano-heparins as therapeutic tool in breast cancer. Glycoconj J 2017; 34:299-307. [PMID: 27778131 DOI: 10.1007/s10719-016-9742-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023]
Abstract
Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.
Collapse
Affiliation(s)
- Nikos A Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece.
| |
Collapse
|
31
|
Chen C, Huang X, Ying Z, Wu D, Yu Y, Wang X, Chen C. Can glypican-3 be a disease-specific biomarker? Clin Transl Med 2017; 6:18. [PMID: 28510121 PMCID: PMC5433957 DOI: 10.1186/s40169-017-0146-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Background Glypican-3 (GPC3) is a cell surface-bound proteoglycan which has been identified as a potential biomarker candidate in hepatocellular carcinoma, lung carcinoma, severe pneumonia, and acute respiratory distress syndrome (ARDS). The aim of our review is to evaluate whether GPC3 has utility as a disease-specific biomarker, to discuss the potential involvement of GPC3 in cell biology, and to consider the changes of GPC3 gene and protein expression and regulation in hepatocellular carcinoma, lung cancer, severe pneumonia, and ARDS. Results Immunohistochemical studies have suggested that over-expression of GPC3 is associated with a poorer prognosis for hepatocellular carcinoma patients. Expression of GPC3 leads to an increased apoptosis response in human lung carcinoma tumor cells, and is considered to be a candidate lung tumor suppressor gene. Increased serum levels of GPC3 have been demonstrated in ARDS patients with severe pneumonia. Conclusions Glypican-3 could be considered as a clinically useful biomarker in hepatocellular carcinoma, lung carcinoma, and ARDS, but further research is needed to confirm and expand on these findings.
Collapse
Affiliation(s)
- Chaolei Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Huang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhaojian Ying
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dengmin Wu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yani Yu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangdong Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chengshui Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
32
|
Vongchan P, Linhardt RJ. Characterization of a new monoclonal anti-glypican-3 antibody specific to the hepatocellular carcinoma cell line, HepG2. World J Hepatol 2017; 9:368-384. [PMID: 28321273 PMCID: PMC5340992 DOI: 10.4254/wjh.v9.i7.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/19/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the antigen on HepG2 cell that is specifically recognized by a new monoclonal antibody raised against human liver heparan sulfate proteoglycan (HSPG), clone 1E4-1D9.
METHODS The antigen recognized by mAb 1E4-1D9 was immunoprecipitated and its amino acid sequence was analyzed LC/MS. The transmembrane domain, number of cysteine residues, and glycosylation sites were predicted from these entire sequences. Data from amino acid analysis was aligned with glypican-3 (https://www.ebi.ac.uk/Tools/msa/clustalo/). The competitive reaction of mAb 1E4-1D9 and anti-glypican-3 on HepG2 cells was demonstrated by indirect immunofluorescence and analyzed by flow cytometry. Moreover, co-immunoprecipitation of mAb 1E4-1D9 and anti-glypican-3 was performed in HepG2 cells by Western immunoblotting. The recognition by mAb 1E4-1D9 of a specific epitope on solid tumor and hematopoietic cell lines was studied using indirect immunofluorescence and analyzed by flow cytometry.
RESULTS Monoclonal antibody 1E4-1D9 reacted with an HSPG isolated from human liver and a band of 67 kD was detected under both reducing and non-reducing conditions. The specific antigen pulled down by mAb 1E4-1D9, having a MW of 135 kD, was analyzed. The results showed two sequences of interest, gi30722350 (1478 amino acid) and gi60219551 (1378 amino acid). In both sequences no transmembrane regions were observed. Sequence number gi30722350 was 99.7% showed a match to FYCO1, a molecule involved in induction of autophagy. Sequence number gi60219551 contained 15 cysteines and 11 putative glycosylation sites with 6 predicted N-glycosylation sites. It was also matched with all PDZ domain proteins. Moreover, it showed an 85.7% match to glypican-3. Glypican-3 on HepG2 cells competitively reacted with both phycoerythrin-conjugated anti-glypican-3 and mAb 1E4-1C2 and resulted in an increase of double-stained cell population when higher concentration of mAb 1E4-1D9 was used. Moreover, antigens precipitated from HepG2 cell by anti-glypican-3 could be detected by mAb 1E4-1D9 and vice versa. The recognition of antigens, on other solid tumor cell lines, by mAb 1E4-1D9 was studied. The results demonstrated that mAb 1E4-1D9 reacted with Huh7, HepG2, HT29, MCF7, SW620, Caco2, B16F1, U937, K562 and Molt4 cells. It was also found to be weakly positive to SW1353 and HL60 and negative to H460 and Hela cell lines.
CONCLUSION All findings show that mAb 1E4-1D9 specifically recognizes glypican-3. Moreover, a new partner molecule of glypican-3, FYCO1 is proposed based on the results from co-precipitation studies.
Collapse
|
33
|
Montalbano M, Georgiadis J, Masterson AL, McGuire JT, Prajapati J, Shirafkan A, Rastellini C, Cicalese L. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol Rep 2017; 37:1291-1300. [PMID: 28098909 DOI: 10.3892/or.2017.5387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Glypican-3 (GPC-3), a transmembrane heparan sulfate proteoglycan (HSPG), has recently been investigated as a player in tissue-dependent cellular signaling, specifically as a regulator of growth. Noteworthy, the regulatory protein has been implicated in both stimulatory and inhibitory pathways involving cell growth. Initially, GPC-3 was thought to act as a cell cycle regulator, as a loss-of-function mutation in the gene caused a hyper-proliferative state known as Simpson-Golabi-Behmel (SGB) overgrowth syndrome. Additionally, certain cancer types have displayed a downregulation of GPC-3 expression. More recently, the protein has been evaluated as a useful marker for hepatocellular carcinoma (HCC) due to its increased expression in the liver during times of growth. In contrast, the GPC-3 marker is not detectable in normal adult liver. Immunotherapy that targets GPC-3 and its affiliated proteins is under investigation as these new biomarkers may hold potential for the detection and treatment of HCC and other diseases in which GPC-3 may be overexpressed. Studies have reported that an overexpression of GPC-3 in HCC predicts a poorer prognosis. This prognostic value further pushes the question regarding GPC-3's role in the regulation and progression of HCC. This review will summarize the current knowledge regarding the clinical aspects of GPC-3, while also synthesizing the current literature with the aim to better understand this molecule's biological interactions at a molecular level, not only in the liver, but in the rest of the body as well. Due to the existing gap in the literature surrounding GPC-3, we believe further investigation of function, structure and domains, cellular localization, and other subfields is warranted to evaluate the protein as a whole, as well as its part in the study of HCC.
Collapse
Affiliation(s)
- Mauro Montalbano
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jeremias Georgiadis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashlyn L Masterson
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua T McGuire
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janika Prajapati
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ali Shirafkan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cristiana Rastellini
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luca Cicalese
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
34
|
Tian Z, Jiang H, Liu Y, Huang Y, Xiong X, Wu H, Dai X. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res 2016; 343:135-147. [PMID: 27090017 DOI: 10.1016/j.yexcr.2016.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hequn Jiang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, China
| | - Ying Liu
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yong Huang
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xin Xiong
- Laboratory Research Center, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, China.
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China; Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400044, China; Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
35
|
Wu Y, Liu H, Weng H, Zhang X, Li P, Fan CL, Li B, Dong PL, Li L, Dooley S, Ding HG. Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int J Oncol 2015; 46:1275-1285. [PMID: 25572615 DOI: 10.3892/ijo.2015.2827] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022] Open
Abstract
Glypican-3 (GPC3), a membrane-associated heparan sulfate proteoglycan, is frequently upregulated in hepatocellular carcinoma (HCC). However, how GPC3 contributes to the progress of HCC is largely unclear. The present study investigated the association between GPC3 expression and HCC clinicopathological characteristics, and particularly focused on the role and underlying mechanisms of GPC3 in HCC epithelial-mesenchymal transition (EMT). Remarkably elevated expression of GPC3 was demonstrated in HCC tumor tissues compared with paired non-tumor tissues in 45 patients with HCC by quantitative real-time PCR, immunohistochemistry, and western blotting, respectively. Furthermore, the tissue expression of GPC3 was increased during HCC progression from Barcelona Clinic Liver Cancer stage A or B to stage C. The enhanced levels of GPC3 in HCC tumor tissues were tightly correlated to the expression of the EMT-associated proteins and tumor vascular invasion. Patients with GPC3-high expression in tumor tissues displayed significantly shorter survival time than those with GPC3-low expression (P=0.001). Consistent with the findings in patients, HepG2 cells, which expressed high levels of GPC3, showed stronger capacity of migration and significant EMT-like changes when compared to those HCC cells with low levels of GPC3, e.g., Hep3B and Huh7 in scratch, Transwell assays and western blotting. Furthermore, administration with exogenous GPC3 in HCC cells activated extracellular signal-regulated kinase (ERK) and significantly enhanced cell migration and invasion. The behavior was significantly inhibited by the ERK inhibitor PD98059. Together, our studies show that GPC3 contributes to HCC progression and metastasis through impacting EMT of cancer cells, and the effects of GPC3 are associated with ERK activation.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Hui Liu
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Honglei Weng
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Xin Zhang
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Peng Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Chun-Lei Fan
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Bing Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Pei-Ling Dong
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Steven Dooley
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Hui-Guo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| |
Collapse
|
36
|
Okolicsanyi RK, van Wijnen AJ, Cool SM, Stein GS, Griffiths LR, Haupt LM. Heparan sulfate proteoglycans and human breast cancer epithelial cell tumorigenicity. J Cell Biochem 2014; 115:967-76. [PMID: 24357546 DOI: 10.1002/jcb.24746] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1-4) and glypicans (GPC1-6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Qi XH, Wu D, Cui HX, Ma N, Su J, Wang YT, Jiang YH. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol Med Rep 2014; 10:3177-84. [PMID: 25270552 DOI: 10.3892/mmr.2014.2600] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. The gene glypican-3 (GPC3) is reported to be a potential therapeutic target for HCC. In this study, we use RNA interference with lentiviral vectors to explore the effect of GPC3 silencing on the biological behavior of HCC cells and the potential role of the GPC3 protein in the activation of epithelial-mesenchymal transition (EMT), which relates to HCC cell invasion and migration. Our data suggest that GPC3 silencing leads to a decrease in HCC cell proliferation and to an increase in apoptosis. We demonstrated that GPC3 silencing regulates cell invasion and migration, most probably through the activation of the EMT cellular program. In conclusion, GPC3 is associated with the HCC cell biological behavior, while the relationship between GPC3 and EMT in tumorigenesis of HCC deserves future investigation.
Collapse
Affiliation(s)
- Xin-Hui Qi
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Di Wu
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Xia Cui
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Ma
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jia Su
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu-Tong Wang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - You-Hong Jiang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Okolicsanyi RK, Faure M, Jacinto JM, Chacon-Cortes D, Chambers S, Youl PH, Haupt LM, Griffiths LR. Association of the SNP rs2623047 in the HSPG modification enzyme SULF1 with an Australian Caucasian Breast Cancer Cohort. Gene 2014; 547:50-4. [DOI: 10.1016/j.gene.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/25/2014] [Accepted: 06/05/2014] [Indexed: 11/16/2022]
|
39
|
The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124321. [PMID: 25140302 PMCID: PMC4129668 DOI: 10.1155/2014/124321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022]
Abstract
The consecutive stages of cancer growth and dissemination are obligatorily perpetrated through specific interactions of the tumor cells with their microenvironment. Importantly, cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycan (PG) content and distribution are markedly altered during tumor pathogenesis and progression. GAGs and PGs perform multiple functions in specific stages of the metastatic cascade due to their defined structure and ability to interact with both ligands and receptors regulating cancer pathogenesis. Thus, GAGs/PGs may modulate downstream signaling of key cellular mediators including insulin growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), estrogen receptors (ERs), or Wnt members. In the present review we will focus on breast cancer motility in correlation with their GAG/PG content and critically discuss mechanisms involved. Furthermore, new approaches involving GAGs/PGs as potential prognostic/diagnostic markers or as therapeutic agents for cancer-related pathologies are being proposed.
Collapse
|
40
|
Xiao WK, Qi CY, Chen D, Li SQ, Fu SJ, Peng BG, Liang LJ. Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer 2014; 14:104. [PMID: 24548704 PMCID: PMC3984430 DOI: 10.1186/1471-2407-14-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Backgrounds Glypican-3(GPC3) has been implicated in tumor development and progression for several years. However, the prognostic significance of GPC3 expression in patients with hepatocellular carcinoma (HCC) is controversial. We performed a meta-analysis of available studies to assess whether GPC3 can be used as a prognostic factor in patients with HCC. Methods We searched PubMed and Ovid EBM Reviews databases and evaluated the reference list of relevant articles for studies that assessed the prognostic relevance of GPC3 in patients with HCC. Meta-analysis was performed using hazard ratio (HR) or odds ratio (OR) and 95% confidence intervals (95% CIs) as effect measures. Results A meta-analysis of eight studies included 1070 patients was carried out to evaluate the association between GPC3 and overall survival (OS) and disease-free survival (DFS) in HCC patients. The relation between GPC3 and tumor pathological features was also assessed. Our analysis results indicated that high GPC3 expression predicted poor OS (HR: 1.96, 95% CI: 1.51–2.55) and DFS (HR: 1.99, 95% CI: 1.57-2.51) of patients with HCC. GPC3 overexpression was significantly associated with high tumor grade (OR: 3.30, 95% CI: 2.04–5.33), late TNM stage (OR: 2.26, 95% CI: 1.00–5.12), and the presence of vascular invasion (OR: 2.43, 95% CI: 1.23–4.82). Conclusions GPC3 overexpression indicates a poor prognosis for patients with HCC, and it may also have predictive potential for HCC invasion and metastasis.
Collapse
Affiliation(s)
| | | | | | - Shao-Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No, 58 Zhongshan Er Road, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
41
|
Yang X, Zhang Z, Qiu M, Hu J, Fan X, Wang J, Xu L, Yin R. Glypican-5 is a novel metastasis suppressor gene in non-small cell lung cancer. Cancer Lett 2013; 341:265-73. [DOI: 10.1016/j.canlet.2013.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/12/2013] [Accepted: 08/13/2013] [Indexed: 01/10/2023]
|
42
|
Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, Kurpios NA. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 2013; 26:629-44. [PMID: 24091014 PMCID: PMC3965270 DOI: 10.1016/j.devcel.2013.07.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023]
Abstract
A critical aspect of gut morphogenesis is initiation of a leftward tilt, and failure to do so leads to gut malrotation and volvulus. The direction of tilt is specified by asymmetric cell behaviors within the dorsal mesentery (DM), which suspends the gut tube, and is downstream of Pitx2, the key transcription factor responsible for the transfer of left-right (L-R) information from early gastrulation to morphogenesis. Although Pitx2 is a master regulator of L-R organ development, its cellular targets that drive asymmetric morphogenesis are not known. Using laser microdissection and targeted gene misexpression in the chicken DM, we show that Pitx2-specific effectors mediate Wnt signaling to activate the formin Daam2, a key Wnt effector and itself a Pitx2 target, linking actin dynamics to cadherin-based junctions to ultimately generate asymmetric cell behaviors. Our work highlights how integration of two conserved cascades may be the ultimate force through which Pitx2 sculpts L-R organs.
Collapse
Affiliation(s)
- Ian C. Welsh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Thomsen
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David W. Gludish
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Catalina Alfonso-Parra
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yan Bai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
44
|
Siegenthaler JA, Choe Y, Patterson KP, Hsieh I, Li D, Jaminet SC, Daneman R, Kume T, Huang EJ, Pleasure SJ. Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open 2013; 2:647-59. [PMID: 23862012 PMCID: PMC3711032 DOI: 10.1242/bio.20135009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 02/02/2023] Open
Abstract
Brain pericytes play a critical role in blood vessel stability and blood-brain barrier maturation. Despite this, how brain pericytes function in these different capacities is only beginning to be understood. Here we show that the forkhead transcription factor Foxc1 is expressed by brain pericytes during development and is critical for pericyte regulation of vascular development in the fetal brain. Conditional deletion of Foxc1 from pericytes and vascular smooth muscle cells leads to late-gestation cerebral micro-hemorrhages as well as pericyte and endothelial cell hyperplasia due to increased proliferation of both cell types. Conditional Foxc1 mutants do not have widespread defects in BBB maturation, though focal breakdown of BBB integrity is observed in large, dysplastic vessels. qPCR profiling of brain microvessels isolated from conditional mutants showed alterations in pericyte-expressed proteoglycans while other genes previously implicated in pericyte-endothelial cell interactions were unchanged. Collectively these data point towards an important role for Foxc1 in certain brain pericyte functions (e.g. vessel morphogenesis) but not others (e.g. barriergenesis).
Collapse
Affiliation(s)
- Julie A Siegenthaler
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco , San Francisco, CA 94158 , USA ; Present address: Department of Pediatrics, Denver-Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao S, Zhang J, Chen H, Sheng Y, Zhang X, Liu Z, Zhang C. Diagnostic value of immunohistochemical staining of GP73, GPC3, DCP, CD34, CD31, and reticulin staining in hepatocellular carcinoma. J Histochem Cytochem 2013; 61:639-48. [PMID: 23686365 DOI: 10.1369/0022155413492771] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been reported that Golgi protein-73 (GP73), glypican-3 (GPC3), and des-γ-carboxy prothrombin (DCP) could serve as serum markers for the early detection of hepatocellular carcinoma (HCC). This study aimed to evaluate a panel of immunostaining markers (including GP73, GPC3, DCP, CD34, and CD31) as well as reticulin staining to distinguish HCC from the mimickers. Our results revealed that CD34 immunostaining and reticulin staining were highly sensitive for the diagnosis of HCC. A special immunoreaction pattern of GP73--a diffuse coarse-block pattern in a perinuclear region or a concentrated cluster-like or cord-like pattern in a certain part of the cytoplasm--was observed in HCC cells, in contrast to the cytoplasmic fine-granular pattern in surrounding non-tumor cells and non-malignant nodules. This coarse-block pattern correlated significantly with less differentiated HCC. In comparison, GPC3 displayed a good advantage in diagnosing well-differentiated HCC. In our study, DCP and CD31 showed little diagnostic value for HCC as an immunostaining marker. When GP73, GPC3, and CD34 were combined, the specificity improved to 96.6%. Our findings demonstrate for the first time that the immunohistochemical panel of GP73, GPC3, and CD34 as well as reticulin staining is highly specific for the pathological diagnosis of HCC.
Collapse
Affiliation(s)
- Shuzhe Yao
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Yao M, Yao DF, Bian YZ, Wu W, Yan XD, Yu DD, Qiu LW, Yang JL, Zhang HJ, Sai WL, Chen J. Values of circulating GPC-3 mRNA and alpha-fetoprotein in detecting patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2013; 12:171-179. [PMID: 23558072 DOI: 10.1016/s1499-3872(13)60028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) is poor and its early diagnosis is of the utmost importance. This study aimed to investigate the values of glypican-3 (GPC-3) expression in the liver and sera and its gene transcription for diagnosis and monitoring of metastasis of HCC. METHODS Liver GPC-3 was analyzed in HCC tissues from 36 patients by immunohistochemistry and Western blotting. GPC-3 mRNA from circulating peripheral blood mononuclear cells from 123 HCC patients or 246 patients with other diseases or 36 HCC tissues was amplified by RT-PCR, quantitative real-time PCR, and confirmed by DNA sequencing. Circulating GPC-3 level was detected by ELISA. RESULTS The increasing expression of GPC-3 was observed from non-cancerous to cancerous tissues, with brown granule-like staining localized in tumor parts of atypical hyperplasia and HCC formation. The positive rate of GPC-3 was 80.6% in HCC, 41.7% in their paracancerous tissues, and none in distal cancerous tissues (P<0.001), with no significant difference in differentiation grade and tumor number except for size (Z=2.941, P=0.003). Serum GPC-3 was detected only in HCC (52.8%) and significant difference was found between GPC-3 and tumor size (X2=6.318, P=0.012) or HBV infection (X2=23.362, P<0.001). Circulating GPC-3 mRNA was detected in 70.7% of HCC tissues, with relation to TNM stage, periportal cancerous embolus, and extra-hepatic metastasis (P<0.001). The combination of circulating GPC-3, GPC-3 mRNA and alpha-fetoprotein is of complementary value for HCC diagnosis (94.3%). CONCLUSION Both GPC-3 overexpression and GPC-3 mRNA abnormality could be used as markers for the diagnosis of HCC and monitoring its metastasis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong 226001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
48
|
Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, Hwang SY, Park CS, Park YS. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res 2013; 54:80-8. [PMID: 22856590 DOI: 10.1111/j.1600-079x.2012.01027.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023]
Abstract
Epigenetic alterations have emerged as an important mechanism involved in tumorigenesis. The epigenetic impact of DNA methylation in various types of human cancer is not completely understood. Previously, we observed melatonin-induced differential expression of miRNA and miRNA-related genes in human breast cancer cell lines that indicated an anticancer effect of melatonin. In this report, we further characterized epigenetic changes in melatonin-exposed MCF-7 cells through the analysis of DNA methylation profiles in breast cancer cells to provide new insights into the potential mechanisms of the anticancer effect of melatonin. Microarray-based DNA methylation and gene expression profiling were carried out using human breast cancer cell lines. We further identified a number of mRNAs whose expression levels show an inverse correlation with DNA methylation levels. The mRNA expression levels and methylation status of candidate genes in melatonin-exposed cells were confirmed by real-time quantitative PCR and bisulfite PCR. This approach led to the detection of cancer-related genes, which were oncogenic genes, including EGR3 and POU4F2/Brn-3b were down-regulated, while the tumor suppressor gene, GPC3, was up-regulated by 1 nm melatonin-treated MCF-7 cells. Our results provide detailed insights into the DNA methylation patterns induced by melatonin and suggest a potential mechanism of the anticancer effect of aberrant DNA methylation in melatonin-treated breast cancer cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bertino G, Ardiri A, Malaguarnera M, Malaguarnera G, Bertino N, Calvagno GS. Hepatocellualar carcinoma serum markers. Semin Oncol 2012; 39:410-33. [PMID: 22846859 DOI: 10.1053/j.seminoncol.2012.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in some areas of the world. In most cases, HCC is diagnosed at a late stage. Therefore, the prognosis of patients with HCC is generally poor. The recommended screening strategy for patients with cirrhosis includes the determination of serum α-fetoprotein (AFP) levels and an abdominal ultrasound every 6 months to detect HCC at an earlier stage. AFP, however, is a marker characterized by poor sensitivity and specificity, and abdominal ultrasound is highly dependent on the operator's experience. In addition to AFP, Lens culinaris agglutinin-reactive AFP (AFP-L3), des-γ-carboxy prothrombin (DCP), glypican-3 (GPC-3), osteopontin (OPN), and several other biomarkers (such as squamous cell carcinoma antigen-immunoglobulin M complexes [SCCA-IgM], alpha-1-fucosidase [AFU], chromogranin A [CgA], human hepatocyte growth factor, insulin-like growth factor) have been proposed as markers for the early detection of HCC. For these markers, we describe the mechanisms of production, and their diagnostic and prognosis roles. None of them is optimal; however, when used together, their sensitivity in detecting HCC is increased. Recent research has shown that some biomarkers have mitogenic and migratory activities in the angiogenesis of HCC and are a factor of tumor growth.
Collapse
Affiliation(s)
- Gaetano Bertino
- Hepatology Unit, Department of Medical and Pediatric Sciences, Policlinic of Catania, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Raso C, Cosentino C, Gaspari M, Malara N, Han X, McClatchy D, Park SK, Renne M, Vadalà N, Prati U, Cuda G, Mollace V, Amato F, Yates JR. Characterization of breast cancer interstitial fluids by TmT labeling, LTQ-Orbitrap Velos mass spectrometry, and pathway analysis. J Proteome Res 2012; 11:3199-210. [PMID: 22563702 DOI: 10.1021/pr2012347] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer is currently considered as the end point of numerous genomic and epigenomic mutations and as the result of the interaction of transformed cells within the stromal microenvironment. The present work focuses on breast cancer, one of the most common malignancies affecting the female population in industrialized countries. In this study, we perform a proteomic analysis of bioptic samples from human breast cancer, namely, interstitial fluids and primary cells, normal vs disease tissues, using tandem mass tags (TmT) quantitative mass spectrometry combined with the MudPIT technique. To the best of our knowledge, this work, with over 1700 proteins identified, represents the most comprehensive characterization of the breast cancer interstitial fluid proteome to date. Network analysis was used to identify functionally active networks in the breast cancer associated samples. From the list of differentially expressed genes, we have retrieved the associated functional interaction networks. Many different signaling pathways were found activated, strongly linked to invasion, metastasis development, proliferation, and with a significant cross-talking rate. This pilot study presents evidence that the proposed quantitative proteomic approach can be applied to discriminate between normal and tumoral samples and for the discovery of yet unknown carcinogenesis mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Cinzia Raso
- Department of Experimental and Clinical Medicine, Magna Graecia University , viale Europa loc. Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|