1
|
Ju JA, Thompson KN, Annis DA, Mull ML, Gilchrist DE, Moriarty A, Chang KT, Stemberger MB, Noto MJ, Vitolo MI, Martin SS. Tubulin-Based Microtentacles Aid in Heterotypic Clustering of Neutrophil-Differentiated HL-60 Cells and Breast Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409260. [PMID: 39696759 PMCID: PMC11809343 DOI: 10.1002/advs.202409260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters. Neutrophil-CTC clusters help CTCs survive the harsh vascular environment to promote successful metastasis, however, the specific mechanism of this interaction is not fully understood. Utilizing TetherChip technology, it is found that primary and differentiated neutrophils produce McTNs composed of detyrosinated and acetylated α-tubulin and vimentin. Neutrophil McTNs aid in cluster formation, migration, and reattachment, which are suppressed with the tubulin-depolymerizing agent, Vinorelbine. Co-culturing differentiated neutrophils and tumor cells formed heterotypic clusters that enhanced migration. CTC-neutrophil clusters have higher metastatic efficiency, and by demonstrating that neutrophils form McTNs, a new possible mechanism for how neutrophils interact with tumor cells is revealed. These findings further support the idea that developing cluster-disrupting therapies can provide a new targeted strategy to reduce the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Epidemiology and Human GeneticsUniversity of Maryland Baltimore800 W. Baltimore St.BaltimoreMD21201USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Darin E. Gilchrist
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Aidan Moriarty
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - Michael J. Noto
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of MedicineUniversity of Maryland School of Medicine22 S. Greene St.BaltimoreMD21201USA
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
- Department of Pharmacology and PhysiologyUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
- Department of Pharmacology and PhysiologyUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- United States Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
| |
Collapse
|
2
|
Stemberger MB, Ju JA, Thompson KN, Mathias TJ, Jerrett AE, Chang KT, Ory EC, Annis DA, Mull ML, Gilchrist DE, Vitolo MI, Martin SS. Hydrogen Peroxide Induces α-Tubulin Detyrosination and Acetylation and Impacts Breast Cancer Metastatic Phenotypes. Cells 2023; 12:1266. [PMID: 37174666 PMCID: PMC10177274 DOI: 10.3390/cells12091266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Levels of hydrogen peroxide are highly elevated in the breast tumor microenvironment compared to normal tissue. Production of hydrogen peroxide is implicated in the mechanism of action of many anticancer therapies. Several lines of evidence suggest hydrogen peroxide mediates breast carcinogenesis and metastasis, though the molecular mechanism remains poorly understood. This study elucidates the effects of exposure to elevated hydrogen peroxide on non-tumorigenic MCF10A mammary epithelial cells, tumorigenic MCF7 cells, and metastatic MDA-MB-231 breast cancer cells. Hydrogen peroxide treatment resulted in a dose- and time-dependent induction of two α-tubulin post-translational modifications-de-tyrosination and acetylation-both of which are markers of poor patient prognosis in breast cancer. Hydrogen peroxide induced the formation of tubulin-based microtentacles in MCF10A and MDA-MB-231 cells, which were enriched in detyrosinated and acetylated α-tubulin. However, the hydrogen peroxide-induced microtentacles did not functionally promote metastatic phenotypes of cellular reattachment and homotypic cell clustering. These data establish for the first time that microtentacle formation can be separated from the functions to promote reattachment and clustering, which indicates that there are functional steps that remain to be identified. Moreover, signals in the primary tumor microenvironment may modulate α-tubulin post-translational modifications and induce microtentacles; however, the functional consequences appear to be context-dependent.
Collapse
Affiliation(s)
- Megan B. Stemberger
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Trevor J. Mathias
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Alexandra E. Jerrett
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - David A. Annis
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Darin E. Gilchrist
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Michele I. Vitolo
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
- Departments of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- Departments of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 18 N. Greene St., Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Paddillaya N, Ingale K, Gaikwad C, Saini DK, Pullarkat P, Kondaiah P, Menon GI, Gundiah N. Cell adhesion strength and tractions are mechano-diagnostic features of cellular invasiveness. SOFT MATTER 2022; 18:4378-4388. [PMID: 35611829 DOI: 10.1039/d2sm00015f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adhesion of cells to substrates occurs via integrin clustering and binding to the actin cytoskeleton. Oncogenes modify anchorage-dependent mechanisms in cells during cancer progression. Fluid shear devices provide a label-free way to characterize cell-substrate interactions and heterogeneities in cell populations. We quantified the critical adhesion strengths of MCF-7, MDAMB-231, A549, HPL1D, HeLa, and NIH3T3 cells using a custom fluid shear device. The detachment response was sigmoidal for each cell type. A549 and MDAMB-231 cells had significantly lower critical adhesion strengths (τ50) than their non-invasive counterparts, HPL1D and MCF-7. Detachment dynamics inversely correlated with cell invasion potentials. A theoretical model, based on τ50 values and the distribution of cell areas on substrates, provided good fits to results from de-adhesion experiments. Quantification of cell tractions, using the Reg-FTTC method on 10 kPa polyacrylamide gels, showed highest values for invasive, MDAMB-231 and A549, cells compared to non-invasive cells. Immunofluorescence studies show differences in vinculin distributions; non-invasive cells have distinct vinculin puncta, whereas invasive cells have more dispersed distributions. The cytoskeleton in non-invasive cells was devoid of well-developed stress fibers, and had thicker cortical actin bundles in the boundary. Fluorescence intensity of actin was significantly lower in invasive cells as compared to non invasive cells. These correlations in adhesion strengths and traction stresses with cell invasiveness may be useful in cancer diagnostics and other pathologies featuring mis-regulation in adhesion.
Collapse
Affiliation(s)
- Neha Paddillaya
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kalyani Ingale
- Biological Sciences, Indian Institute of Science, Bangalore, India.
| | - Chaitanya Gaikwad
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Pramod Pullarkat
- Soft Condensed Matter Group, Raman Research Institute, Bangalore, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gautam I Menon
- The Institute of Mathematical Sciences, Chennai, India
- Departments of Physics and Biology, Ashoka University, Sonepat, India
| | - Namrata Gundiah
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Reader JC, Fan C, Ory ECH, Ju J, Lee R, Vitolo MI, Smith P, Wu S, Ching MMN, Asiedu EB, Jewell CM, Rao GG, Fulton A, Webb TJ, Yang P, Santin AD, Huang HC, Martin SS, Roque DM. Microtentacle Formation in Ovarian Carcinoma. Cancers (Basel) 2022; 14:800. [PMID: 35159067 PMCID: PMC8834106 DOI: 10.3390/cancers14030800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot β-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.
Collapse
Affiliation(s)
- Jocelyn C. Reader
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Cong Fan
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Eleanor Claire-Higgins Ory
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Julia Ju
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Rachel Lee
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Michele I. Vitolo
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
| | - Paige Smith
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Sulan Wu
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA;
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mc Millan Nicol Ching
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Cancer Imaging, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Emmanuel B. Asiedu
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
| | - Gautam G. Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Amy Fulton
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences and Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alessandro D. Santin
- Division of Gynecologic Oncology, Smilow Cancer Center, Yale University, New Haven, CT 06520, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
| | - Stuart S. Martin
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dana M. Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| |
Collapse
|
6
|
Post-translational modifications of tubulin: their role in cancers and the regulation of signaling molecules. Cancer Gene Ther 2021; 30:521-528. [PMID: 34671113 DOI: 10.1038/s41417-021-00396-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Microtubules play an important role in regulating several vital cellular activities, including cell division and tissue organization, through their dynamic protofilament network. In addition to forming the cytoskeleton, microtubules regulate the intracellular trafficking of cytoplasmic components and various signaling molecules, depending on the presence of post-transitional modifications (PTMs) and binding proteins. Accumulating evidence indicates the significant role of microtubule PTMs on cancer behavior. The PTMs that frequently occur on microtubules include acetylation, detyrosination, tyrosination, polyglutamylation, and polyglycylation. Alterations in these PTMs cause global effects on intracellular signal transduction, strongly linked to cancer pathogenesis. This review provides an update on the role of microtubule PTMs in cancer aggressiveness, particularly regarding cell death, sensitivity to chemotherapy, cell migration, and invasion. Additionally, it provides a mechanistic explanation of the molecular signaling pathways involved. This information might prove useful for predictive or therapeutic purposes.
Collapse
|
7
|
Bonnet J, Rigal L, Mondesert O, Morin R, Corsaut G, Vigneau M, Ducommun B, Lobjois V. Mitotic arrest affects clustering of tumor cells. Cell Div 2021; 16:2. [PMID: 33514388 PMCID: PMC7847029 DOI: 10.1186/s13008-021-00070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. Results In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. Conclusions Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.
Collapse
Affiliation(s)
- Julia Bonnet
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Lise Rigal
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Odile Mondesert
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | | | - Gaëlle Corsaut
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Mathieu Vigneau
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Bernard Ducommun
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France.,CHU de Toulouse, Toulouse, France
| | - Valérie Lobjois
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France.
| |
Collapse
|
8
|
Ju JA, Lee CJ, Thompson KN, Ory EC, Lee RM, Mathias TJ, Pratt SJP, Vitolo MI, Jewell CM, Martin SS. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. LAB ON A CHIP 2020; 20:2872-2888. [PMID: 32744284 PMCID: PMC7595763 DOI: 10.1039/d0lc00207k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Bressler Research Building Rm 10-29, 655 W, Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061452. [PMID: 32503141 PMCID: PMC7352870 DOI: 10.3390/cancers12061452] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.
Collapse
|
10
|
Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs). Cancers (Basel) 2020; 12:cancers12030743. [PMID: 32245166 PMCID: PMC7140032 DOI: 10.3390/cancers12030743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs). CTC numbers as well as CTC clusters have been used as a prognostic marker with higher numbers of CTCs and/or CTC clusters correlating with an unfavorable prognosis. However, we have very limited knowledge about CTC biology, including which of these cells are ultimately responsible for overt metastatic growth, but due to the fact that higher numbers of CTCs correlate with a worse prognosis; it would seem appropriate to either limit CTCs and/or their dissemination. Here, we will discuss the different cancer treatments which may inadvertently promote the mobilization of CTCs and potential CTC therapies to decrease metastasis.
Collapse
|
11
|
Mechanophenotyping of 3D multicellular clusters using displacement arrays of rendered tractions. Proc Natl Acad Sci U S A 2020; 117:5655-5663. [PMID: 32123100 DOI: 10.1073/pnas.1918296117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.
Collapse
|
12
|
Scioli MG, Storti G, D'Amico F, Gentile P, Fabbri G, Cervelli V, Orlandi A. The Role of Breast Cancer Stem Cells as a Prognostic Marker and a Target to Improve the Efficacy of Breast Cancer Therapy. Cancers (Basel) 2019; 11:1021. [PMID: 31330794 PMCID: PMC6678191 DOI: 10.3390/cancers11071021] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common form of tumor in women and the leading cause of cancer-related mortality. Even though the major cellular burden in breast cancer is constituted by the so-called bulk tumor cells, another cell subpopulation named cancer stem cells (CSCs) has been identified. The latter have stem features, a self-renewal capacity, and the ability to regenerate the bulk tumor cells. CSCs have been described in several cancer types but breast cancer stem cells (BCSCs) were among the first to be identified and characterized. Therefore, many efforts have been put into the phenotypic characterization of BCSCs and the study of their potential as prognostic indicators and therapeutic targets. Many dysregulated pathways in BCSCs are involved in the epithelial-mesenchymal transition (EMT) and are found up-regulated in circulating tumor cells (CTCs), another important cancer cell subpopulation, that shed into the vasculature and disseminate along the body to give metastases. Conventional therapies fail at eliminating BCSCs because of their quiescent state that gives them therapy resistance. Based on this evidence, preclinical studies and clinical trials have tried to establish novel therapeutic regimens aiming to eradicate BCSCs. Markers useful for BCSC identification could also be possible therapeutic methods against BCSCs. New approaches in drug delivery combined with gene targeting, immunomodulatory, and cell-based therapies could be promising tools for developing effective CSC-targeted drugs against breast cancer.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Giulia Fabbri
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy.
| |
Collapse
|
13
|
Kallergi G, Aggouraki D, Zacharopoulou N, Stournaras C, Georgoulias V, Martin SS. Evaluation of α-tubulin, detyrosinated α-tubulin, and vimentin in CTCs: identification of the interaction between CTCs and blood cells through cytoskeletal elements. Breast Cancer Res 2018; 20:67. [PMID: 29976237 PMCID: PMC6034292 DOI: 10.1186/s13058-018-0993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are the major players in the metastatic process. A potential mechanism of cell migration and invasion is the formation of microtentacles in tumor cells. These structures are supported by α-tubulin (TUB), detyrosinated α-tubulin (GLU), and vimentin (VIM). In the current study, we evaluated the expression of those cytoskeletal proteins in CTCs. Methods Forty patients with breast cancer (BC) (16 early and 24 metastatic) were enrolled in the study. CTCs were isolated using the ISET platform and stained with the following combinations of antibodies: pancytokeratin (CK)/VIM/TUB and CK/VIM/GLU. Samples were analyzed with the ARIOL platform and confocal laser scanning microscopy. Results Fluorescence quantification revealed that the ratios CK/TUB, CK/VIM, and CK/GLU were statistically increased in MCF7 compared with more aggressive cell lines (SKBR3 and MDA-MB-231). In addition, all of these ratios were statistically increased in MCF7 cells compared with metastatic BC patients’ CTCs (p = 0.0001, p = 0.0001, and p = 0.003, respectively). Interestingly, intercellular connections among CTCs and between CTCs and blood cells through cytoskeleton bridges were revealed, whereas microtentacles were increased in patients with CTC clusters. These intercellular connections were supported by TUB, VIM, and GLU. Quantification of the examined molecules revealed that the median intensity of TUB, GLU, and VIM was significantly increased in patients with metastatic BC compared with those with early disease (TUB, 62.27 vs 11.5, p = 0.0001; GLU, 6.99 vs 5.29, p = 0.029; and VIM, 8.24 vs 5.38, p = 0.0001, respectively). Conclusions CTCs from patients with BC aggregate to each other and to blood cells through cytoskeletal protrusions, supported by VIM, TUB, and GLU. Quantification of these molecules could potentially identify CTCs related to more aggressive disease. Electronic supplementary material The online version of this article (10.1186/s13058-018-0993-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Kallergi
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece. .,Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece.
| | - D Aggouraki
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece
| | - N Zacharopoulou
- Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece
| | - C Stournaras
- Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece
| | - V Georgoulias
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece
| | - S S Martin
- Department of Physiology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| |
Collapse
|
14
|
Ory EC, Chen D, Chakrabarti KR, Zhang P, Andorko JI, Jewell CM, Losert W, Martin SS. Extracting microtentacle dynamics of tumor cells in a non-adherent environment. Oncotarget 2017; 8:111567-111580. [PMID: 29340075 PMCID: PMC5762343 DOI: 10.18632/oncotarget.22874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.
Collapse
Affiliation(s)
- Eleanor C. Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Desu Chen
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
| | - Kristi R. Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James I. Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Cytoskeletal organization in microtentacles. Exp Cell Res 2017; 357:291-298. [PMID: 28551375 DOI: 10.1016/j.yexcr.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/22/2017] [Accepted: 05/24/2017] [Indexed: 11/23/2022]
Abstract
Microtentacles are thin, flexible cell protrusions that have recently been described and whose presence enhances efficient attachment of circulating cells. They are found on circulating tumor cells and can be induced on a wide range of breast cancer cell lines, where they are promoted by factors that either stabilize microtubules or destabilize the actin cytoskeleton. Evidence suggests that they are relevant to the metastatic spread of cancer, so understanding their structure and formation may lead to useful therapies. Microtentacles are formed by microtubules and contain vimentin intermediate filaments, but beyond this, there is little information about their ultrastructure. We have used electron microscopy of high pressure frozen sections and tomography of cryo-prepared intact cells, along with super resolution fluorescence microscopy, to provide the first ultrastructural insights into microtubule and intermediate filament arrangement within microtentacles. By scanning electron microscopy it was seen that microtentacles form within minutes of addition of drugs that stabilize microtubules and destabilize actin filaments. Mature microtentacles were found to be well below one micrometer in diameter, tapering gradually to below 100nm at the distal ends. They also contained frequent branches and bulges suggestive of heterogeneous internal structure. Super resolution fluorescence microscopy and examination of sectioned samples showed that the microtubules and intermediate filaments can occupy different areas within the microtentacles, rather than interacting intimately as had been expected. Cryo-electron tomography of thin regions of microtentacles revealed densely packed microtubules and absence of intermediate filaments. The number of microtubules ranged from several dozen in some areas to just a few in the thinnest regions, with none of the regular arrangement found in axonemes. Improved understanding of the mechanism of microtentacle formation, as well as the resultant structure, will be valuable in developing therapies against metastasis, if the hypothesized role of microtentacles in metastasis is confirmed. This work provides a significant step in this direction.
Collapse
|
16
|
Ory EC, Bhandary L, Boggs AE, Chakrabarti KR, Parker J, Losert W, Martin SS. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells. Phys Biol 2017; 14:026005. [PMID: 28092269 PMCID: PMC5738915 DOI: 10.1088/1478-3975/aa59a2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems-growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.
Collapse
Affiliation(s)
- Eleanor C Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Lekhana Bhandary
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Amanda E Boggs
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Joshua Parker
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Bldg. Rm 10-29, Baltimore, MD 21201, United States of America
| |
Collapse
|
17
|
Chakrabarti KR, Andorko JI, Whipple RA, Zhang P, Sooklal EL, Martin SS, Jewell CM. Lipid tethering of breast tumor cells enables real-time imaging of free-floating cell dynamics and drug response. Oncotarget 2016; 7:10486-97. [PMID: 26871289 PMCID: PMC4891134 DOI: 10.18632/oncotarget.7251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Free-floating tumor cells located in the blood of cancer patients, known as circulating tumor cells (CTCs), have become key targets for studying metastasis. However, effective strategies to study the free-floating behavior of tumor cells in vitro have been a major barrier limiting the understanding of the functional properties of CTCs. Upon extracellular-matrix (ECM) detachment, breast tumor cells form tubulin-based protrusions known as microtentacles (McTNs) that play a role in the aggregation and re-attachment of tumor cells to increase their metastatic efficiency. In this study, we have designed a strategy to spatially immobilize ECM-detached tumor cells while maintaining their free-floating character. We use polyelectrolyte multilayers deposited on microfluidic substrates to prevent tumor cell adhesion and the addition of lipid moieties to tether tumor cells to these surfaces through interactions with the cell membranes. This coating remains optically clear, allowing capture of high-resolution images and videos of McTNs on viable free-floating cells. In addition, we show that tethering allows for the real-time analysis of McTN dynamics on individual tumor cells and in response to tubulin-targeting drugs. The ability to image detached tumor cells can vastly enhance our understanding of CTCs under conditions that better recapitulate the microenvironments they encounter during metastasis.
Collapse
Affiliation(s)
- Kristi R Chakrabarti
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Rebecca A Whipple
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Elisabeth L Sooklal
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Stuart S Martin
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Chakrabarti KR, Whipple RA, Boggs AE, Hessler LK, Bhandary L, Vitolo MI, Thompson K, Martin SS. Pharmacologic regulation of AMPK in breast cancer affects cytoskeletal properties involved with microtentacle formation and re-attachment. Oncotarget 2016; 6:36292-307. [PMID: 26431377 PMCID: PMC4742178 DOI: 10.18632/oncotarget.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/11/2015] [Indexed: 01/20/2023] Open
Abstract
The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network. AMP-activated protein kinase (AMPK) is a cellular metabolic regulator that can alter actin and microtubule organization in epithelial cells. We report that AMPK can regulate the cytoskeleton of breast cancer cells in both attached and suspended conditions. We tested the effects of AMPK on microtubule stability and the actin-severing protein, cofilin. AMPK inhibition with compound c increased both microtubule stability and cofilin activation, which also resulted in higher McTN formation and re-attachment. Conversely, AMPK activation with A-769662 decreased microtubule stability and cofilin activation with concurrent decreases in McTN formation and cell re-attachment. This data shows for the first time that AMPK shifts the balance of cytoskeletal forces in suspended breast cancer cells, which affect their ability to form McTNs and re-attach. These results support a model where AMPK activators may be used therapeutically to reduce the metastatic efficiency of breast tumor cells.
Collapse
Affiliation(s)
- Kristi R Chakrabarti
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amanda E Boggs
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay K Hessler
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lekhana Bhandary
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele I Vitolo
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keyata Thompson
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart S Martin
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Bhandary L, Whipple RA, Vitolo MI, Charpentier MS, Boggs AE, Chakrabarti KR, Thompson KN, Martin SS. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells. Oncotarget 2016; 6:6251-66. [PMID: 25749040 PMCID: PMC4467435 DOI: 10.18632/oncotarget.3360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/16/2023] Open
Abstract
The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy.
Collapse
Affiliation(s)
- Lekhana Bhandary
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Michele I Vitolo
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Monica S Charpentier
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Amanda E Boggs
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kristi R Chakrabarti
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Keyata N Thompson
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Stuart S Martin
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Spencer A, Baker AB. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow. Sci Rep 2016; 6:19854. [PMID: 26816215 PMCID: PMC4728493 DOI: 10.1038/srep19854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023] Open
Abstract
The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX USA.,Institute for Computational Engineering and Sciences (ICES), University of Texas, Austin, TX USA
| |
Collapse
|
21
|
Chakrabarti KR, Hessler L, Bhandary L, Martin SS. Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth. Clin Cancer Res 2015; 21:5209-5214. [PMID: 26463706 DOI: 10.1158/1078-0432.ccr-15-0328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
The dynamic balance between microtubule extension and actin contraction regulates mammalian cell shape, division, and motility, which has made the cytoskeleton an attractive and very successful target for cancer drugs. Numerous compounds in clinical use to reduce tumor growth cause microtubule breakdown (vinca alkaloids, colchicine-site, and halichondrins) or hyperstabilization of microtubules (taxanes and epothilones). However, both of these strategies indiscriminately alter the assembly and dynamics of all microtubules, which causes significant dose-limiting toxicities on normal tissues. Emerging data are revealing that posttranslational modifications of tubulin (detyrosination, acetylation) or microtubule-associated proteins (Tau, Aurora kinase) may allow for more specific targeting of microtubule subsets, thereby avoiding the broad disruption of all microtubule polymerization. Developing approaches to reduce tumor cell migration and invasion focus on disrupting actin regulation by the kinases SRC and ROCK. Because the dynamic balance between microtubule extension and actin contraction also regulates cell fate decisions and stem cell characteristics, disrupting this cytoskeletal balance could yield unexpected effects beyond tumor growth. This review will examine recent data demonstrating that cytoskeletal cancer drugs affect wound-healing responses, microtentacle-dependent reattachment efficiency, and stem cell characteristics in ways that could affect the metastatic potential of tumor cells, both beneficially and detrimentally.
Collapse
Affiliation(s)
- Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Lindsay Hessler
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,General Surgery Residency Program, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Lekhana Bhandary
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.,Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Loss of the obscurin-RhoGEF downregulates RhoA signaling and increases microtentacle formation and attachment of breast epithelial cells. Oncotarget 2015; 5:8558-68. [PMID: 25261370 PMCID: PMC4226704 DOI: 10.18632/oncotarget.2338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Obscurins are RhoGEF-containing proteins whose downregulation has been implicated in the development and progression of breast cancer. Herein, we aim to elucidate the mechanism for increased motility of obscurin-deficient cells. We show that shRNA-mediated obscurin downregulation in MCF10A cells leads to >50% reduction in RhoA activity relative to scramble control (shCtrl), as well as decreased phosphorylation of RhoA effectors, including myosin light chain phosphatase, myosin light chain, lim kinase, and cofilin, in both attached and suspended cells. These alterations result in decreased actomyosin contractility, allowing suspended cells to escape detachment-induced apoptosis. Moreover, ~40% of shObsc-expressing cells, but only ~10% of shCtrl-expressing cells, extend microtentacles, tubulin-based projections that mediate the attachment of circulating tumor cells to endothelium. Indeed, we show that MCF10A cells expressing shObsc attach in vitro more readily than shCtrl cells, an advantage that persists following taxane exposure. Overall, our data suggest that loss of obscurins may represent a substantial selective advantage for breast epithelial cells during metastasis, and that treatment with paclitaxel may exacerbate this advantage by preferentially allowing obscurin-deficient, stem-like cells to attach to the endothelium of distant sites, a first step towards colonizing metastatic tumors.
Collapse
|
23
|
Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, Tuttle KC, Slovic J, Lu Y, Mills GB, Martin SS. α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 2014; 75:203-15. [PMID: 25503560 DOI: 10.1158/0008-5472.can-13-3563] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metastatic cases of breast cancer pose the primary challenge in clinical management of this disease, demanding the identification of effective therapeutic strategies that remain wanting. In this study, we report that elevated levels of α-tubulin acetylation are a sufficient cause of metastatic potential in breast cancer. In suspended cell culture conditions, metastatic breast cancer cells exhibited high α-tubulin acetylation levels that extended along microtentacle (McTN) protrusions. Mutation of the acetylation site on α-tubulin and enzymatic modulation of this posttranslational modification exerted a significant impact on McTN frequency and the reattachment of suspended tumor cells. Reducing α-tubulin acetylation significantly inhibited migration but did not affect proliferation. In an analysis of more than 140 matched primary and metastatic tumors from patients, we found that acetylation was maintained and in many cases increased in lymph node metastases compared with primary tumors. Proteomic analysis of an independent cohort of more than 390 patient specimens further documented the relationship between increased α-tubulin acetylation and the aggressive behaviors of basal-like breast cancers, with a trend toward increased risk of disease progression and death in patients with high-intensity α-tubulin acetylation in primary tumors. Taken together, our results identify a tight correlation between acetylated α-tubulin levels and aggressive metastatic behavior in breast cancer, with potential implications for the definition of a simple prognostic biomarker in patients with breast cancer.
Collapse
Affiliation(s)
- Amanda E Boggs
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Michele I Vitolo
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca A Whipple
- University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Monica S Charpentier
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Olga G Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Olga B Ioffe
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kimberly C Tuttle
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jana Slovic
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart S Martin
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
24
|
Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS. Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-κB inhibition. Breast Cancer Res 2014; 15:R83. [PMID: 24028602 PMCID: PMC3979133 DOI: 10.1186/bcr3477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Detyrosinated tubulin, a post-translational modification of α-tubulin and a hallmark of stable microtubules, has gained recent attention given its association with tumor progression, invasiveness, and chemoresistance. We also recently reported that epithelial-to-mesenchymal transition (EMT) promotes tubulin detyrosination through tubulin tyrosine ligase (TTL) suppression. Furthermore, detyrosinated tubulin-enriched membrane protrusions, termed microtentacles (McTN), facilitate tumor cell reattachment to endothelial layers. Given the induction of EMT associated with inflammation and cancer progression, we tested anti-inflammatory nuclear factor-kappaB (NF-κB) inhibitors on a panel of human breast carcinoma cells to examine their effects on detyrosinated tubulin to identify more specific tubulin-directed anti-cancer treatments. Methods Using metastatic human breast carcinoma cells MDA-MB-157, MDA-MB-436, and Bt-549, we measured the impact of NF-κB inhibitors parthenolide, costunolide, and resveratrol on detyrosinated tubulin using protein expression analysis and immunofluorescence. A luciferase reporter assay and a viability screen were performed to determine if the effects were associated with their NF-κB inhibitory properties or were a result of apoptosis. Real-time monitoring of cell-substratum attachment was measured utilizing electrical impedance across microelectronic sensor arrays. We compared the selectivity of the NF-κB inhibitors to specifically target detyrosinated tubulin with traditional tubulin-targeted therapeutics, paclitaxel and colchicine, throughout the study. Results Sesquiterpene lactones, parthenolide and costunolide, selectively decrease detyrosinated tubulin independent of their inhibition of NF-κB. Live-cell scoring of suspended cells treated with parthenolide and costunolide show reduction in the frequency of microtentacles and inhibition of reattachment. Structural analysis shows that parthenolide and costunolide can decrease detyrosinated microtubules without significantly disrupting the overall microtubule network or cell viability. Paclitaxel and colchicine display indiscriminate disruption of the microtubule network. Conclusions Our data demonstrate that selective targeting of detyrosinated tubulin with parthenolide and costunolide can reduce McTN frequency and inhibit tumor cell reattachment. These actions are independent of their effects on NF-κB inhibition presenting a novel anti-cancer property and therapeutic opportunity to selectively target a stable subset of microtubules in circulating tumor cells to reduce metastatic potential with less toxicity in breast cancer patients.
Collapse
|
25
|
Charpentier M, Martin S. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells. Cancers (Basel) 2013; 5:1545-65. [PMID: 24240660 PMCID: PMC3875953 DOI: 10.3390/cancers5041545] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.
Collapse
Affiliation(s)
- Monica Charpentier
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201, USA; E-Mail:
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
| | - Stuart Martin
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Bartolini F, Ramalingam N, Gundersen GG. Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol Biol Cell 2012; 23:4032-40. [PMID: 22918941 PMCID: PMC3469518 DOI: 10.1091/mbc.e12-05-0338] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actin-capping protein induced stable microtubules in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by small interfering RNA reduced stable microtubule levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. In migrating fibroblasts, RhoA and its effector mDia1 regulate the selective stabilization of microtubules (MTs) polarized in the direction of migration. The conserved formin homology 2 domain of mDia1 is involved both in actin polymerization and MT stabilization, and the relationship between these two activities is unknown. We found that latrunculin A (LatA) and jasplakinolide, actin drugs that release mDia1 from actin filament barbed ends, stimulated stable MT formation in serum-starved fibroblasts and caused a redistribution of mDia1 onto MTs. Knockdown of mDia1 by small interfering RNA (siRNA) prevented stable MT induction by LatA, whereas blocking upstream Rho or integrin signaling had no effect. In search of physiological regulators of mDia1, we found that actin-capping protein induced stable MTs in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by siRNA reduced stable MT levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. These results show that actin-capping protein is a novel regulator of MT stability that functions by antagonizing mDia1 activity toward actin filaments and suggest a novel form of actin–MT cross-talk in which a single factor acts sequentially on actin and MTs.
Collapse
Affiliation(s)
- Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
27
|
Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM, Boggs AE, Martin SS, Konstantopoulos K. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 2012; 26:4045-56. [PMID: 22707566 DOI: 10.1096/fj.12-211441] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.
Collapse
Affiliation(s)
- Eric M Balzer
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins Physical Sciences-Oncology Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vitolo MI, Boggs AE, Whipple RA, Yoon JR, Thompson K, Matrone MA, Cho EH, Balzer EM, Martin SS. Loss of PTEN induces microtentacles through PI3K-independent activation of cofilin. Oncogene 2012; 32:2200-10. [PMID: 22689060 DOI: 10.1038/onc.2012.234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loss of PTEN tumor suppressor enhances metastatic risk in breast cancer, although the underlying mechanisms are poorly defined. We report that homozygous deletion of PTEN in mammary epithelial cells induces tubulin-based microtentacles (McTNs) that facilitate cell reattachment and homotypic aggregation. Treatment with contractility-modulating drugs showed that McTNs in PTEN(-/-) cells are suppressible by controlling the actin cytoskeleton. Because outward microtubule extension is counteracted by actin cortical contraction, increased activity of actin-severing proteins could release constraints on McTN formation in PTEN(-/-) cells. One such actin-severing protein, cofilin, is activated in detached PTEN(-/-) cells that could weaken the actin cortex to promote McTNs. Expression of wild-type cofilin, an activated mutant (S3A), and an inactive mutant (S3E) demonstrated that altering cofilin phosphorylation directly affects McTNs formation. Chemical inhibition of PI3K did not reduce McTNs or inactivate cofilin in PTEN(-/-) cells. Additionally, knock-in expression of the two most common PI3K-activating mutations observed in human cancer patients did not increase McTNs or activate cofilin. PTEN loss and PI3K activation also caused differential activation of the cofilin regulators, LIM-kinase1 (LIMK) and Slingshot-1L (SSH). Furthermore, McTNs were suppressed and cofilin was inactivated by restoration of PTEN in the PTEN(-/-) cells, indicating that both the elevation of McTNs and the activation of cofilin are specific results arising from PTEN loss. These data identify a novel mechanism by which PTEN loss could remodel the cortical actin network to facilitate McTNs that promote tumor cell reattachment and aggregation. Using isogenic MCF-10A PTEN(-/-) and PIK3CA mutants, we have further demonstrated that there are clear differences in activation of cofilin, LIMK and SSH between PTEN loss and PI3K activation, providing a new evidence that these mutations yield distinct cytoskeletal phenotypes, which could have an impact on tumor biology.
Collapse
Affiliation(s)
- M I Vitolo
- University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Breast cancer mortality is primarily due to the occurrence of metastatic disease. We have identified a novel potential therapeutic agent derived from an edible root of the plant Colocasia esculenta, commonly known as taro, which has demonstrable activity in a preclinical model of metastatic breast cancer and that should have minimal toxicity. We have shown for the first time that a water-soluble extract of taro (TE) potently inhibits lung-colonizing ability and spontaneous metastasis from mammary gland-implanted tumors, in a murine model of highly metastatic estrogen receptor, progesterone receptor and Her-2/neu-negative breast cancer. TE modestly inhibits the proliferation of some, but not all, breast and prostate cancer cell lines. Morphological changes including cell rounding were observed. Tumor cell migration was completely blocked by TE. TE treatment also inhibited prostaglandin E2 (PGE2) synthesis and downregulated cyclooxygenase 1 and 2 mRNA expression. We purified the active compound(s) to near homogeneity with antimetastatic activity comparable with stock TE. The active compound with a native size of approximately 25 kDa contains two fragments of nearly equal size. The N-terminal amino acid sequencing of both fragments reveals that the active compound is highly related to three taro proteins: 12-kDa storage protein, tarin and taro lectin. All are similar in terms of amino acid sequence, posttranslational processing and all contain a carbohydrate-binding domain. This is the first report describing compound(s) derived from taro that potently and specifically inhibits tumor metastasis.
Collapse
|
30
|
Balzer EM, Konstantopoulos K. Intercellular adhesion: mechanisms for growth and metastasis of epithelial cancers. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:171-81. [PMID: 21913338 DOI: 10.1002/wsbm.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell-cell adhesion molecules (CAMs) comprise a broad class of linker proteins that are crucial for the development of multicellular organisms, and for the continued maintenance of organ and tissue structure. Because of its pivotal function in tissue homeostasis, the deregulation of intercellular adhesion is linked to the onset of most solid tumors. The breakdown of homeostatic cell adhesions in highly ordered epithelial sheets is directly implicated in carcinogenesis, while continued changes in the adhesion profile of the primary tumor mass facilitate growth and expansion into adjacent tissue. Intercellular adhesion molecules are also involved in each subsequent phase of metastasis, including transendothelial migration, transit through the bloodstream or lymphatics, and renewed proliferation in secondary sites. This review addresses various roles of cadherin- and selectin-mediated intercellular adhesion in tumor initiation and malignant transformation, and discusses the mechanisms for the arrest and adhesion of circulating tumor cells to the vessel endothelium. Considering the contributions of these CAMs to cancer progression in the context of a systematic biological framework may prove valuable in identifying new ways to diagnose and treat cancer.
Collapse
Affiliation(s)
- Eric M Balzer
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
31
|
Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J, DiPersio CM, Feustel PJ, Zhao J. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 2011; 30:1901-11. [PMID: 21151179 PMCID: PMC3952074 DOI: 10.1038/onc.2010.563] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epithelial to mesenchymal transition (EMT) and extracellular matrix degradation are critical for the initiation and progression of tumor invasion. We have recently identified Krüppel-like factor 8 (KLF8) as a critical inducer of EMT and invasion. KLF8 induces EMT primarily by repressing E-cadherin transcription. However, how KLF8 promotes invasion is unknown. Here, we report a novel KLF8-to- matrix metalloproteinase (MMP)9 signaling that promotes human breast cancer invasion. To identify the potential KLF8 regulation of MMPs in breast cancer, we established two inducible cell lines that allow either KLF8 overexpression in MCF-10A or knockdown in MDA-MB-231 cells. KLF8 overexpression induced a strong increase in MMP9 expression and activity as determined by quantitative real-time PCR and zymography. This induction was well correlated with the MMP inhibitor-sensitive Matrigel invasion. Conversely, KLF8 knockdown caused the opposite changes that could be partially prevented by MMP9 overexpression. Promoter-reporter assays and chromatin and oligonucleotide precipitations determined that KLF8 directly bound and activated the human MMP9 gene promoter. Three-dimensional (3D) glandular culture showed that KLF8 expression disrupted the normal acinus formation, which could be prevented by the MMP inhibitor, whereas KLF8 knockdown corrected the abnormal 3D architecture, which could be protected by MMP9 overexpression. KLF8 knockdown promoted MDA-MB-231 cell aggregation in suspension culture, which could be prevented by MMP9 overexpression. KLF8 knockdown inhibited the lung metastasis of MDA-MB-231 cells in nude mice. Immunohistochemical staining strongly correlated the co-expression of KLF8 and MMP9 with the patient tumor invasion, metastasis and poor survival. Taken together, this work identified the KLF8 activation of MMP9 as a novel and critical signaling mechanism underlying human breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Xianhui Wang
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| | - Alison M. Urvalek
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| | - Tianshu Li
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| | - John Lamar
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208
| | - C. Michael DiPersio
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208
| | - Paul J. Feustel
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, NY 12208
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| |
Collapse
|
32
|
Balzer EM, Whipple RA, Thompson K, Boggs AE, Slovic J, Cho EH, Matrone MA, Yoneda T, Mueller SC, Martin SS. c-Src differentially regulates the functions of microtentacles and invadopodia. Oncogene 2010; 29:6402-8. [PMID: 20956943 PMCID: PMC4073667 DOI: 10.1038/onc.2010.360] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/13/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
Abstract
During metastasis, invading cells produce various actin-based membrane protrusions that promote directional migration and proteolysis of extracellular matrix (ECM). Observations of actin staining within thin, tubulin-based microtentacle (McTN) protrusions in suspended MDA-MB-231 tumor cells, prompted an investigation of whether McTNs are structural or functional analogs of invadopodia. We show here that MDA-MB-231 cells are capable of producing invadopodia and McTNs, both of which contain F-actin. Invadopodium formation was enhanced by the expression of a constitutively active c-Src kinase, and repressed by the expression of dominant-negative, catalytically inactive form of c-Src. In contrast, expression of inactive c-Src significantly increased McTN formation. Direct inhibition of c-Src with the SU6656 inhibitor compound also significantly enhanced McTN formation, but suppressed invadopodia, including the appearance of F-actin cores and phospho-cortactin foci, as well as completely blocking focal degradation of ECM. In addition, silencing of Tks5 in Src-transformed fibroblasts blocked invadopodia without affecting McTNs. Genetic modification of c-Src activity that promoted McTN formation augmented capillary retention of circulating tumor cells in vivo and rapid re-attachment of suspended cells in vitro, even though invadopodia were strongly suppressed. These results indicate that McTNs are capable of enhancing tumor cell reattachment, even in the absence of Tks5 and active Src, and define separate cytoskeletal mechanisms and functions for McTNs and invadopodia.
Collapse
Affiliation(s)
- Eric M. Balzer
- Program in Molecular Medicine
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| | - Rebecca A. Whipple
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| | - Keyata Thompson
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| | | | | | - Edward H. Cho
- Program in Molecular Medicine
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| | - Michael A. Matrone
- Program in Molecular Medicine
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| | - Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Susette C. Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057
| | - Stuart S. Martin
- Program in Molecular Medicine
- Department of Physiology, University of Maryland School of Medicine, Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore MD, 21201
| |
Collapse
|
33
|
Matrone MA, Whipple RA, Balzer EM, Martin SS. Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 2010; 70:7737-41. [PMID: 20924109 PMCID: PMC4232206 DOI: 10.1158/0008-5472.can-10-1569] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Detection of circulating tumor cells (CTC) is advancing as an effective predictor of patient outcome and therapeutic response. Unfortunately, our knowledge of CTC biology remains limited, and the impact of drug treatments on CTC metastatic potential is currently unclear. Improved CTC imaging in vivo and analysis of free-floating tumor cells now show that cytoskeletal regulation in CTCs contrasts starkly with tumor cells attached to extracellular matrix. In this review, we examine how persistent microtubule stabilization promotes the formation of microtentacles on the surface of detached breast tumor cells and enhances metastatic potential.
Collapse
Affiliation(s)
- Michael A. Matrone
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rebecca A. Whipple
- Department of Physiology, Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Eric M. Balzer
- Department of Physiology, Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Department of Physiology, Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J, Martin SS. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010; 70:8127-37. [PMID: 20924103 DOI: 10.1158/0008-5472.can-09-4613] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with increased breast tumor metastasis; however, the specific mechanisms by which EMT promotes metastasis remain somewhat unclear. Despite the importance of cytoskeletal dynamics during both EMT and metastasis, very few current studies examine the cytoskeleton of detached and circulating tumor cells. Specific posttranslational α-tubulin modifications are critical for adherent cell motility and implicated in numerous pathologies, but also remain understudied in detached cells. We report here that EMT induced through ectopic expression of Twist or Snail promotes α-tubulin detyrosination and the formation of tubulin-based microtentacles in detached HMLEs. Mechanistically, EMT downregulates the tubulin tyrosine ligase enzyme, resulting in an accumulation of detyrosinated α-tubulin (Glu-tubulin), and increases microtentacles that penetrate endothelial layers to facilitate tumor cell reattachment. Confocal microscopy shows that microtentacles are capable of penetrating the junctions between endothelial cells. Suppression of endogenous Twist in metastatic human breast tumor cells is capable of reducing both tubulin detyrosination and microtentacles. Clinical breast tumor samples display high concordance between Glu-tubulin and Twist expression levels, emphasizing the coupling between EMT and tubulin detyrosination in vivo. Coordinated elevation of Twist and Glu-tubulin at invasive tumor fronts, particularly within ductal carcinoma in situ samples, establishes that EMT-induced tubulin detyrosination occurs at the earliest stages of tumor invasion. These data support a novel model where the EMT that occurs during tumor invasion downregulates tubulin tyrosine ligase, increasing α-tubulin detyrosination and promoting microtentacles that could enhance the reattachment of circulating tumor cells to the vascular endothelium during metastasis.
Collapse
Affiliation(s)
- Rebecca A Whipple
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Matrone MA, Whipple RA, Thompson K, Cho EH, Vitolo MI, Balzer EM, Yoon JR, Ioffe OB, Tuttle KC, Tan M, Martin SS. Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells. Oncogene 2010; 29:3217-27. [PMID: 20228842 PMCID: PMC3132415 DOI: 10.1038/onc.2010.68] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/22/2010] [Accepted: 02/04/2010] [Indexed: 12/31/2022]
Abstract
The cytoskeletal organization of detached and circulating tumor cells (CTCs) is currently not well defined and may provide potential targets for new therapies to limit metastatic tumor spread. In vivo, CTCs reattach in distant tissues by a mechanism that is tubulin-dependent and suppressed by polymerized actin. The cytoskeletal mechanisms that promote reattachment of CTCs match exactly with the mechanisms supporting tubulin microtentacles (McTN), which we have recently identified in detached breast tumor cells. In this study, we aimed to investigate how McTN formation is affected by the microtubule-associated protein, tau, which is expressed in a subset of chemotherapy-resistant breast cancers. We demonstrate that endogenous tau protein localizes to McTNs and is both necessary and sufficient to promote McTN extension in detached breast tumor cells. Tau-induced McTNs increase reattachment of suspended cells and retention of CTCs in lung capillaries. Analysis of patient-matched primary and metastatic tumors reveals that 52% possess tau expression in metastases and 26% display significantly increased tau expression over disease progression. Tau enrichment in metastatic tumors and the ability of tau to promote tumor cell reattachment through McTN formation support a model in which tau-induced microtubule stabilization provides a selective advantage during tumor metastasis.
Collapse
Affiliation(s)
- Michael A. Matrone
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Rebecca A. Whipple
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Keyata Thompson
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Edward H. Cho
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Eric M. Balzer
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jennifer R. Yoon
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Olga B. Ioffe
- Department of Pathology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Kimberly C. Tuttle
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Ming Tan
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, 10 S. Pine Street, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|