1
|
Mousavi T, Shokoohy F, Moosazadeh M. Polyomaviruses and the risk of breast cancer: a systematic review and meta-analysis. Infect Agent Cancer 2025; 20:14. [PMID: 40038755 DOI: 10.1186/s13027-025-00644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Breast cancer is a major global health problem worldwide, affecting more than 2.25 million women annually. The disease is influenced by various factors, including some viruses, gender, age, and family history. This study aimed to conducting a comprehensive systematic review and meta-analysis of existing studies on the polyomaviruses in breast cancer. METHODS This systematic review and meta-analysis aimed to provide an evidence-based analysis of the relationship between polyomaviruses and breast cancer. The global online databases were used to identify relevant studies published from 2000 to July 2024. The quality of each article was assessed using the Newcastle-Ottawa Scale (NOS) checklist. Data analysis was performed using STATA software, and standard errors of prevalence were calculated using the binomial distribution formula. Heterogeneity of study results was evaluated using the I-square and Q index, while publication bias was examined using the Begg's test. A random effects model was used to determine prevalence rates, and a forest plot diagram was used to present results with 95% confidence intervals. The Trim and Fill test was applied to estimate publication bias, and sensitivity analysis was performed to assess the influence of individual studies on the overall estimate. RESULTS Nine studies met the inclusion and exclusion criteria for this analysis. In this study, the prevalence of BKV, JCV, HPyV7, KIV, WUV, SV40, and TSV in breast cancer patients was found to be 0%. By combining the results of these studies, the prevalence of PyV, MCV, and HPyV6 in breast cancer patients was 11%, 4%, and 1%, respectively. CONCLUSION The meta-analysis presented here provides an exhaustive overview of the current literature on the prevalence of polyomaviruses in breast cancer patients. Findings indicate a potentially stronger association between PyV and breast cancer than other human polyomaviruses.
Collapse
Affiliation(s)
- Tahoora Mousavi
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shokoohy
- Non-communicable Diseases Institute, Molecular and Cellular Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahmood Moosazadeh
- Epidemiology, Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Cui P, Lian J, Liu Y, Zhang D, Lin Y, Lu L, Ye L, Chen H, An S, Huang J, Liang H. Pan-cancer analysis of the prognostic and immunological roles of SHP-1/ptpn6. Sci Rep 2024; 14:23083. [PMID: 39367146 PMCID: PMC11452508 DOI: 10.1038/s41598-024-74037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
SHP-1, a nonreceptor protein tyrosine phosphatase encoded by ptpn6, has been regarded as a regulatory protein of hematopoietic cell biology for years. However, there is now increasing evidence to support its role in tumors. Thus, the role of ptpn6 for prognosis and immune regulation across 33 tumors was investigated, aiming to explore its functional heterogeneity and clinical significance in pan-cancer. Differential expression of ptpn6 was found between cancer and adjacent normal tissues, and its expression was significantly correlated with the prognosis of tumor patients. In most cancers, ptpn6 expression was significantly associated with immune infiltration. This was further confirmed by ptpn6-related genes/proteins enrichment analysis. Additionally, genetic alterations in ptpn6 was observed in most cancers. As for epigenetic changes, it's phosphorylation levels significantly altered in 6 tumors, while methylation levels significantly altered in 12 tumors. Notably, the methylation levels of ptpn6 were significantly decreased in 11 tumors, accompanied by its increased expression in 8 of them, suggesting that the hypomethylation may be related to its increased expression. Our results show that ptpn6 plays a specific role in tumor immunity and exerts a pleiotropic effect in a variety of tumors. It can serve as a prognostic factor for some cancers. Especially in LGG, KIRC, UCS and TGCT, the increased expression of ptpn6 is associated with poor prognosis and high immune infiltration. This aids in understanding the role of ptpn6 in tumor biology, and can provide insight into presenting a potential biomarker for poor prognosis and immune infiltration in cancers.
Collapse
Affiliation(s)
- Ping Cui
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Jie Lian
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yang Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongsheng Zhang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yao Lin
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Lili Lu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sanqi An
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
- School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Hao Liang
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
3
|
Haploinsufficiency Interactions between RALBP1 and p53 in ERBB2 and PyVT Models of Mouse Mammary Carcinogenesis. Cancers (Basel) 2021; 13:cancers13133329. [PMID: 34283045 PMCID: PMC8268413 DOI: 10.3390/cancers13133329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Rlip knockout has been reported to prevent cancer in highly cancer-susceptible mice lacking p53, and Rlip knockdown kills many types of cancer cells. In humans, breast cancer shows diverse characteristics, including HER2-driven subtypes and viral-driven subtypes. HER2 can be targeted; however, escape of the cancer from targeted therapies remains a problem. In this work we evaluated the capacity of Rlip knockout to prevent breast cancer in genetically engineered mouse models of HER2-driven breast cancer (Erbb2 model) and polyomavirus-driven breast cancer (PyVT model). We found that in Erbb2 mice, Rlip knockout significantly delayed oncogenesis and reduced the expression of genes associated with poor prognosis in patients. In PyVT mice, Rlip knockout did not delay oncogenesis or tumor growth, but Rlip knockdown reduced tumor metastasis to the lung. We conclude that Rlip inhibitors may significantly improve survival in HER2-positive patients, but are unlikely to offer benefits to patients with polyomavirus-associated tumors. Abstract We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.
Collapse
|
4
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
5
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
6
|
Limam S, Missaoui N, Bdioui A, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of simian virus 40 (SV40) and human JC, BK, MC, KI, and WU polyomaviruses in glioma. J Neurovirol 2020; 26:347-357. [PMID: 32124265 DOI: 10.1007/s13365-020-00833-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
The gliomagenesis remains not fully established and their etiological factors still remain obscure. Polyomaviruses were detected and involved in several human tumors. Their potential implication in gliomas has been not yet surveyed in Africa and Arab World. Herein, we investigated the prevalence of six polyomaviruses (SV40, JCPyV, BKPyV, MCPyV, KIPyV, and WUPyV) in 112 gliomas from Tunisian patients. The DNA sequences of polyomaviruses were examined by PCR assays. Viral infection was confirmed by DNA in situ hybridization (ISH) and/or immunohistochemistry (IHC). The relationships between polyomavirus infection and tumor features were evaluated. Specific SV40 Tag, viral regulatory, and VP1 regions were identified in 12 GBM (10.7%). DNA ISH targeting the whole SV40 genome and SV40 Tag IHC confirmed the PCR findings. Five gliomas yielded JCPyV positivity by PCR and DNA ISH (2.7%). However, no BKPyV, KIPyV, and WUPyV DNA sequences were identified in all samples. MCPyV DNA was identified in 30 gliomas (26.8%). For GBM samples, MCPyV was significantly related to patient age (p = 0.037), tumor recurrence (p = 0.024), and SV40 (p = 0.045) infection. No further significant association was identified with the remaining tumor features (p > 0.05) and patient survival (Log Rank, p > 0.05). Our study indicates the presence of SV40, JCPyV, and MCPyV DNA in Tunisian gliomas. Further investigations are required to more elucidate the potential involvement of polyomaviruses in these destructive malignancies.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Nabiha Missaoui
- Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.
| | - Ahlem Bdioui
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | | | - Hedi Krifa
- Neurosurgery Department, Sahloul University Hospital, 4000, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Boulbeba Selmi
- Laboratory of Bioresources, Integrative Biology and Exploiting, ISB, 5000, Monastir, Tunisia
| |
Collapse
|
7
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
Affiliation(s)
| | | | | | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Liu L, Zhang S, Liu X, Liu J. Aberrant promoter 2 methylation‑mediated downregulation of protein tyrosine phosphatase, non‑receptor type 6, is associated with progression of esophageal squamous cell carcinoma. Mol Med Rep 2019; 19:3273-3282. [PMID: 30816454 DOI: 10.3892/mmr.2019.9971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 11/05/2022] Open
Abstract
The human protein tyrosine phosphatase, non‑receptor type 6 (PTPN6) gene is located on chromosome 12p13 and encodes an Mr 68,000 non‑receptor type protein‑tyrosine phosphatase. The PTPN6 gene has been considered as a candidate tumor suppressor in hematological and solid malignancies, and promoter methylation may be an epigenetic modification silencing its expression. However, the detailed role of PTPN6 and its promoter methylation status in the pathogenesis of esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. The aim of the present study was to investigate PTPN6 expression in ESCC tissues and esophageal cancer cell lines, detect the effect of CpG hypermethylation on the activity of PTPN6, and additionally elucidate the role and prognostic significance of PTPN6 in ESCC tumorigenesis and progression. The expression of PTPN6 was identified to be significantly downregulated in esophageal cancer cell lines and ESCC tissues. Marked upregulation of PTPN6 was detected in 5‑aza‑2'‑deoxycytidine‑treated esophageal cancer cells, and frequent hypermethylation of the CpG sites within the P2 promoter (P2) was detected in ESCC tissues and esophageal cancer cell lines. The expression and methylation status of PTPN6 was associated with tumor node metastasis stage, pathological differentiation and lymph node metastasis in patients with ESCC. Aberrant hypermethylation of the P2 exhibited marked tumor specificity and was identified to be associated with the expression level of PTPN6. Downregulation and hypermethylation of PTPN6 were identified to be associated with poor ESCC patient survival. Furthermore, upregulation of PTPN6 inhibited the proliferation and invasion of esophageal cancer cells in vitro. The results of the present study suggest that PTPN6 may serve as a tumor suppressor in ESCC, and it may serve as a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shaowei Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
9
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
10
|
Lu LJ, Adhikari VP, Zhao CX, Wu H, Dai W, Li X, Li HY, Ren GS, Wu KN, Kong LQ. Clinical study on the relationship between hepatitis B virus infection and risk of breast cancer: a large sized case-control and single center study in southwest of China. Oncotarget 2017; 8:72044-72053. [PMID: 29069767 PMCID: PMC5641110 DOI: 10.18632/oncotarget.19132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 06/04/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose Chronic hepatitis C virus (HCV) infection is reported to be associated with early-onset breast cancer, while, as a hepadnavirus, hepatitis B virus(HBV) infection is more common than HCV in China. In this article, it is aimed to study the relationship between HBV infection and risk of breast cancer in China. Methods The clinical data of 2452 cases of initially diagnosed breast cancer and 1926 cases of benign breast disease (as controls) with the consecutive reports of HBV serological markers and liver function tests, available in the Electronic Medical Records of the Breast Cancer Center of Chongqing, the southwest of China, from January 2011 to March 2015, were collected for analysis. Results The average age of the initially diagnosed breast cancer patients was 50.3±11.3 years with the age peaking about 40- 49yeaers (39.7%). The positive rate (8.2%) of hepatitis B surface antigen in breast cancer patients was relatively higher than that (7.8%) in controls (P>0.05). While, the positive rate (66.4%)of hepatitis B core antibody in breast cancer patients was significantly higher than that (53.7%) in controls (P<0.05), so were the similar results in the age groups of 40-49 years, after multiple layer analysis stratified by age and compare HBV markers adjusting age with binary logistic regression. Meanwhile, the status of albumin, aminotransferase and aspartate transaminase (41.4 g/L, 22.9 U/L, 22.0 U/L) in breast cancer patients were significantly poorer than those (44.1 g/L,16.8 U/L, 19.2 U/L) in controls (P<0.05). Conclusions Exposure to HBV infection may be a risk factor for breast cancer and may be also related to the earlier age onset of breast cancer (peaked around 40-49 years) among Chinese females.
Collapse
Affiliation(s)
- Lin-Jie Lu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Thyroid and Breast Surgery, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Vishnu Prasad Adhikari
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chun-Xia Zhao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - He Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Dai
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong-Yuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guo-Sheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai-Nan Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ling-Quan Kong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Debouki-Joudi S, Trifa F, Khabir A, Sellami-Boudawara T, Frikha M, Daoud J, Mokdad-Gargouri R. CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients. Cancer Biomark 2017; 18:133-141. [DOI: 10.3233/cbm-160005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saoussen Debouki-Joudi
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Trifa
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | | | | - Mounir Frikha
- Centre Hospitalo-Universitaire Habib Bourguiba, Sfax 3000, Tunisia
| | - Jamel Daoud
- Centre Hospitalo-Universitaire Habib Bourguiba, Sfax 3000, Tunisia
| | - Raja Mokdad-Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
12
|
Fluorometric determination of Simian virus 40 based on strand displacement amplification and triplex DNA using a molecular beacon probe with a guanine-rich fragment of the stem region. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2041-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Joo MK, Park JJ, Yoo HS, Lee BJ, Chun HJ, Lee SW, Bak YT. Epigenetic regulation and anti-tumorigenic effects of SH2-containing protein tyrosine phosphatase 1 (SHP1) in human gastric cancer cells. Tumour Biol 2015; 37:4603-12. [PMID: 26508024 DOI: 10.1007/s13277-015-4228-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023] Open
Abstract
SH2-containing protein tyrosine phosphatase 1 (SHP1) is an important negative regulator in cytokine-mediated signal transduction and cell cycling. Recent studies have demonstrated that SHP1 promoter methylation is frequently observed in gastric adenocarcinoma tissues. In this in vitro study, we attempted to reveal promoter hypermethylation and to investigate effects of SHP1 in gastric carcinoma cell lines. We observed that both gene and protein expression of SHP1 were negative in 8 of 10 gastric cancer cell lines (SNU-1, SNU-5, SNU-16, SNU-638, SNU-719, MKN-28, MKN-45, AGS). Methylation-specific PCR (MSP) showed a methylation-specific band only in the 10 gastric cancer lines. Bisulfite pyrosequencing in AGS, MKN-28, and SNU-719 cells indicated that methylation frequency was as high as 94.4, 92.6, and 94.5 %, respectively, in the three cell lines. Treatment of SNU-719, MKN-28, and AGS cells with 5-Aza-2'-deoxycytidine (5-Aza-dc) led to re-expression of SHP1 in these cells. Introduction of exogenous SHP1 in SNU-719 and MKN-28 cells by transient transfection substantially downregulated protein expression of constitutive phosphor-Janus kinase 2 (JAK2) (tyrosine 1007/1008) and phosphor-signal transducers and activators of transcription 3 (STAT3) (tyrosine 705), which in turn decreased expression of STAT3 target genes including those encoding cyclin D1, MMP-9, VEGF-1, and survivin. Induction of SHP1 significantly inhibited cell proliferation, migration and invasion in SNU-719 and MKN-28 cells. Taken together, epigenetic silencing of SHP1 is frequently caused by promoter hypermethylation in gastric carcinoma cells. Overexpression of SHP1 downregulates the JAK2/STAT3 pathway to modulate various target genes and inhibit cell proliferation, migration, and invasion in gastric cancer cells.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea.
| | - Hyo Soon Yoo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital. 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705, Republic of Korea
| | - Sang Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital. 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 425-707, Republic of Korea
| | - Young-Tae Bak
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| |
Collapse
|
14
|
Herbein G, Kumar A. The oncogenic potential of human cytomegalovirus and breast cancer. Front Oncol 2014; 4:230. [PMID: 25202681 PMCID: PMC4142708 DOI: 10.3389/fonc.2014.00230] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses, and therapeutic possibilities. The human cytomegalovirus (HCMV) is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor-associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| | - Amit Kumar
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| |
Collapse
|
15
|
Peng J, Wang T, Zhu H, Guo J, Li K, Yao Q, Lv Y, Zhang J, He C, Chen J, Wang L, Jin Q. Multiplex PCR/mass spectrometry screening of biological carcinogenic agents in human mammary tumors. J Clin Virol 2014; 61:255-9. [PMID: 25088618 DOI: 10.1016/j.jcv.2014.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND While many studies have suggested a possible link between breast cancer pathogenesis and infection by viruses, the role of viruses in breast carcinogenesis remains controversial. OBJECTIVES We analyzed the prevalence of 30 oncogenic human papillomaviruses (HPVs), Epstein-Barr virus (EBV), Kaposi's sarcoma herpes virus (KSHV) and six polyomaviruses in breast tumor specimens. STUDY DESIGN We analyzed breast specimens from 100 breast cancer patients (group 1) and 50 benign breast disease patients (group 2) from Shaanxi Province in China. We also screened for the viruses in blood samples from the patients and 96 female blood donor volunteers (group 3). RESULTS EBV, Merkel cell polyomavirus (MCPyV) and HPV-18 were detected in 60, 14 and 2 breast cancer patients, respectively, and EBV and MCPyV were detected in 16 and 1 benign breast disease patients, respectively. EBV and MCPyV were more prevalent in group 1 than in group 2 (EBV: 60.0% vs. 32.0%, p = 0.0012; MCPyV: 14.0% vs. 2.0%; p = 0.02). In contrast, there was no difference in the prevalence of EBV and MCPyV in blood samples between group 1 and group 2, group 1 and group 3. EBV was detected in malignant breast tissue and its presence was confined to the malignant cells using in situ hybridization. CONCLUSIONS We found that EBV and MCPyV were more prevalent in the tumors of women with breast cancer than in samples from women with benign breast disease. Our results support an etiologic role for EBV in breast cancer pathogenesis in Chinese patients.
Collapse
Affiliation(s)
- Junping Peng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Haijun Zhu
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Junhua Guo
- Agena Bioscience, Beijing, People's Republic of China
| | - Ke Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qing Yao
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yonggang Lv
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juliang Zhang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Chenyang He
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jianghao Chen
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China.
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Ben Gacem R, Ben Abdelkrim O, Ziadi S, Ben Dhiab M, Trimeche M. Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumour Biol 2014; 35:4047-56. [PMID: 24375250 DOI: 10.1007/s13277-013-1530-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/11/2013] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation on CpG islands is one of the most consistent epigenetic changes in human cancers, and the process of methylation is catalyzed by the DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Recent reports demonstrate that deregulation of miR-124a, one of the frequently methylated microRNAs in human cancers, is related to carcinogenesis. The aim of this study was to evaluate the frequencies of methylation of the three genomic loci encoding the miR-124a in primary breast cancers and to investigate their relationships with the clinicopathological characteristics of the tumors and with the expression levels of DNMT1, DNMT3a, and DNMT3b. The methylation status of the three genomic loci encoding the miR-124a (miR-124a-1, miR-124a-2, and miR-124a-3) was analyzed in fresh-frozen tumor samples using methylation-specific PCR in a large series of invasive breast ductal carcinomas (n = 60). Results were correlated to several clinicopathological characteristics of the tumors and to the expression levels of DNMT1, DNMT3a, and DNMT3b, determined by immunohistochemistry. Promoter hypermethylation of miR-124a-1, miR-124a-2, and miR-124a-3 was detected in 53.3, 70, and 36.7% of cases, respectively. Methylation of miR-124a-2 correlated to patients with age higher than 45 years (P = 0.008) and to postmenopausal patients (P = 0.03), whereas methylation of miR-124a-3 correlated significantly to tumor size >20 mm (P = 0.03). Interestingly, simultaneous methylation of the three genes encoding miR-124a correlated significantly with the presence of lymph node metastasis (P = 0.01) and high mitotic score (P = 0.03). No significant correlation was found between promoter hypermethylation of miR-124a and expression of hormone receptors or HER2/neu. With regard to DNMT expression, no correlation was found between DNMT1 or DNMT3a expression and promoter methylation of any tested microRNA. However, DNMT3b overexpression correlates significantly with the hypermethylation of miR-124a-3 (P = 0.03). Our data indicates that miR-124a-1, miR-124a-2, and miR-124a-3 genes are frequently methylated in breast cancer and play a role in tumor growth and aggressivity.
Collapse
Affiliation(s)
- Riadh Ben Gacem
- Department of Pathology, Farhat-Hached Hospital, Sousse, 4000, Tunisia
| | | | | | | | | |
Collapse
|
17
|
Alibek K, Kakpenova A, Mussabekova A, Sypabekova M, Karatayeva N. Role of viruses in the development of breast cancer. Infect Agent Cancer 2013; 8:32. [PMID: 24138789 PMCID: PMC3765990 DOI: 10.1186/1750-9378-8-32] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
The most common cancer worldwide among women is breast cancer. The initiation, promotion, and progression of this cancer result from both internal and external factors. The International Agency for Research on Cancer stated that 18-20% of cancers are linked to infection, and the list of definite, probable, and possible carcinogenic agents is growing each year. Among them, biological carcinogens play a significant role. In this review, data covering infection-associated breast and lung cancers are discussed and presented as possible involvements as pathogens in cancer. Because carcinogenesis is a multistep process with several contributing factors, we evaluated to what extent infection is significant, and concluded that members of the herpesvirus, polyomavirus, papillomavirus, and retrovirus families definitely associate with breast cancer. Detailed studies of viral mechanisms support this conclusion, but have presented problems with experimental settings. It is apparent that more effort needs to be devoted to assessing the role of these viruses in carcinogenesis, by characterizing additional confounding and synergistic effects of carcinogenic factors. We propose that preventing and treating infections may possibly stop or even eliminate certain types of cancers.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
- National Medical Holding, 2 Syganak Street, Astana 010000, Kazakhstan
| | - Ainur Kakpenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Assel Mussabekova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Nargis Karatayeva
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
18
|
Martini F, Mazzoni E, Corallini A, Taronna A, Querzoli P, Magri E, Marci R, Dolcetti R, Rezza G, Barbanti-Brodano G, Tognon M. Breast Cancer and Simian Virus 40 Infection. Epidemiology 2013; 24:464-5. [DOI: 10.1097/ede.0b013e31828d3ae6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ben Gacem R, Hachana M, Ziadi S, Ben Abdelkarim S, Hidar S, Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers. Hum Pathol 2012; 43:1731-8. [PMID: 22520950 DOI: 10.1016/j.humpath.2011.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022]
Abstract
DNA methyltransferase 1, 3a, and 3b affect DNA methylation, and it is thought that they play an important role in the malignant transformation of various cancers. The current study was designed to analyze DNA methyltransferase expression by immunohistochemistry in a series of 94 Tunisian sporadic breast carcinomas. Results were correlated to clinicopathologic parameters and promoter methylation status of 8 tumor suppressor genes (BRCA1, BRCA2, RASSFA1, TIMP3, CDH1, P16, RARβ2, and DAPK). Overexpression of DNA methyltransferase 1, 3a, and 3b was detected in 46.8%, 32%, and 44.7% of cases, respectively. A significant correlation was found between DNA methyltransferase 1 overexpression and Scarff-Bloom-Richardson histologic grade III (P = .01). DNA methyltransferase 3a overexpression was significantly associated with menopausal status (P = .01), Scarff-Bloom-Richardson histologic grade III (P = .0001), estrogen (P = .04) and progesterone (P = .007) receptor negativity, and HER2 overexpression (P = .004). However, DNA methyltransferase 3a overexpression was found less frequently in the luminal A intrinsic breast cancer subtype (9.7%) than in luminal B (53%), HER2 (41%), and triple-negative (50%) subtypes (P = .001). DNA methyltransferase 3b overexpression shows significant correlation with promoter hypermethylation of BRCA1 (P = .03) and RASSFA1 (P = .04) and with the hypermethylator phenotype (more than 4 methylated genes, P = .01). These data suggest that overexpression of various DNA methyltransferases might represent a critical event responsible for the epigenetic inactivation of multiple tumor suppressor genes, leading to the development of aggressive forms of sporadic breast cancer.
Collapse
Affiliation(s)
- Riadh Ben Gacem
- Department of Pathology, Farhat-Hached Hospital, Sousse 4000, Tunisia
| | | | | | | | | | | |
Collapse
|
20
|
Antonsson A, Bialasiewicz S, Rockett RJ, Jacob K, Bennett IC, Sloots TP. Exploring the prevalence of ten polyomaviruses and two herpes viruses in breast cancer. PLoS One 2012; 7:e39842. [PMID: 22916092 PMCID: PMC3419721 DOI: 10.1371/journal.pone.0039842] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/27/2012] [Indexed: 11/18/2022] Open
Abstract
Several different viruses have been proposed to play a role in breast carcinogenesis. The aim of this study was to investigate the prevalence of a subset of viruses in breast cancer tissue. We investigated the prevalence of 12 DNA viruses: EBV and CMV from the Herpesviridae family and SV40, BKV, JCV, MCV, WUV, KIV, LPV, HPyV6, HPyV7, and TSV from the Polyomaviridae family in 54 fresh frozen breast tumour specimens. Relevant clinical data and basic lifestyle data were available for all patients. The tissue samples were DNA extracted and real-time PCR assays were used for viral detection.The highest prevalence, 10% (5/54), was found for EBV. MCV, HPyV6, and HPyV7 were detected in single patient samples (2% each), while WUV, KIV, JCV, BKV, LPV, SV40, TSV and CMV were not detected in the 54 breast cancer specimens analysed here. Further investigations are needed to elucidate the potential role of viruses, and particularly EBV, in breast carcinogenesis.
Collapse
Affiliation(s)
- Annika Antonsson
- Queensland Institute of Medical Research, Department of Population Health, Herston, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Hachana M, Amara K, Ziadi S, Gacem RB, Korbi S, Trimeche M. Investigation of human JC and BK polyomaviruses in breast carcinomas. Breast Cancer Res Treat 2012; 133:969-77. [PMID: 22108781 DOI: 10.1007/s10549-011-1876-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
We have previously showed the presence of the simian virus 40 (SV40) and the mouse mammary tumor virus (MMTV)-like in a significant proportions of Tunisian breast carcinomas. However, to date there are no published studies concerning evaluation of the possible implication of the human polyomaviruses JC (JCV) and BK (BKV) in breast carcinomas. The presence of JCV and BKV DNA was investigated by PCR in a 123 primary breast carcinomas and matched adjacent non-tumor breast tissues. The results were correlated to clinicopathological and virological parameters. JCV T-antigen DNA was detected in 23% of breast carcinoma cases; however, all cases were negative for BKV. JCV T antigen PCR products were further confirmed as authentic JCV genome by direct sequencing. JCV was found in invasive ductal carcinomas (28/112 cases) but not in invasive lobular carcinomas (0/5) or medullary carcinomas (0/6). JCV DNA presence correlates inversely with the expression of estrogen (P = 0.022) and progesterone (P = 0.008) receptors. JCV DNA presence correlates also with "triple negative" phenotype (P = 0.021). With regard to virological data, a trend toward an inverse correlation was noted between the presence of JCV and SV40 (P = 0.06). Moreover, significant correlation was found between multiple viral infection (JCV, and/or SV40, and/or MMTV-like in the same tumor) and "triple negative" phenotype (P = 0.001) and also with p53 accumulation (P = 0.028). To the best of our knowledge, this is the first study demonstrating the presence of JCV in a subset of breast carcinomas. Also our results suggest that "triple negative" breast carcinomas are viral-related tumors.
Collapse
Affiliation(s)
- Mohamed Hachana
- Department of Pathology, Farhat Hached Hospital, 4000 Sousse, Tunisia
| | | | | | | | | | | |
Collapse
|
22
|
Contribution of epigenetic alteration of BRCA1 and BRCA2 genes in breast carcinomas in Tunisian patients. Cancer Epidemiol 2012; 36:190-7. [DOI: 10.1016/j.canep.2011.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/28/2011] [Accepted: 09/04/2011] [Indexed: 12/31/2022]
|
23
|
Immunodetection of SV40 T/t-antigens in Human Osteosrcoma in a Series of Tunisian Patients. Pathol Oncol Res 2012; 18:691-6. [DOI: 10.1007/s12253-012-9496-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 01/03/2012] [Indexed: 01/14/2023]
|
24
|
Challouf S, Ziadi S, Zaghdoudi R, Ksiaa F, Ben Gacem R, Trimeche M. Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients. Clin Chim Acta 2012; 413:795-802. [PMID: 22296674 DOI: 10.1016/j.cca.2012.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aberrant methylation in the promoter of tumor-related genes is associated closely with epigenetically mediated gene silencing. The aim of the present study was to evaluate the methylation profile of Tunisian nasopharyngeal carcinoma (NPC) and to determine the clinicopathological features of tumors showing this epigenetic alteration. METHODS Thirty-six archival NPC biopsies were investigated in comparison with 19 non-tumor nasopharyngeal tissue specimens. DNA methylation status of ten tumor-suppressor and related genes was analyzed by using methylation-specific PCR. The Epstein-Barr virus (EBV) presence was verified by PCR and in situ hybridization and the LMP1 oncoprotein expression was analyzed by immunohistochemistry. Findings were then correlated with clinicopathological variables (Patients' gender and age, tumor histological subtype and stage). RESULTS Hypermethylation frequencies of the investigated genes in NPC biopsies were 75% for RASSFIA, 58.3% for SHP1, 47.2% for DAPK, 33.3% for P16, 31% for RARβ2, 19.4% for GSTP1 and TIMP3, 11% for APC and CDH1, and 5.5% for MGMT. In non-tumor nasopharyngeal samples, hypermethylation was detected in lower frequencies in 6 genes (SHP 26.3%, P16 21%, RARβ2 21%, DAPK 15.8%, TIMP3 10.5%, and GSTP 5.3%). Hypermethylation of RARβ2 promoter was more frequent in tumors with lymph node metastasis than those without metastasis (43.5% vs 0%, p=0.03). Methylation of RASSF1A was more frequently detected in non-keratinizing NPC than in undifferentiated subtype (100% vs 66.7%; p=0.05). A trend toward positive association was found between an increased number of methylated genes and LMP1 expression (p=0.07). However, no significant association was found for the remaining variables. CONCLUSIONS This study indicates that hypermethylation of multiple genes is a common alteration in nasopharyngeal carcinomas in Tunisian patients and that this epigenetic change may play a role in the nasopharyngeal carcinogenesis.
Collapse
Affiliation(s)
- S Challouf
- Department of Pathology, Farhat Hached Hospital, Sousse, Tunisia
| | | | | | | | | | | |
Collapse
|
25
|
Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med 2012; 5:683-97. [PMID: 21955238 DOI: 10.1586/ers.11.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis.
Collapse
Affiliation(s)
- Fang Qi
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | | |
Collapse
|
26
|
Hachana M, Amara K, Ziadi S, Romdhane E, Gacem RB, Trimeche M. Investigation of Epstein–Barr virus in breast carcinomas in Tunisia. Pathol Res Pract 2011; 207:695-700. [DOI: 10.1016/j.prp.2011.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/28/2011] [Accepted: 09/05/2011] [Indexed: 10/15/2022]
|
27
|
Amin S, Kumar A, Nilchi L, Wright K, Kozlowski M. Breast cancer cells proliferation is regulated by tyrosine phosphatase SHP1 through c-jun N-terminal kinase and cooperative induction of RFX-1 and AP-4 transcription factors. Mol Cancer Res 2011; 9:1112-25. [PMID: 21719561 DOI: 10.1158/1541-7786.mcr-11-0097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we show that proliferation of breast cancer cells is suppressed by IGF-1-activated JNK MAPK pathway. The molecular mechanism by which c-jun-NH,-kinase (JNK) activation induces antiproliferative signals in IGF-1-stimulated breast cancer cells remains unknown. Tyrosine phosphatase SHP1 is known to negatively regulate signal transduction pathways activated by cell surface receptors including IGF-1. Moreover, SHP1 transcript and protein levels are increased in epithelial tumors. Therefore, we hypothesized that IGF-activated JNK induces expression of SHP1 in breast cancer cells. To further clarify the role of SHP1 in tumor growth, we correlated the proliferation rates of breast adenocarcinoma cells with SHP1 expression and JNK activation. We show that proliferation of serum- or IGF-1-stimulated breast adenocarcinoma cells is negatively regulated by SHP1 and show for the first time that IGF-1-activated JNK induces SHP1 expression in MCF-7 cells used as experimental model. In an attempt to understand the mechanism by which serum- or IGF-1-activated JNK induces SHP1 expression resulting in suppression of cell proliferation, we reveal for the first time that in serum- or IGF-1-stimulated breast cancer MCF-7 cells, JNK induces SHP1 expression through the binding of AP-4 and RFX-1 transcription factors to the epithelial tissue-specific SHP1 promoter. Overall, we show for the first time that IGF-1-stimulated proliferation of breast adenocarcinoma cells is negatively regulated by SHP1 through activation of JNK.
Collapse
Affiliation(s)
- Shahreen Amin
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Herrera-Goepfert R, Khan NA, Koriyama C, Akiba S, Pérez-Sánchez VM. High-risk human papillomavirus in mammary gland carcinomas and non-neoplastic tissues of Mexican women: no evidence supporting a cause and effect relationship. Breast 2010; 20:184-9. [PMID: 21146410 DOI: 10.1016/j.breast.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/25/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV) has been implicated in breast carcinogenesis. Consecutive and non-selected mastectomy specimens from Mexican patients harboring breast carcinomas were sampled in order to look for the presence of HPV DNA. HPV-16 was detected in 6 (10%) of 60 breast carcinomas. Two of these also had HPV genome in adjacent non-neoplastic mammary-tissues. Seven cases had HPV DNA only in non-neoplastic tissue specimens. HPV DNA was also detected in 4 (25%) of 10 tumor-bed specimens without residual neoplastic lesions that were obtained from patients who underwent neoadjuvant chemotherapy or neoadjuvant chemotherapy/radiotherapy. HPV-positive tumors tended to be smaller in size, than HPV-negative tumors (p=0.047). Histological distributions of HPV-positive and -negative cases showed no significant difference. Although all the HPV-16 DNA were found integrated, its low viral load rendered it difficult to incriminate this virus in breast carcinogenesis. However, the possibility that HPV infection occurred during carcinoma development cannot be ruled out.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/epidemiology
- Breast Neoplasms/metabolism
- Breast Neoplasms/therapy
- Breast Neoplasms/virology
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Ductal, Breast/virology
- Carcinoma, Lobular/epidemiology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/therapy
- Carcinoma, Lobular/virology
- Carcinoma, Papillary/epidemiology
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/therapy
- Carcinoma, Papillary/virology
- Female
- Human papillomavirus 16/isolation & purification
- Humans
- Mammary Glands, Human/virology
- Mexico
- Middle Aged
- Nipples/virology
- Papillomavirus Infections/complications
- Papillomavirus Infections/epidemiology
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Load
Collapse
Affiliation(s)
- Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Avenida San Fernando #22, Col. Sección XVI, Tlalpan, 14080 Mexico, DF, Mexico.
| | | | | | | | | |
Collapse
|
29
|
Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, Khabir A, Frikha F, Kallel L, Amouri A, Frikha M, Sellami-Boudawara T, Gargouri A, Mokdad-Gargouri R. Hypermethylation of RARβ2 correlates with high COX-2 expression and poor prognosis in patients with colorectal carcinoma. Tumour Biol 2010; 31:503-11. [PMID: 20571967 DOI: 10.1007/s13277-010-0063-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/05/2010] [Indexed: 12/20/2022] Open
Abstract
Silencing of gene expression by aberrant methylation at the CpG islands is common in human tumors, including colorectal cancer. This epigenetic alteration affects promoter of genes having crucial cellular functions such as tumor suppressor, DNA repair, apoptosis, cell adhesion, etc. We investigated the methylation status in the promoter regions of the RARβ2, RASSF1A, DAPKinase, and CDH1 genes in 73 colorectal carcinoma and 43 paired normal tissues of Tunisian patients using methylation-specific PCR assays. The association between methylation status and the clinicopathological features was evaluated. To determine whether aberrant methylation affects gene expression, we performed immunohistochemistry analysis for E-cadherin and COX-2, a target gene of RARβ2. The methylation frequencies vary from 80.8% for RARβ2 to 35.6% for RASSF1A while in non-tumor-paired samples; the frequencies of methylation are significantly lower for all the fourth genes tested. The methylation status did not correlate with any of the clinical features considered; however, aberrant methylation of RARβ2 was associated with a shortened overall patients' survival (p log rank = 0.026); nevertheless, it needs to be confirmed on larger sample size. Moreover, a significant inverse association was observed between methylation status of RARβ2 and COX-2 protein expression in tumor specimen (p = 0.014). On the other hand, we found that loss of E-cadherin expression was significantly associated with aberrant methylation of the CDH1 promoter (p = 0.005). Our findings showed that RARβ2 was frequently methylated in colorectal cancer and correlated with a worse prognosis and high expression of COX-2 suggesting a link between these two proteins in colorectal carcinogenesis. We also showed that epigenetic alteration of CDH1 is a major mechanism of the loss of E-cadherin protein expression in primary colorectal tumors.
Collapse
|
30
|
No evidence of human papillomavirus DNA in breast carcinoma in Tunisian patients. Breast 2010; 19:541-4. [PMID: 20547456 DOI: 10.1016/j.breast.2010.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate the prevalence of broad range of anogenital HPVs in a series of 123 Tunisian breast carcinoma cases. PCR assays were performed to amplify regions within the L1, E1, E6 and E7 open reading frames of a broad range of anogenital HPVs and specific types HPV16, 18, 31 and 33. In addition, we performed an in situ hybridization analysis using HPV biotinylated DNA probes for the detection of broad spectrum of anogenital HPV types, high-risk HPV types (16 and 18), intermediate-risk HPV types (31 and 33) and low-risk HPV types (6 and 11). None of the 123 breast carcinoma samples showed PCR amplification of HPV DNA using the broad spectrum consensus primer-pairs E1-350L/E1-547R and GP5+/GP6+ primers. Furthermore, neither high risk nor low-risk HPV types were detected in any of these cases. Moreover, using in situ hybridization for the detection of HPVs, we failed to detect a positive signal in neoplastic cells in any case. Our results suggest that anogenital papillomaviruses are unlikely to play a role in the development of breast carcinomas in Tunisian patients.
Collapse
|
31
|
Karray-Chouayekh S, Trifa F, Khabir A, Boujelbane N, Sellami-Boudawara T, Daoud J, Frikha M, Jlidi R, Gargouri A, Mokdad-Gargouri R. Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. J Cancer Res Clin Oncol 2010; 136:203-10. [PMID: 19657672 DOI: 10.1007/s00432-009-0649-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 07/17/2009] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Epigenetic gene silencing is one of the major causes of inactivation of tumor-suppressor genes in many human cancers. MATERIALS AND METHODS The aim of the present study was to determine the methylation status of the promoter region CpG islands of four cancer-related genes RASSF1A, RARbeta2, CDH1, and p16 ( INK4a ) in 78 breast cancer specimens and to evaluate whether the methylation status is associated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) together with the major clinico-pathological parameters. RESULTS We showed that the methylation frequencies ranged from 19.6% (p16 ( INK4a )) to 87% (RASSF1A) in primary breast tumors of Tunisian patients. Aberrant methylation of RARbeta2 was observed in 66.6% of cases and associated with age at diagnosis (P = 0.043), while CDH1 was methylated in 47.4% of tumors and was correlated with tumor size (P = 0.013). RASSF1A presented the highest percentage of methylation (87%) and was strongly associated with poor survival (P = 0.014), with age (P = 0.048), and tumor stage (P = 0.033). Loss of ER and PR was strongly associated with GIII tumors (P = 0.000 and 0.037 respectively) while HER2/neu was associated with lymph node involvement (P = 0.026) and 5-year survival rate (P = 0.028). CONCLUSIONS Our preliminary findings suggested that aberrant methylation of RASSF1A and RARbeta2 occurs frequently in Tunisian breast cancer patients compared with others. Furthermore, RASSF1A hypermethylation could be used as a potential marker of poor prognosis.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Cadherins/genetics
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- CpG Islands/genetics
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Middle Aged
- Neoplasm Staging
- Polymerase Chain Reaction
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Receptors, Retinoic Acid/genetics
- Survival Analysis
- Tumor Suppressor Proteins/genetics
- Tunisia/epidemiology
Collapse
Affiliation(s)
- Sondes Karray-Chouayekh
- Unité de Recherche Génétique du Cancer et Production de Protéines Thérapeutiques, Centre de Biotechnologie de Sfax, BP 1177, Route Sidi Mansour, Sfax, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Helmbold P, Lahtz C, Enk A, Herrmann-Trost P, Marsch WC, Kutzner H, Dammann RH. Frequent occurrence ofRASSF1Apromoter hypermethylation and merkel cell polyomavirus in merkel cell carcinoma. Mol Carcinog 2009; 48:903-9. [DOI: 10.1002/mc.20540] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Fong MY, Kakar SS. Ovarian cancer mouse models: a summary of current models and their limitations. J Ovarian Res 2009; 2:12. [PMID: 19781107 PMCID: PMC2762470 DOI: 10.1186/1757-2215-2-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/28/2009] [Indexed: 01/04/2023] Open
Abstract
Development of mouse models representing human spontaneous ovarian cancer has been hampered by the lack of understanding of the etiology of this very complex disease. Mouse models representing the different types of ovarian cancer are needed to understand how epithelial ovarian cancer differs from granulosa cell tumors. Many different methods have been used to generate a viable genetic model with limited success. This review focuses on the methods of various investigators and the limitations of each model in establishing a reproducible and inheritable line to study this disease.
Collapse
Affiliation(s)
- Miranda Y Fong
- Department of Physiology and Biophysics, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
34
|
Clinical significance of epigenetic inactivation of hMLH1 and BRCA1 in Tunisian patients with invasive breast carcinoma. J Biomed Biotechnol 2009; 2009:369129. [PMID: 19644562 PMCID: PMC2717605 DOI: 10.1155/2009/369129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 05/19/2009] [Indexed: 12/31/2022] Open
Abstract
Aberrant hypermethylation of gene promoter regions is one of the mechanisms for inactivation of tumour suppressor genes in many human cancers including breast carcinoma. In the current study, we aimed to assess by MSP, the methylation pattern of two cancer-related genes involved in DNA repair: hMLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) and BRCA1 (breast cancer 1, early onset) in 78 primary breast cancers from Tunisian patients. The methylation frequencies were 24.36% for hMLH1 and 46% for BRCA1. BRCA1 methylation correlated with age at diagnosis (P = .015) and 5-years disease free survival (P = .016) while hMLH1 methylation was more frequent in larger tumors (P = .002) and in presence of distant metastasis (P = .004). Furthermore, methylation of hMLH1 significantly correlated with high level of P53 expression (P = .006) and with overall survival (P = .015) suggesting that silencing of hMLH1 through aberrant promoter methylation could be used as a poor prognosis indicator in breast cancer.
Collapse
|
35
|
Hachana M, Trimeche M, Ziadi S, Amara K, Gaddas N, Mokni M, Korbi S. Prevalence and characteristics of the MMTV-like associated breast carcinomas in Tunisia. Cancer Lett 2008; 271:222-30. [PMID: 18639977 DOI: 10.1016/j.canlet.2008.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/02/2008] [Accepted: 06/09/2008] [Indexed: 12/16/2022]
Abstract
The involvement of a retrovirus homologous to the mouse mammary tumor virus (MMTV) in the pathogenesis of human breast cancer (BC) has long been assumed, but has never been proven. Previous studies have reported the detection of MMTV-like env sequences in variable proportions that did not exceed 40% of BC cases in several countries. However, these viral sequences have been found in higher proportion (74%) in Tunisian diagnosed with BC during the seventies. This study is an attempt to evaluate the current prevalence of MMTV-like env gene in BC in Tunisian women. We used semi-nested PCR that amplify a 190-bp MMTV-like env sequence, followed by direct sequencing to screen a series of 122 cases of BC randomly selected. The findings were correlated to clinicopathological data and immunohistochemical expression status of progesterone and oestrogen receptors, HER2, and P53. Specific MMTV-like env sequences were found in 17 (13.9%) cases of breast carcinomas, whereas the same sequences were not detected in matched normal breast tissues. The presence of the viral sequences correlates inversely with progesterone receptor expression (6.8% versus 20.3%; P=0.03) and HER2 overexpression (3.1% versus 17.7%; P=0.04). This present study confirms the presence of MMTV-like env sequences in BC in Tunisian women but describes an important decrease in the prevalence of the viral sequences compared with previous studies. This reduction may be due to some changes in the virological characteristics or exposure to the virus.
Collapse
Affiliation(s)
- M Hachana
- Department of Pathology, Farhat Hached Hospital, Sousse 4000, Tunisia
| | | | | | | | | | | | | |
Collapse
|