1
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
3
|
Lamb CA, Fabris VT, Jacobsen B, Molinolo AA, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:ERC-18-0179. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PR), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have been also used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PR have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PR are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, that exert different functions and the relative abundance of one isoform respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- C Lamb, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Victoria T Fabris
- V Fabris, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Britta Jacobsen
- B Jacobsen, Department of Pathology, University of Colorado at Denver - Anschutz Medical Campus, Aurora, United States
| | - Alfredo A Molinolo
- A Molinolo, Biorepository and Tissue Technology Shared Resource, University of California San Diego Moores Cancer Center, La Jolla, United States
| | - Claudia Lanari
- C Lanari, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sahores A, Figueroa V, May M, Liguori M, Rubstein A, Fuentes C, Jacobsen BM, Elía A, Rojas P, Sequeira GR, Álvarez MM, González P, Gass H, Hewitt S, Molinolo A, Lanari C, Lamb CA. Increased High Molecular Weight FGF2 in Endocrine-Resistant Breast Cancer. Discov Oncol 2018; 9:338-348. [PMID: 29956066 DOI: 10.1007/s12672-018-0339-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Endocrine resistance may develop as a consequence of enhanced growth factor signaling. Fibroblast growth factor 2 (FGF2) consists of a low and several high molecular weight forms (HMW-FGF2). We previously demonstrated that antiprogestin-resistant mammary carcinomas display lower levels of progesterone receptor A isoforms (PRA) than B isoforms (PRB). Our aim was to evaluate the role of FGF2 isoforms in breast cancer progression. We evaluated FGF2 expression, cell proliferation, and pathway activation in models with different PRA/PRB ratios. We performed lentiviral infections of different FGF2 isoforms using the human hormone-responsive T47D-YA cells, engineered to only express PRA, and evaluated tumor growth, metastatic dissemination, and endocrine responsiveness. We assessed FGF2 expression and localization in 81 human breast cancer samples. Antiprogestin-resistant experimental mammary carcinomas with low PRA/PRB ratios and T47D-YB cells, which only express PRB, displayed higher levels of HMW-FGF2 than responsive variants. HMW-FGF2 overexpression in T47D-YA cells induced increased tumor growth, lung metastasis, and antiprogestin resistance compared to control tumors. In human breast carcinomas categorized by their PRA/PRB ratio, we found nuclear FGF2 expression in 55.6% of tumor cells. No differences were found between nuclear FGF2 expression and Ki67 proliferation index, tumor stage, or tumor grade. In low-grade tumor samples, moderate to high nuclear FGF2 levels were associated to carcinomas with low PRA/PRB ratio. In conclusion, we show that HMW-FGF2 isoforms are PRB targets which confer endocrine resistance and are localized in the nuclei of breast cancer samples. Hence, targeting intracellular FGF2 may contribute to overcome tumor progression.
Collapse
Affiliation(s)
- Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marcos Liguori
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | | | - Cynthia Fuentes
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Paola Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Michelle M Álvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Pedro González
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | | | - Alfredo Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Rojas PA, May M, Sequeira GR, Elia A, Alvarez M, Martínez P, Gonzalez P, Hewitt S, He X, Perou CM, Molinolo A, Gibbons L, Abba MC, Gass H, Lanari C. Progesterone Receptor Isoform Ratio: A Breast Cancer Prognostic and Predictive Factor for Antiprogestin Responsiveness. J Natl Cancer Inst 2017; 109:3064537. [PMID: 28376177 DOI: 10.1093/jnci/djw317] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Compelling evidence shows that progestins regulate breast cancer growth. Using preclinical models, we demonstrated that antiprogestins are inhibitory when the level of progesterone receptor isoform A (PR-A) is higher than that of isoform B (PR-B) and that they might stimulate growth when PR-B is predominant. The aims of this study were to investigate ex vivo responses to mifepristone (MFP) in breast carcinomas with different PR isoform ratios and to examine their clinical and molecular characteristics. Methods We performed human breast cancer tissue culture assays (n = 36) to evaluate the effect of MFP on cell proliferation. PR isoform expression was determined by immunoblotting (n = 282). Tumors were categorized as PRA-H (PR-A/PR-B ≥ 1.2) or PRB-H (PR-A/PR-B ≤ 0.83). RNA was extracted for Ribo-Zero-Seq sequencing to evaluate differentially expressed genes. Subtypes and risk scores were predicted using the PAM50 gene set, the data analyzed using The Cancer Genome Atlas RNA-seq gene analysis and other publicly available gene expression data. Tissue microarrays were performed using paraffin-embedded tissues (PRA-H n = 53, PRB-H n = 24), and protein expression analyzed by immunohistochemistry. All statistical tests were two-sided. Results One hundred sixteen out of 222 (52.3%) PR+ tumors were PRA-H, and 64 (28.8%) PRB-H. Cell proliferation was inhibited by MFP in 19 of 19 tissue cultures from PRA-H tumors. A total of 139 transcripts related to proliferative pathways were differentially expressed in nine PRA-H and seven PRB-H tumors. PRB-H and PRA-H tumors were either luminal B or A phenotypes, respectively ( P = .03). PRB-H cases were associated with shorter relapse-free survival (hazard ratio [HR] = 2.70, 95% confidence interval [CI] = 1.71 to 6.20, P = .02) and distant metastasis-free survival (HR = 4.17, 95% CI = 2.18 to 7.97, P < .001). PRB-H tumors showed increased tumor size ( P < .001), Ki-67 levels ( P < .001), human epidermal growth factor receptor 2 expression ( P = .04), high grades ( P = .03), and decreased total PR ( P = .004) compared with PRA-H tumors. MUC-2 ( P < .001) and KRT6A ( P = .02) were also overexpressed in PRB-H tumors. Conclusion The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
Collapse
Affiliation(s)
- Paola A Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María May
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michelle Alvarez
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Martínez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Pedro Gonzalez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Stephen Hewitt
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaping He
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Alfredo Molinolo
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Luz Gibbons
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - Martin C Abba
- CINIBA-CONICET, Escuela de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Esber N, Le Billan F, Resche-Rigon M, Loosfelt H, Lombès M, Chabbert-Buffet N. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS One 2015; 10:e0140795. [PMID: 26474308 PMCID: PMC4608808 DOI: 10.1371/journal.pone.0140795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required.
Collapse
Affiliation(s)
- Nathalie Esber
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- HRA-Pharma, Paris, France
| | - Florian Le Billan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | | | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 1185, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris Sud, Unité Mixte de Recherche-Scientifique 1185, Le Kremlin-Bicêtre, France
- Service d’Endocrinologie et des Maladies de la Reproduction, assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique Médecine de la Reproduction, Hôpitaux Universitaires Est Parisien site Tenon, AP-HP, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-Scientifique 938, Centre de Recherche Saint Antoine, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Cossu G, Levivier M, Daniel RT, Messerer M. The Role of Mifepristone in Meningiomas Management: A Systematic Review of the Literature. BIOMED RESEARCH INTERNATIONAL 2015; 2015:267831. [PMID: 26146614 PMCID: PMC4469754 DOI: 10.1155/2015/267831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVES We performed a systematic literature review to analyze the clinical application and the safety of mifepristone, a prominent antiprogesterone agent, in meningioma patients. MATERIALS AND METHODS A systematic search was performed through Medline, Cochrane, and clinicaltrials.gov databases from 1960 to 2014. Study Selection. Studies were selected through a PICO approach. Population was meningioma patients, meningioma cells cultures, and animal models. Intervention was mifepristone administration. Control was placebo administration or any other drug tested. Outcomes were clinical and radiological responsiveness, safety profile, and cell growth inhibition. RESULTS A total of 7 preclinical and 6 clinical studies and one abstract were included. Encouraging results were found in preclinical studies. Concerning clinical studies, the response rate to mifepristone in terms of radiological regression and symptomatic improvement/stability in patients with inoperable meningioma was low. In meningiomatosis, favorable preliminary results were recorded. The safety profile was good. Limitations were as follows. The tumoral expression of progesterone receptors was not analyzed systematically in every study considered. CONCLUSIONS No clear evidence exists to recommend mifepristone in inoperable meningiomas. Preliminary encouraging results were found in diffuse meningiomatosis. Mifepristone is a well-tolerated treatment. Patients' selection and hormonal profile analysis in meningiomas are fundamental for a better understanding of its benefit. Multicenter placebo-controlled trials are required.
Collapse
Affiliation(s)
- Giulia Cossu
- Service of Neurosurgery, Department of Clinical Neuroscience, Faculty of Human Medicine and Biology, University Hospital of Lausanne, 46 rue du Bugnon, 1011 Lausanne, Switzerland
| | - Marc Levivier
- Service of Neurosurgery, Department of Clinical Neuroscience, Faculty of Human Medicine and Biology, University Hospital of Lausanne, 46 rue du Bugnon, 1011 Lausanne, Switzerland
| | - Roy Thomas Daniel
- Service of Neurosurgery, Department of Clinical Neuroscience, Faculty of Human Medicine and Biology, University Hospital of Lausanne, 46 rue du Bugnon, 1011 Lausanne, Switzerland
| | - Mahmoud Messerer
- Service of Neurosurgery, Department of Clinical Neuroscience, Faculty of Human Medicine and Biology, University Hospital of Lausanne, 46 rue du Bugnon, 1011 Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Bicetre, Faculty of Medicine of Paris Sud, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics 2015; 7:847-62. [PMID: 25689414 DOI: 10.2217/epi.15.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Sequeira G, Vanzulli SI, Rojas P, Lamb C, Colombo L, May M, Molinolo A, Lanari C. The effectiveness of nano chemotherapeutic particles combined with mifepristone depends on the PR isoform ratio in preclinical models of breast cancer. Oncotarget 2015; 5:3246-60. [PMID: 24912774 PMCID: PMC4102807 DOI: 10.18632/oncotarget.1922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is clinical and experimental evidence suggesting that antiprogestins might be used for the treatment of selected breast cancer patients. Our aim was to evaluate the effect of albumin-bound paclitaxel (Nab-paclitaxel) and pegylated doxorubicin liposomes (PEG-LD) in combination with mifepristone (MFP) in experimental breast cancer models expressing different ratios of progesterone receptor (PR) isoforms A and B. We used two antiprogestin-responsive (PRA>PRB) and two resistant (PRA<PRB) murine mammary carcinomas growing in BALB/c, GFP-BALB/c or nude mice, along with human T47D-YA and T47D-YB xenografts growing in immunocompromised NSG mice. MFP improved the therapeutic effects of suboptimal doses of Nab-paclitaxel or PEG-LD in murine and human carcinomas with higher levels of PRA than PRB. MFP induced tissue remodeling in PRA-overexpressing tumors, increasing the stromal/tumor cell ratio and the number of functional vessels. Accordingly, an increase in nanoparticles and drug accumulation was observed in stromal and tumor cells in MFP-treated tumors. We conclude that MFP induces an increase in vessels during tissue remodeling, favoring the selective accumulation of nanoparticles inside the tumors. We propose that antiprogestins have the potential to enhance the efficacy of chemotherapy in breast tumors with a high PRA/PRB ratio.
Collapse
Affiliation(s)
- Gonzalo Sequeira
- Institute of Experimental Biology and Medicine, IBYME-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guil-Luna S, Stenvang J, Brünner N, De Andrés FJ, Rollón E, Domingo V, Sánchez-Céspedes R, Millán Y, Martín de Las Mulas J. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma. BMC Vet Res 2014; 10:296. [PMID: 25515784 PMCID: PMC4280049 DOI: 10.1186/s12917-014-0296-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Progesterone receptors play a key role in the development of canine mammary tumours, and recent research has focussed on their possible value as therapeutic targets using antiprogestins. Cloning and sequencing of the progesterone receptor gene has shown that the receptor has two isoforms, A and B, transcribed from a single gene. Experimental studies in human breast cancer suggest that the differential expression of progesterone receptor isoforms has implications for hormone therapy responsiveness. This study examined the effects of the antiprogestin aglepristone on cell proliferation and mRNA expression of progesterone receptor isoforms A and B in mammary carcinomas in dogs treated with 20 mg/Kg of aglepristone (n = 22) or vehicle (n = 5) twice before surgery. Results Formalin-fixed, paraffin-embedded tissue samples taken before and after treatment were used to analyse total progesterone receptor and both isoforms by RT-qPCR and Ki67 antigen labelling. Both total progesterone receptor and isoform A mRNA expression levels decreased after treatment with aglepristone. Furthermore, a significant decrease in the proliferation index (percentage of Ki67-labelled cells) was observed in progesterone-receptor positive and isoform-A positive tumours in aglepristone-treated dogs. Conclusions These findings suggest that the antiproliferative effects of aglepristone in canine mammary carcinomas are mediated by progesterone receptor isoform A. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0296-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio de Sanidad Animal. Campus de Rabanales. Carretera de Madrid-Cádiz Km. 396, 14014, Córdoba, Spain.
| | - Jan Stenvang
- Institute of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nils Brünner
- Institute of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Eva Rollón
- Small Animal Clinic Canymar, Cádiz, Spain.
| | | | - Raquel Sánchez-Céspedes
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio de Sanidad Animal. Campus de Rabanales. Carretera de Madrid-Cádiz Km. 396, 14014, Córdoba, Spain.
| | - Yolanda Millán
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio de Sanidad Animal. Campus de Rabanales. Carretera de Madrid-Cádiz Km. 396, 14014, Córdoba, Spain.
| | - Juana Martín de Las Mulas
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio de Sanidad Animal. Campus de Rabanales. Carretera de Madrid-Cádiz Km. 396, 14014, Córdoba, Spain.
| |
Collapse
|
11
|
Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML, Gorostiaga MA, Jacobsen B, Molinolo A, Novaro V, Lanari C. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 2014; 136:2680-92. [PMID: 25363551 DOI: 10.1002/ijc.29304] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/16/2014] [Indexed: 01/01/2023]
Abstract
There is emerging interest in understanding the role of progesterone receptors (PRs) in breast cancer. The aim of this study was to investigate the proliferative effect of progestins and antiprogestins depending on the relative expression of the A (PRA) and B (PRB) isoforms of PR. In mifepristone (MFP)-resistant murine carcinomas antiprogestin responsiveness was restored by re-expressing PRA using demethylating agents and histone deacetylase inhibitors. Consistently, in two human breast cancer xenograft models, one manipulated to overexpress PRA or PRB (IBH-6 cells), and the other expressing only PRA (T47D-YA) or PRB (T47D-YB), MFP selectively inhibited the growth of PRA-overexpressing tumors and stimulated IBH-6-PRB xenograft growth. Furthermore, in cells with high or equimolar PRA/PRB ratios, which are stimulated to proliferate in vitro by progestins, and are inhibited by MFP, MPA increased the interaction between PR and the coactivator AIB1, and MFP favored the interaction between PR and the corepressor SMRT. In a PRB-dominant context in which MFP stimulates and MPA inhibits cell proliferation, the opposite interactions were observed. Chromatin immunoprecipitation assays in T47D cells in the presence of MPA or MFP confirmed the interactions between PR and the coregulators at the CCND1 and MYC promoters. SMRT downregulation by siRNA abolished the inhibitory effect of MFP on MYC expression and cell proliferation. Our results indicate that antiprogestins are therapeutic tools that selectively inhibit PRA-overexpressing tumors by increasing the SMRT/AIB1 balance at the CCND1 and MYC promoters.
Collapse
Affiliation(s)
- Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Antiprogestins constitute a group of compounds, developed since the early 1980s, that bind progesterone receptors with different affinities. The first clinical uses for antiprogestins were in reproductive medicine, e.g., menstrual regulation, emergency contraception, and termination of early pregnancies. These initial applications, however, belied the capacity for these compounds to interfere with cell growth. Within the context of gynecological diseases, antiprogestins can block the growth of and kill gynecological-related cancer cells, such as those originating in the breast, ovary, endometrium, and cervix. They can also interrupt the excessive growth of cells giving rise to benign gynecological diseases such as endometriosis and leiomyomata (uterine fibroids). In this article, we present a review of the literature providing support for the antigrowth activity that antiprogestins impose on cells in various gynecological diseases. We also provide a summary of the cellular and molecular mechanisms reported for these compounds that lead to cell growth inhibition and death. The preclinical knowledge gained during the past few years provides robust evidence to encourage the use of antiprogestins in order to alleviate the burden of gynecological diseases, either as monotherapies or as adjuvants of other therapies with the perspective of allowing for long-term treatments with tolerable side effects. The key to the clinical success of antiprogestins in this field probably lies in selecting those patients who will benefit from this therapy. This can be achieved by defining the genetic makeup required - within each particular gynecological disease - for attaining an objective response to antiprogestin-driven growth inhibition therapy.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/15/suppl/DC1.
Collapse
Affiliation(s)
- Alicia A Goyeneche
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Carlos M Telleria
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| |
Collapse
|
13
|
Sahores A, Luque GM, Wargon V, May M, Molinolo A, Becu-Villalobos D, Lanari C, Lamb CA. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS One 2013; 8:e64049. [PMID: 23691144 PMCID: PMC3655057 DOI: 10.1371/journal.pone.0064049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/07/2013] [Indexed: 11/18/2022] Open
Abstract
The basic component of Silastic® glue (Dow Corning) used to prepare Silastic® pellets is polydimethylsiloxane. This compound is also present in other commercial adhesives such as FASTIX® (Akapol SA) that are available in any store for that category. In the present study we developed low cost, easy to prepare handmade steroid pellets (HMSP) by mixing 17β-estradiol, progesterone or other synthetic steroids with FASTIX® adhesive. We assessed serum levels of 17β-estradiol, progesterone, prolactin and luteinizing hormone in ovariectomized mice treated for 24 and 48 h or 7, 14 and 28 days with 20 µg or 5 mg of 17β-estradiol or 5 mg progesterone HMSP. We found a time dependent and significant increase in the levels of both natural hormones, and a downregulation of serum luteinizing hormone levels, while both 17β-estradiol doses increased serum prolactin. Uterine weights at sacrifice and histological examination of the uteri and the mammary glands correlated with estrogen or progestin action. Finally, we evaluated the biological effects of HMSP compared to commercial pellets or daily injections in the stimulation or inhibition of hormone dependent mammary tumor growth, and found that HMSP were as effective as the other methods of hormone administration. These data show that HMSP represent a useful, low cost, easily accessible method for administering steroids to mice.
Collapse
Affiliation(s)
- Ana Sahores
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Victoria Wargon
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - María May
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Alfredo Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Claudia Lanari
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Caroline A. Lamb
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Gracanin A, van Wolferen ME, Sartorius CA, Brenkman AB, Schoonen WG, Mol JA. Canid progesterone receptors lack activation function 3 domain-dependent activity. Endocrinology 2012; 153:6104-13. [PMID: 23041671 DOI: 10.1210/en.2012-1793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transactivator of target genes due to an additional activation function 3 (AF3) domain. In dogs, known for their high sensitivity to progesterone-induced mammary cancer, the PR-B function was studied. Canine PR (cPR)-B appeared to contain multiple mutations within AF3 core sequence motifs and lacks N-terminal ligand-independent posttranslational modifications. Consequently, cPR-B has a weak transactivation potential on progesterone-responsive mouse mammary tumor virus-luc and progesterone response element 2-luc reporters transiently transfected in hamster, human, or canine cells and also on known target genes FKBP5 and SGK in doxycycline-inducible, stable transfected cPR-B in canine mammary cells. The cPR-B function was restored to the level of human PR-B by the replacement of canine AF3 domain with the human one. The lack of AF3 domain-dependent transcriptional activity was unique for canids (gray wolf, red fox, and raccoon dog) and not present in closely related caniform species (brown bear, gray seal, and domestic ferret). Despite the limited transactivation potential, canids develop normal mammary glands and frequently mammary tumors. Therefore, these results question the role of PR-B in breast cancer development and may explain unique features of canid reproduction.
Collapse
Affiliation(s)
- Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Khan JA, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line. PLoS One 2012; 7:e45993. [PMID: 23029355 PMCID: PMC3454371 DOI: 10.1371/journal.pone.0045993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.
Collapse
Affiliation(s)
- Junaid A. Khan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Catherine Bellance
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
17
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
18
|
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERα) and respond to antiestrogen therapies. Most of these ER+ tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Collapse
Affiliation(s)
- Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
19
|
Yuan H, Upadhyay G, Lu J, Kopelovich L, Glazer RI. The chemopreventive effect of mifepristone on mammary tumorigenesis is associated with an anti-invasive and anti-inflammatory gene signature. Cancer Prev Res (Phila) 2012; 5:754-64. [PMID: 22427346 PMCID: PMC3437618 DOI: 10.1158/1940-6207.capr-11-0526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Progesterone receptor (PR) antagonists are potent antitumor agents in carcinogen and progestin-dependent mammary tumorigenesis models through both PR- and non-PR-mediated mechanisms. The PR antagonist mifepristone/RU486 has been used primarily as an abortifacient possessing high affinity for both the PR and glucocorticoid receptors (GR). To determine whether mifepristone would be effective as a chemopreventive agent, we assessed its effect on progestin/7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in wild-type (WT) and estrogen receptor-α-positive (ER(+)) transgenic mice expressing the dominant-negative Pax8PPARγ (Pax8) fusion protein. Mifepristone administered at a dose of 2.5 mg significantly delayed mammary tumorigenesis in WT, but not in Pax8 mice, whereas, a three-fold higher dose almost completely blocked tumorigenesis in both WT and Pax8 mice. The sensitivity of WT mice to 2.5 mg mifepristone correlated with an expression profile of 79 genes in tumors, 52 of which exhibited the opposite response in Pax8 mice, and corresponded primarily to the downregulation of genes associated with metabolism, inflammation, and invasion. These results suggest that the chemopreventive activity of mifepristone in WT mice correlates with a specific gene expression signature that is associated with multiple nuclear receptor signaling pathways.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Carcinogens
- Carcinoma/chemically induced
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/prevention & control
- Chemoprevention/methods
- Drug Evaluation, Preclinical
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Hormone Antagonists/pharmacology
- Hormone Antagonists/therapeutic use
- Inflammation/genetics
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Transgenic
- Microarray Analysis
- Mifepristone/pharmacology
- Mifepristone/therapeutic use
- Neoplasm Invasiveness/genetics
- PAX8 Transcription Factor
- Paired Box Transcription Factors/genetics
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Geeta Upadhyay
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Jin Lu
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Levy Kopelovich
- Chemoprevention Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
20
|
Giulianelli S, Vaqué JP, Soldati R, Wargon V, Vanzulli SI, Martins R, Zeitlin E, Molinolo AA, Helguero LA, Lamb CA, Gutkind JS, Lanari C. Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting with Progesterone Receptors at the Cyclin D1/MYC Promoters. Cancer Res 2012; 72:2416-27. [DOI: 10.1158/0008-5472.can-11-3290] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, Hilsenbeck SG, Issa JPJ, Oesterreich S. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 2011; 17:4177-86. [PMID: 21459801 DOI: 10.1158/1078-0432.ccr-10-2950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE ERα and PR levels are critical determinants for breast cancer prognosis and response to endocrine therapy. Although PR is known to be silenced by methylation of its promoter, few studies have correlated methylation with PR levels and outcome in breast cancer. There is only one previous small study comparing methylation of the two PR isoforms, PRA and PRB, which are expressed from different promoters, and finally, there is no prior knowledge of associations between isoform-specific methylation and outcome. EXPERIMENTAL DESIGN We conducted a cohort-based study to test for associations between PRA and PRB methylation, expression, and clinical outcome in tamoxifen-treated patients (n = 500), and in patients who underwent surgery only (n = 500). Methylation and PR levels were measured by bisulfite pyrosequencing and ligand-binding assay, respectively. RESULTS Low PR levels were significantly associated with worse outcome in all patients. PRA and PRB promoters were methylated in 9.6% and 14.1% of the breast tumors, respectively. The majority (74%) of PR-negative tumors were not methylated despite the significant inverse correlation of methylation and PR levels. PRA methylation was significantly associated with PRB methylation, although a subset of tumors had PRA only (3.9%) or PRB only (8.3%) methylated. Methylation of PRA, but not PRB was significantly associated with worse outcome in the tamoxifen-treated group. CONCLUSIONS Mechanisms other than promoter methylation may be more dominant for loss of PR. Isoform-specific methylation events suggest independent regulation of PRA and PRB. Finally, this article shows for the first time that PRA methylation plays a unique role in tamoxifen-resistant breast cancer.
Collapse
|
22
|
MPA-induced gene expression and stromal and parenchymal gene expression profiles in luminal murine mammary carcinomas with different hormonal requirements. Breast Cancer Res Treat 2010; 129:49-67. [DOI: 10.1007/s10549-010-1185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
|
23
|
Soldati R, Wargon V, Cerliani JP, Giulianelli S, Vanzulli SI, Gorostiaga MA, Bolado J, do Campo P, Molinolo A, Vollmer G, Lanari C. Inhibition of mammary tumor growth by estrogens: is there a specific role for estrogen receptors alpha and beta? Breast Cancer Res Treat 2010; 123:709-24. [PMID: 20012353 DOI: 10.1007/s10549-009-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023]
Abstract
To evaluate the extent to which each estrogen receptor (ER) subtype contributes to the stimulation or to the inhibition of mammary tumor growth, we evaluated the effects of specific agonists in MC4-L2 cells, which are stimulated by 17β-estradiol (E(2)), and in mammary carcinomas of the MPA mouse breast cancer model, which are inhibited by E(2). Both express ERα and ERβ. In MC4-L2 cells, 4,4',4"-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα agonist) and (4-hydroxy-phenyl)-propionitrile (DPN; ERβ agonist) stimulated cell proliferation, whereas the opposite occurred in C4-HI primary cultures. The inhibitory effect was associated with a decrease in ERα and cyclin D1 expression and an increase in progesterone receptor (PR) expression as well as in the Bax/Bcl-xl ratio. In vivo, mice carrying C4-HI or 32-2-HI tumors were treated with E(2), PPT or DPN (3 mg/kg/day) or with vehicle. PPT and DPN inhibited tumor size, as did E(2), during the first 72 h. After a few days, DPN-treated tumors started to grow again, while PPT-treated tumors remained quiescent for a longer period of time. A pronounced decrease in the mitotic index and an increase in the apoptotic index was associated with tumor regression. All treated tumors showed: (a) an increase in integrin α6 and Bax expression, (b) an increased stromal laminin redistribution, and (c) a decrease in ERα, Bcl-xl and Bcl-2 expression (P < 0.001). Apoptosis-inducing factor (Aif) expression was increased in DPN-treated tumors, while active caspase 9 was up-regulated in PPT-treated mice, demonstrating the involvement of the intrinsic apoptotic pathway in estrogen-induced regression in this model. In conclusion, our data indicate that although there may be some preferences for activation pathways by the different agonists, the stimulatory or inhibitory effects triggered by estrogens are cell-context dependent rather than ER isoform dependent.
Collapse
Affiliation(s)
- Rocío Soldati
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine, National Research Council of Argentina (CONICET), 1428 Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bottino MC, Cerliani JP, Rojas P, Giulianelli S, Soldati R, Mondillo C, Gorostiaga MA, Pignataro OP, Calvo JC, Gutkind JS, Panomwat Amornphimoltham, Molinolo AA, Lüthy IA, Lanari C. Classical membrane progesterone receptors in murine mammary carcinomas: agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res Treat 2010; 126:621-36. [DOI: 10.1007/s10549-010-0971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
|
25
|
Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS One 2010; 5:e10786. [PMID: 20520761 PMCID: PMC2877092 DOI: 10.1371/journal.pone.0010786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/30/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A significant proportion of breast cancer patients face failure of endocrine therapy due to the acquisition of endocrine resistance. We have explored mechanisms involved in such disease progression by using a mouse breast cancer model that is induced by medroxyprogesterone acetate (MPA). These tumors transit through different stages of hormone sensitivity. However, when cells from tumor variants were seeded on plastic, all were stimulated by progestins and inhibited by antiprogestins such as RU486. Furthermore, cells from a RU486-resistant tumor variant recovered antiprogestin sensitivity. HYPOTHESIS A three-dimensional (3D) culture system, by maintaining differential cellular organization that is typical of each tumor variant, may allow for the maintenance of particular hormone responses and thus be appropriate for the study of the effects of specific inhibitors of signaling pathways associated with disease progression. METHOD We compared the behavior of tumors growing in vivo and cancer cells ex vivo (in 3D Matrigel). In this system, we evaluated the effects of kinase inhibitors and hormone antagonists on tumor growth. PRINCIPAL FINDINGS LY294002, a PI3K/AKT pathway inhibitor, decreased both tumor growth in vivo and cell survival in Matrigel in MPA-independent tumors with higher AKT activity. Induction of cell death by anti-hormones such as ICI182780 and ZK230211 was more effective in MPA-dependent tumors with lower AKT activity. Inhibition of MEK with PD98059 did not affect tumor growth in any tested variant. Finally, while Matrigel reproduced differential responsiveness of MPA-dependent and -independent breast cancer cells, it was not sufficient to preserve antiprogestin resistance of RU486-resistant tumors. CONCLUSION We demonstrated that the PI3K/AKT pathway is relevant for MPA-independent tumor growth. Three-dimensional cultures were useful to test the effects of kinase inhibitors on breast cancer growth and highlight the need for in vivo models to validate experimental tools used for selective therapeutic targeting.
Collapse
Affiliation(s)
- Maria Laura Polo
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maria Victoria Arnoni
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Marina Riggio
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Virginia Novaro
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Wargon V, Fernandez SV, Goin M, Giulianelli S, Russo J, Lanari C. Hypermethylation of the progesterone receptor A in constitutive antiprogestin-resistant mouse mammary carcinomas. Breast Cancer Res Treat 2010; 126:319-32. [PMID: 20440553 DOI: 10.1007/s10549-010-0908-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/17/2010] [Indexed: 12/15/2022]
Abstract
Most breast carcinomas that are estrogen receptor (ER) and progesterone receptor (PR) positive respond initially to an endocrine therapy, but over time, they develop resistance (acquired hormone resistance). Others, however, fail to respond from the beginning (constitutive resistance). Overcoming hormone resistance is one of the major desirable aims in breast cancer treatment. Using the medroxyprogesterone acetate (MPA)-induced breast cancer mouse model, we have previously demonstrated that antiprogestin-responsive tumors show a higher expression level of PR isoform A (PRA) than PR isoform B (PRB), while tumors with constitutive or acquired resistance show a higher expression level of PRB. The aim of this study was to investigate whether PRA silencing in resistant tumors was due to PRA methylation. The CpG islands located in the PRA promoter and the first exon were studied by methylation-specific PCR (MSP) in six different tumors: two antiprogestin-responsive, two constitutive-resistant, and two with acquired resistance. Only in constitutive-resistant tumors, PRA expression was silenced by DNA methylation. Next, we evaluated the effect of a demethylating agent, 5-aza-2'-deoxycytidine, on PRA expression and antiprogestin responsiveness. In constitutive-resistant tumors, 5-aza-2'-deoxycytidine treatment in vitro and in vivo restored PRA expression and antiprogestin RU-486 responsiveness. Furthermore, high levels of DNA methyltransferase (Dnmts) 1 and 3b were detected in these tumors. In conclusion, our results suggest that methyltransferase inhibitors in combination with antiprogestins may be effective in the treatment of constitutive-resistant carcinomas with a high DNA methyltransferase level.
Collapse
Affiliation(s)
- Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME), National Research Council of Argentina (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|