1
|
Wang Y, Wang X, Zhang Z, Cui Z. Role of fiscal and monetary policies for economic recovery in China. ECONOMIC ANALYSIS AND POLICY 2023; 77:51-63. [PMID: 36337175 PMCID: PMC9618455 DOI: 10.1016/j.eap.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 05/15/2023]
Abstract
After the pandemic, China's fiscal and monetary authorities implemented macroeconomic restructuring measures to combat the pandemic. Using a difference-in-difference model based on data collected during the COVID-19 phase, this study attempted to determine the economic recovery in China using the pandemic means for economic growth and energy consumption in other economies. A 0.21 percent increase in the western region's economic growth is comparable to a 0.15 percent increase in the growth of the southern central and northern regions during the pandemic period. Accordingly, we found evidence of actual provincial spillover effects in the clustering of high- and poor-performing regions. The impact of China's economic resurgence beyond the pandemic phase plays an important role in expanding power consumption in different regions. Since headwinds hamper economic development to aggregate output, fiscal policy is the sole option for maintaining pollution levels while simultaneously improving household well-being in terms of demand and employment.
Collapse
Affiliation(s)
- Yunxian Wang
- School of Agriculture Economics and Rural Development, Renmin University of China, Beijng, 100872, China
| | - Xin Wang
- National Research Center of Cultural Industries, Central China Normal University, Wuhan, 430070, China
| | - Zheng Zhang
- National Research Center of Cultural Industries, Central China Normal University, Wuhan, 430079, China
| | - Zhanmin Cui
- School of humanities, Shanghai University of Finance and Economics, Shanghai, 200433, China
| |
Collapse
|
2
|
Pimentel JM, Zhou JY, Wu GS. Regulation of programmed death ligand 1 (PD-L1) expression by TNF-related apoptosis-inducing ligand (TRAIL) in triple-negative breast cancer cells. Mol Carcinog 2023; 62:135-144. [PMID: 36239572 PMCID: PMC10015553 DOI: 10.1002/mc.23471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that lacks targeted therapies. Previous studies have shown that TNBC cells are highly sensitive to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), making it a promising agent for treating TNBC. However, the development of TRAIL resistance limits its further clinical development, and the underlying mechanisms are not fully understood. In this study, we report the role of PD-L1 in TRAIL resistance. Specifically, we found that TRAIL treatment increases PD-L1 expression in TRAIL-sensitive cells and that basal PD-L1 expression is increased in acquired TRAIL-resistant cells. Mechanistically, we found that increased PD-L1 expression was accompanied by increased extracellular signal-regulated kinase (ERK) activation. Using both genetic and pharmacological approaches, we showed that knockdown of ERK by siRNA or inhibition of ERK activation by the mitogen-activated protein kinase kinase inhibitor U0126 decreased PD-L1 expression and increased TRAIL-induced cell death. Furthermore, we found that knockout or knockdown of PD-L1 enhances TRAIL-induced apoptosis, suggesting that PD-L1-mediated TRAIL resistance is independent of its ability to evade immune suppression. Therefore, this study identifies a noncanonical mechanism by which PD-L1 promotes TRAIL resistance, which can be potentially exploited for immune checkpoint therapy.
Collapse
Affiliation(s)
- Julio M. Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
3
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
4
|
Ronk H, Rosenblum JS, Kung T, Zhuang Z. Targeting PP2A for cancer therapeutic modulation. Cancer Biol Med 2022; 19:1428-1439. [PMID: 36342229 PMCID: PMC9630519 DOI: 10.20892/j.issn.2095-3941.2022.0330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 09/12/2023] Open
Abstract
Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization. Protein phosphatase 2A (PP2A) is highly conserved and is the predominant serine/threonine phosphatase in the nervous system, constituting more than 70% of all neuronal phosphatases. PP2A is involved in diverse regulatory functions, including cell cycle progression, apoptosis, and DNA repair. Although PP2A has historically been identified as a tumor suppressor, inhibition of PP2A has paradoxically demonstrated potential as a therapeutic target for various cancers. LB100, a water-soluble, small-molecule competitive inhibitor of PP2A, has shown particular promise as a chemo- and radio-sensitizing agent. Preclinical success has led to a profusion of clinical trials on LB100 adjuvant therapies, including a phase I trial in extensive-stage small-cell lung cancer, a phase I/II trial in myelodysplastic syndrome, a phase II trial in recurrent glioblastoma, and a completed phase I trial assessing the safety of LB100 and docetaxel in various relapsed solid tumors. Herein, we review the development of LB100, the role of PP2A in cancer biology, and recent advances in targeting PP2A inhibition in immunotherapy.
Collapse
Affiliation(s)
- Halle Ronk
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Kung
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Uddin MH, Zhou JY, Pimentel J, Patrick SM, Kim S, Shekhar MP, Wu GS. Proteomic Analysis Identifies p62/SQSTM1 as a Critical Player in PARP Inhibitor Resistance. Front Oncol 2022; 12:908603. [PMID: 35847859 PMCID: PMC9277186 DOI: 10.3389/fonc.2022.908603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently being used for treating breast cancer patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative locally advanced or metastatic diseases. Despite durable responses, almost all patients receiving PARPis ultimately develop resistance and succumb to their illness, but the mechanism of PARPi resistance is not fully understood. To better understand the mechanism of PARPi resistance, we established two olaparib-resistant SUM159 and MDA468 cells by chronically exposing olaparib-sensitive SUM159 and MDA468 cells to olaparib. Olaparib-resistant SUM159 and MDA468 cells displayed 5-fold and 7-fold more resistance over their corresponding counterparts. Despite defects in PARPi-induced DNA damage, these olaparib-resistant cells are sensitive to cisplatin-induced cell death. Using an unbiased proteomic approach, we identified 6 447 proteins, of which 107 proteins were differentially expressed between olaparib-sensitive and -resistant cells. Ingenuity pathway analysis (IPA) revealed a number of pathways that are significantly altered, including mTOR and ubiquitin pathways. Among these differentially expressed proteins, p62/SQSTM1 (thereafter p62), a scaffold protein, plays a critical role in binding to and delivering the ubiquitinated proteins to the autophagosome membrane for autophagic degradation, was significantly downregulated in olaparib-resistant cells. We found that autophagy inducers rapamycin and everolimus synergistically sensitize olaparib-resistant cells to olaparib. Moreover, p62 protein expression was correlated with better overall survival in estrogen receptor-negative breast cancer. Thus, these findings suggest that PARPi-sensitive TNBC cells hyperactivate autophagy as they develop acquired resistance and that pharmacological stimulation of excessive autophagy could lead to cell death and thus overcome PARPi resistance.
Collapse
Affiliation(s)
- Mohammed Hafiz Uddin
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Julio Pimentel
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Steve M. Patrick
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Seongho Kim
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Malathy P. Shekhar
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, United States,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Gen Sheng Wu,
| |
Collapse
|
6
|
The European Medicines Agency review of sacituzumab govitecan for the treatment of triple-negative breast cancer. ESMO Open 2022; 7:100497. [PMID: 35642987 PMCID: PMC9149193 DOI: 10.1016/j.esmoop.2022.100497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Sacituzumab govitecan (SG) is an antineoplastic agent which combines a humanized monoclonal antibody binding to trophoblast cell surface antigen-2 (Trop-2)-expressing cancer cells, linked with cytotoxic moiety SN-38 (govitecan) with topoisomerase I inhibitor action. On 22 November 2021, a marketing authorization valid through the European Union (EU) was issued under the European Medicines Agency (EMA)’s accelerated assessment program for SG as monotherapy for the treatment of adult patients with unresectable or metastatic triple-negative breast cancer (mTNBC) who have received two or more prior systemic therapies, including at least one of them for advanced disease. The assessment was based on results from an open-label, randomized, phase III trial to evaluate the safety, tolerability, pharmacokinetics and efficacy of SG versus treatment of physician’s choice (TPC) in patients with mTNBC who received at least two prior treatments including at least one of them for advanced disease. The efficacy results in the overall population, based on mature data, showed a statistically significant improvement of SG over TPC in progression-free survival (PFS) and overall survival (OS). The median PFS was 4.8 months versus 1.7 months [hazard ratio (HR) = 0.43, n = 529; 95% CI 0.35-0.54; P < 0.0001] and the median OS was 11.8 months versus 6.9 months (HR = 0.51, n = 529; 95% CI 0.41-0.62; P < 0.0001). The most common (>30%) side effects of SG were diarrhea, neutropenia, nausea, fatigue, alopecia, anemia, constipation and vomiting. The aim of this manuscript is to summarize the scientific review of the application leading to regulatory approval in the EU. Trodelvy (SG) received a marketing authorization valid throughout the EU on 22 November 2021. SG is indicated for adults with unresectable or metastatic TBNC. SG is an antibody–drug conjugate considered a first-in-class medicine. SG prolonged OS and PFS ∼5 and 3 months, respectively, when compared to TPC. The most common serious side effects are febrile neutropenia and diarrhea.
Collapse
|
7
|
Uddin MH, Pimentel JM, Chatterjee M, Allen JE, Zhuang Z, Wu GS. Targeting PP2A inhibits the growth of triple-negative breast cancer cells. Cell Cycle 2020; 19:592-600. [PMID: 32011210 DOI: 10.1080/15384101.2020.1723195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) does not respond to widely used targeted/endocrine therapies because of the absence of progesterone and estrogen receptors and HER2 amplification. It has been shown that the majority of TNBC cells are highly sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, but the development of TRAIL resistance limits its efficacy. We previously found that protein phosphatase 2A (PP2A) plays an important role in TRAIL resistance. In this study, we evaluated the effects of PP2A inhibition on cell death in TRAIL-resistant TNBC cells. We found that the PP2A inhibitor LB-100 effectively inhibits the growth of a panel of TNBC cell lines including lines that are intrinsically resistant to TRAIL. Using two TRAIL-resistant cell lines generated from TRAIL-sensitive parental cells (MDA231 and SUM159), we found that both TRAIL-sensitive and -resistant cell lines are equally sensitive to LB-100. We also found that LB-100 sensitizes TNBC cells to clinically used chemotherapeutical agents, including paclitaxel and cisplatin. Importantly, we found that LB-100 effectively inhibits the growth of MDA468 tumors in mice in vivo without apparent toxicity. Collectively, these data suggest that pharmacological inhibition of PP2A activity could be a novel therapeutic strategy for treating patients with TNBC in a clinical setting.
Collapse
Affiliation(s)
- Mohammed Hafiz Uddin
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio M Pimentel
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madhumita Chatterjee
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joshu E Allen
- Department of Research and Development, Oncoceutics, Inc, Philadelphia, PA, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gen Sheng Wu
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
8
|
Peer CJ, Schmidt KT, Kindrick JD, Eisner JR, Brown VV, Baskin-Bey E, Madan R, Figg WD. A population pharmacokinetic analysis of the oral CYP17 lyase and androgen receptor inhibitor seviteronel in patients with advanced/metastatic castration-resistant prostate cancer or breast cancer. Cancer Chemother Pharmacol 2019; 84:759-770. [PMID: 31367790 PMCID: PMC8132106 DOI: 10.1007/s00280-019-03908-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Seviteronel is an orally-administered selective cytochrome P450c17a 17,20-lyase and androgen receptor inhibitor with anti-tumor activity in vitro and in vivo, and clinical activity in men with advanced castration-resistant prostate cancer (CRPC) and men and women with advanced breast cancer. The purpose of this study was to assess the pharmacokinetics (PK) of seviteronel across the aforementioned populations. METHODS This report describes the PK of seviteronel (50-750 mg, QD or BID) using noncompartmental and population approaches from 243 patients with advanced breast or prostate cancer pooled across 4 clinical studies. First dose and steady-state PK were examined, as well as covariates including prandial status, sex and concomitant dexamethasone. RESULTS Seviteronel PK can be characterized by transit absorption and a bi-phasic first-order elimination while accounting for covariance between random effects. Prandial status did not significantly affect any parameters to a clinically-relevant extent. Both sex and body weight were significant covariates on clearance, explaining 37% of the interindividual variability on that parameter. There were no significant effects from the race or the presence of a corticosteroid (either dexamethasone or prednisone). CONCLUSIONS Seviteronel demonstrates linear PK over the dose range of 50-750 mg given either BID or QD in men with advanced CRPC or men and women with breast cancer. The disposition of seviteronel following oral administration is well described by this population PK model and can be used for accurate simulations for future studies with body weight and sex affecting clearance, but not to a clinically-meaningful degree requiring a change in the current dosing scheme.
Collapse
Affiliation(s)
- Cody J Peer
- Clinical Pharmacology Program, CCR, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD, 20892, USA
| | - Keith T Schmidt
- Clinical Pharmacology Program, CCR, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD, 20892, USA
| | - Jessica D Kindrick
- Clinical Pharmacology Program, CCR, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD, 20892, USA
| | | | | | | | - Ravi Madan
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, CCR, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Zhao Z, Li L, Du P, Ma L, Zhang W, Zheng L, Lan B, Zhang B, Ma F, Xu B, Zhan Q, Song Y. Transcriptional Downregulation of miR-4306 serves as a New Therapeutic Target for Triple Negative Breast Cancer. Theranostics 2019; 9:1401-1416. [PMID: 30867840 PMCID: PMC6401504 DOI: 10.7150/thno.30701] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor alpha (ER-α), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR) expression, but the effect of lacking the three factors on TNBC is unclear. Whether loss of the three factors contributes to deregulate genes that participate in the progress of TNBC remains unknown. Methods: We performed microRNA arrays and comprehensive analysis to screen for miRNAs that are transcriptionally regulated by ER-α, HER2 and PR. Functional assays and molecular mechanism studies were used to investigate the role of miR-4306 in TNBC. An orthotopic mouse model of TNBC was used to evaluate the therapeutic potential of a cholesterol-conjugated miR-4306 mimic. Results: We found that miR-4306 is transcriptionally regulated by ER-α, HER2 and PR, and the downregulation of miR-4306 in TNBC is caused by the loss of ER-α, HER2 and PR. Clinically, low miR-4306 expression is strongly associated with lymph node metastasis and poor survival for TNBC. Upregulation of miR-4306 greatly suppresses TNBC cell proliferation, migration and invasion and abrogates angiogenesis and lymphangiogenesis in vitro. According to in vivo models, miR-4306 overexpression considerably inhibits TNBC growth, lung metastasis, angiogenesis and lymph node metastasis. Mechanistic analyses indicate that miR-4306 directly targets SIX1/Cdc42/VEGFA to inactivate the signaling pathways mediated by SIX1/Cdc42/VEGFA. Finally, the orthotopic mouse model of TNBC reveals that miR-4306 mimic can be used for TNBC treatment in combination with cisplatin. Conclusions: Our findings suggest that miR-4306 acts as a tumor suppressor in TNBC and is a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Peina Du
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weimin Zhang
- Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bailin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Xu
- Breast Cancer Center and the Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
10
|
Xie W, Zhang Y, He Y, Zhang K, Wan G, Huang Y, Zhou Z, Huang G, Wang J. A novel recombinant human Frizzled-7 protein exhibits anti-tumor activity against triple negative breast cancer via abating Wnt/β-catenin pathway. Int J Biochem Cell Biol 2018; 103:45-55. [DOI: 10.1016/j.biocel.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
|
11
|
Liao Y, Liao Y, Li J, Li J, Fan Y, Xu B. Polymorphisms in AURKA and AURKB are associated with the survival of triple-negative breast cancer patients treated with taxane-based adjuvant chemotherapy. Cancer Manag Res 2018; 10:3801-3808. [PMID: 30288111 PMCID: PMC6159783 DOI: 10.2147/cmar.s174735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is more than a single disease. Identifying biomarkers to further subdivide TNBC patients with distinct outcome is of great importance. It has been reported that single-nucleotide polymorphisms (SNPs) in Aurora kinase A (AURKA) or Aurora kinase B (AURKB) are associated with the risk and survival of several cancers. But till now, there is no research about these polymorphisms in TNBC patients. Materials and methods In this study, we investigated the association between polymorphisms in AURKA or AURKB gene and prognosis of TNBC patients treated with taxane-based adjuvant chemotherapy. A total of 273 TNBC patients were enrolled. Haploview 4.2 software was used to identify Tag SNPs. Genotyping was conducted using the MassARRAY MALDI-TOF system. Results We found that AURKA rs6099128 GG genotype carriers had significantly worse overall survival (OS) than TT+ TG genotype carriers (P = 0.003, HR = 12.499, 95% CI = 2.357–66.298). AURKB rs11651993 TT genotype carriers had better disease-free survival (DFS) than TC + CC genotype carriers (P = 0.018, HR = 1.876, 95% CI = 1.116–3.154). AURKB rs2289590 CC genotype carriers had worse DFS than CA + AA genotype carriers (P = 0.021, HR = 0.536, 95% CI = 0.315–0.912). After subgroup analysis, rs11651993 TC + CC genotype predicted worse DFS in subgroups of age ≤ 50, post-menopausal, grade unknown (UK), tumor size >2 cm, and lymph node negative. Rs2289590 CA + AA genotype could predict favorable DFS in pre-menopausal, grade 3 and lymph node-positive patients. Conclusion We first demonstrated that polymorphisms in AURKA or AURKB gene might predict the OS or DFS of TNBC patients treated with taxane-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yuqian Liao
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People's Republic of China
| | - Yulu Liao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People's Republic of China
| | - Jun Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People's Republic of China
| | - Junyu Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People's Republic of China
| | - Ying Fan
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China, ,
| | - Binghe Xu
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China, ,
| |
Collapse
|
12
|
Ruiz de Garibay G, Mateo F, Stradella A, Valdés-Mas R, Palomero L, Serra-Musach J, Puente DA, Díaz-Navarro A, Vargas-Parra G, Tornero E, Morilla I, Farré L, Martinez-Iniesta M, Herranz C, McCormack E, Vidal A, Petit A, Soler T, Lázaro C, Puente XS, Villanueva A, Pujana MA. Tumor xenograft modeling identifies an association between TCF4 loss and breast cancer chemoresistance. Dis Model Mech 2018; 11:dmm.032292. [PMID: 29666142 PMCID: PMC5992609 DOI: 10.1242/dmm.032292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs), we show that adaptation to therapy is genetically complex and identify that loss of transcription factor 4 (TCF4; also known as ITF2) is associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for five iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA) supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest a common loss of nuclear TCF4 expression post-chemotherapy. Together, these results from tumor xenograft modeling depict a link between altered TCF4 expression and breast cancer chemoresistance. Summary: By modeling chemoresistance in patient-derived breast cancer xenografts, this study shows that adaptation to therapy is genetically complex and that loss of transcription factor 4 (TCF4) is associated with this process.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Francesca Mateo
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Agostina Stradella
- Department of Medical Oncology, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Rafael Valdés-Mas
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Luis Palomero
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jordi Serra-Musach
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Diana A Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Ander Díaz-Navarro
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Eva Tornero
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Idoia Morilla
- Department of Medical Oncology, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Lourdes Farré
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - María Martinez-Iniesta
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Carmen Herranz
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Emmet McCormack
- Departments of Clinical Science and Internal Medicine, Haematology Section, Haukeland University Hospital, and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Teresa Soler
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Conxi Lázaro
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.,Biomedical Research Networking Centre of Cancer, CIBERONC, Spain
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain.,Biomedical Research Networking Centre of Cancer, CIBERONC, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.,Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| |
Collapse
|
13
|
Fancy RM, Kim H, Napier T, Buchsbaum DJ, Zinn KR, Song Y. Calmodulin antagonist enhances DR5-mediated apoptotic signaling in TRA-8 resistant triple negative breast cancer cells. J Cell Biochem 2018; 119:6216-6230. [PMID: 29663486 DOI: 10.1002/jcb.26848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/09/2018] [Indexed: 01/25/2023]
Abstract
Patients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC. Calmodulin (CaM) is overexpressed in breast cancer. In this study, we characterized the novel function of CaM antagonist in enhancing TRA-8 induced cytotoxicity in TRA-8 resistant TNBC cells and its underlying molecular mechanisms. Results demonstrated that CaM antagonist(s) enhanced TRA-8 induced cytotoxicity in a concentration and time-dependent manner for TRA-8 resistant TNBC cells. CaM directly bound to DR5 in a Ca2+ dependent manner, and CaM siRNA promoted DR5 recruitment of FADD and caspase-8 for DISC formation and TRA-8 activated caspase cleavage for apoptosis in TRA-8 resistant TNBC cells. CaM antagonist, trifluoperazine, enhanced TRA-8 activated DR5 oligomerization, DR5-mediated DISC formation, and TRA-8 activated caspase cleavage for apoptosis, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expression in TRA-8 resistant TNBC cells. These results suggest that CaM could be a key regulator to mediate DR5-mediated apoptotic signaling, and suggests a potential strategy for using CaM antagonists to overcome drug resistance of TRAIL-based therapy for TRA-8 resistant TNBC.
Collapse
Affiliation(s)
- Romone M Fancy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiara Napier
- Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Radiology and Biomedical Engineering, Michigan State University, East Lansing, Michigan
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Li M, Ma F, Wang J, Li Q, Zhang P, Yuan P, Luo Y, Cai R, Fan Y, Chen S, Li Q, Xu B. Genetic polymorphisms of autophagy-related gene 5 (ATG5) rs473543 predict different disease-free survivals of triple-negative breast cancer patients receiving anthracycline- and/or taxane-based adjuvant chemotherapy. CHINESE JOURNAL OF CANCER 2018; 37:4. [PMID: 29382381 PMCID: PMC5791378 DOI: 10.1186/s40880-018-0268-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Background Autophagy plays a crucial role in chemotherapy resistance of triple-negative breast cancer (TNBC). Hence, autophagy-related gene 5 (ATG5), an essential molecule involved in autophagy regulation, is presumably associated with recurrence of TNBC. This study was aimed to investigate the potential influence of single-nucleotide polymorphisms in ATG5 on the disease-free survival (DFS) of early-stage TNBC patients treated with anthracycline- and/or taxane-based chemotherapy. Methods We genotyped ATG5 SNP rs473543 in a cohort of 316 TNBC patients treated with anthracycline- and/or taxane-based chemotherapy using the sequenom’s MassARRAY system. Kaplan–Meier survival analysis and Cox proportional hazard regression analysis were used to analyze the association between ATG5 rs473543 genotypes and the clinical outcome of TNBC patients. Results Three genotypes, AA, GA, and GG, were detected in the rs473543 of ATG5 gene. The distribution of ATG5 rs473543 genotypes was significantly different between patients with and without recurrence (P = 0.024). Kaplan–Meier survival analysis showed that patients carrying A allele of ATG5 rs473543 had an increased risk of recurrence and shorter DFS compared with those carrying the variant genotype GG in rs473543 (P = 0.034). In addition, after adjusting for clinical factors, multivariate Cox regression analyses revealed that the AA/GA genotype of rs473543 was an independent predictor for DFS (hazard risk [HR], 1.73; 95% confidence interval [CI], 1.04–2.87; P = 0.034). In addition, DFS was shorter in node-negative patients with the presence of A allele (AA/GA) than in those with the absence of A allele (P = 0.027). Conclusion ATG5 rs473543 genotypes may serve as a potential marker for predicting recurrence of early-stage TNBC patients who received anthracycline-and/or taxane-based regimens as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Meiying Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China.
| |
Collapse
|
15
|
ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells. Oncotarget 2017; 8:21626-21638. [PMID: 28423492 PMCID: PMC5400611 DOI: 10.18632/oncotarget.15451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.
Collapse
|
16
|
Wang J, Zheng R, Wang Z, Yang Y, Wang M, Zou W. Efficacy and Safety of Vinorelbine Plus Cisplatin vs. Gemcitabine Plus Cisplatin for Treatment of Metastatic Triple-Negative Breast Cancer After Failure with Anthracyclines and Taxanes. Med Sci Monit 2017; 23:4657-4664. [PMID: 28957036 PMCID: PMC5629993 DOI: 10.12659/msm.905300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study aimed to compare the efficacy and safety of vinorelbine plus cisplatin (NP regimen) vs. gemcitabine plus cisplatin (GP regimen) for treatment of metastatic TNBC after failure with anthracyclines and taxanes. MATERIAL AND METHODS A total of 48 patients with metastatic TNBC that failed in anthracyclines and taxanes treatment were enrolled and randomly grouped. Patients in the NP group (n=22) were given 25 mg/m² vinorelbine on days 1 and 8 and 25 mg/m² cisplatin on days 2-4 of each 21-day cycle, while subjects in the GP group (n=26) were administered 1000 mg/m² gemcitabine on days 1 and 8 and 25 mg/m² cisplatin on days 2-4 of each 21-day cycle. The treatment response and adverse events were compared between the 2 groups every 2 cycles. RESULTS The ORR, DCR, and median TTP were 45.5%, 77.3%, and 5 months in the NP group, and 46.2%, 80.8%, and 5.2 months in the GP group, and no significant differences were observed in ORR, DCR, and median TTP between the 2 groups (P>0.05). The major adverse events included grade I-II bone marrow inhibition, gastrointestinal reactions, and phlebitis, and a lower incidence of thrombocytopenia and rash and a higher incidence of phlebitis was found in the NP group than in the GP group (P<0.05). CONCLUSIONS Either NP or GP regimen is active and tolerated in treatment of metastatic TNBC with anthracyclines and/or taxanes resistance, which may be used as a salvage treatment for metastatic TNBC.
Collapse
Affiliation(s)
- Junbin Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Rongsheng Zheng
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Zishu Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yan Yang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Mingxi Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Weiyan Zou
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
17
|
Vetter M, Fokas S, Biskup E, Schmid T, Schwab F, Schoetzau A, Güth U, Rochlitz C, Zanetti-Dällenbach R. Efficacy of adjuvant chemotherapy with carboplatin for early triple negative breast cancer: a single center experience. Oncotarget 2017; 8:75617-75626. [PMID: 29088896 PMCID: PMC5650451 DOI: 10.18632/oncotarget.18118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Background Anthracycline- and taxane-based adjuvant chemotherapies are the most frequently used systemic treatments for women with triple negative breast cancer (TNBC). Adding platinum derivatives in the neo-adjuvant setting has been shown to not only improve the pCR rates, but also the 3 year DFS for TNBC patients; however, data on platinum derivatives in the adjuvant setting are limited. Methods We conducted a retrospective, single-center study in a Swiss breast cancer cohort to evaluate the role of carboplatin in addition to standard adjuvant therapy (anthracyclines and/ or taxanes) in early TNBC patients. All patients with stage I-III TNBC who underwent primary breast surgery between 2004 and 2014 were included. Results Eighty-three patients were included in the analysis. Stage and grade were well balanced between patients treated with standard chemotherapy (N=54; cohort A) or standard chemotherapy plus carboplatin (N=29; cohort B). The median time to local relapse (LRFS) was 15.0 months in cohort A versus 16.0 months in cohort B (p=0.655). The median time to distant relapse (DRFS) was 29.5 months in cohort A versus 25.0 months in cohort B (p=0.606) There was also no difference in overall survival between the two cohorts (mean overall survival 98 and 91 months, respectively; p=0.208). Discussion Our data suggest that in an unselected cohort of early TNBC patients, the addition of carboplatin in the adjuvant setting may not be beneficial with respect to relapse-free and overall survival. Further prospective trials to evaluate the addition of platinum in the adjuvant setting are warranted, especially to define subgroups of TNBC patients, which might benefit from carboplatin therapy.
Collapse
Affiliation(s)
- Marcus Vetter
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Spyridon Fokas
- Women's Hospital,University Hospital Basel, Basel, Switzerland
| | - Ewelina Biskup
- Department of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Shanghai University of Medicine and Health Sciences, Department of Basic Medical College, Shanghai, PR China
| | | | - Fabienne Schwab
- Women's Hospital,University Hospital Basel, Basel, Switzerland
| | | | - Uwe Güth
- Brust-Zentrum Zurich, Zurich, Switzerland
| | - Christoph Rochlitz
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
18
|
Wang W, Yuan P, Yu D, Du F, Zhu A, Li Q, Zhang P, Lin D, Xu B. A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer. Oncotarget 2017; 7:18984-98. [PMID: 26959740 PMCID: PMC4951346 DOI: 10.18632/oncotarget.7920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3′-untranslated regions (3′-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098−0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06–6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3′-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, The 9th Clinical College, Beijing, P.R. China
| | - Peng Yuan
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dianke Yu
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Feng Du
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Anjie Zhu
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Qing Li
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Pin Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Binghe Xu
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
19
|
Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA. Review of Triple Negative Breast Cancer and the Impact of Inducible Nitric Oxide Synthase on Tumor Biology and Patient Outcomes. Crit Rev Oncog 2016; 21:333-351. [PMID: 29431082 DOI: 10.1615/critrevoncog.2017021307] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Triple negative breast cancers (TNBCs), which are defined as estrogen-receptor, progesterone-receptor, and HER2-receptor negative, account for 10-20% of breast cancers, and they are associated with early metastasis, chemotherapeutic resistance, and poor survival rates. One aspect of TNBC that complicates its prognosis and the development of new molecular therapeutic targets is its clinical and molecular heterogeneity. Herein we compare TNBC and basal cytokeratin-positive breast cancers. We examine the different TNBC molecular subtypes, based on gene expression profiling, which include basal-like, mesenchymal, and luminal androgen receptors, in the context of their biology and impact on TNBC prognosis. We explore the potential role of inducible nitric oxide synthase (iNOS) in TNBC tumor biology and treatment responses. iNOS has been shown to induce p53 mutation accumulation, basal-like gene signature enrichment, and transactivation of the epidermal growth factor receptor (EGFR) via S-nitrosylation, all of which are key components of TNBC biology. Moreover, iNOS predicts poor outcome in TNBC, and iNOS inhibitors show efficacy against TNBC when used in combination with chemotherapy. We discuss molecular targeted approaches, including EGFR, PARP, and VEGF inhibitors and immunotherapeutics, that are under consideration for the treatment of TNBC and what role, if any, iNOS may play in their success.
Collapse
Affiliation(s)
- Elaine M Walsh
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland; Medical Oncology, Galway University Hospitals, Galway, Ireland
| | - Maccon M Keane
- Medical Oncology, Galway University Hospitals, Galway, Ireland
| | - David A Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Grace Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
20
|
Nasr KE, Osman MA, Elkady MS, Ellithy MA. Metronomic methotrexate and cyclophosphamide after carboplatin included adjuvant chemotherapy in triple negative breast cancer: a phase III study. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:284. [PMID: 26697444 DOI: 10.3978/j.issn.2305-5839.2015.11.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite being chemosensitive, the majority of triple negative breast cancer (TNBC) patients recur. The primary study objectives were to compare disease free survival (DFS), and overall survival (OS) for TNBC after adjuvant chemotherapy, who underwent maintenance metronomic chemotherapy versus no maintenance therapy. METHODS TNBC patients were eligible for enrolment if they had TNM stages II-III and fit with our inclusion criteria. Patients were assigned to either: group 1, 3 cycles FEC-100 then 3 cycles docetaxel, carboplatin, followed by maintenance metronomic chemotherapy for 1 year; and group 2, 3 cycles FEC-100 then 3 cycles docetaxel. RESULTS Between November 2008 and December 2014, 158 patients (78 group 1, and 80 group 2) were enrolled. The mean age was 46 years. The median DFS for groups 1,2 were 28 and 24 months, respectively; P value 0.05. The median OS for groups 1,2 were 37 and 29 months, respectively; P values 0.04. Additionally, during the follow-up period, the overall distant metastasis recurrence rates for groups 1,2 were 26% and 37% respectively. Finally, treatment protocol was tolerated well in both groups with mild toxicity profiles. CONCLUSIONS Extended adjuvant metronomic chemotherapy achieved significant improvement in the survival and was well tolerated.
Collapse
Affiliation(s)
- Khalid E Nasr
- 1 Department of Clinical Oncology, Ain Shams University, Cairo, Egypt ; 2 General Organization for Teaching Hospitals, Cairo, Egypt
| | - Mohammed A Osman
- 1 Department of Clinical Oncology, Ain Shams University, Cairo, Egypt ; 2 General Organization for Teaching Hospitals, Cairo, Egypt
| | - Mohammad S Elkady
- 1 Department of Clinical Oncology, Ain Shams University, Cairo, Egypt ; 2 General Organization for Teaching Hospitals, Cairo, Egypt
| | - Mahmoud A Ellithy
- 1 Department of Clinical Oncology, Ain Shams University, Cairo, Egypt ; 2 General Organization for Teaching Hospitals, Cairo, Egypt
| |
Collapse
|
21
|
Sonntag J, Schlüter K, Bernhardt S, Korf U. Subtyping of breast cancer using reverse phase protein arrays. Expert Rev Proteomics 2015; 11:757-70. [PMID: 25400094 DOI: 10.1586/14789450.2014.971113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse phase protein arrays (RPPAs) present a robust and sensitive high capacity platform for targeted proteomics that relies on highly specific antibodies to obtain a quantitative readout regarding phosphorylation state and abundance of proteins of interest. This review summarizes the current state of RPPA-based proteomic profiling of breast cancer in the context of existing preanalytical strategies and sample preparation protocols. RPPA-based subtypes identified so far are compared to those obtained by other approaches such as immunohistochemistry, genomics and transcriptomics. Special attention is given to discussing the potential of RPPA for biomarker discovery and biomarker validation.
Collapse
Affiliation(s)
- Johanna Sonntag
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ) Im Neuenheimer Feld 580 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, Liu X, Chen B, Zhang L, Xie X. miR-185 Suppresses Tumor Proliferation by Directly Targeting E2F6 and DNMT1 and Indirectly Upregulating BRCA1 in Triple-Negative Breast Cancer. Mol Cancer Ther 2014; 13:3185-97. [DOI: 10.1158/1535-7163.mct-14-0243] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Kashiwagi S, Onoda N, Asano Y, Noda S, Kawajiri H, Takashima T, Ohsawa M, Kitagawa S, Hirakawa K. Adjunctive imprint cytology of core needle biopsy specimens improved diagnostic accuracy for breast cancer. SPRINGERPLUS 2013; 2:372. [PMID: 24010031 PMCID: PMC3755781 DOI: 10.1186/2193-1801-2-372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022]
Abstract
Objective Recently, therapies targeting the biological characteristics of individual cancers according to markers indicating underlying molecular biological mechanisms have become available. Core needle biopsy (CNB) is widely used, not only to diagnose, but also to determine therapeutic strategies, in patients with breast cancer. Although the diagnostic accuracy of CNB is acceptably high, false-negative results have occasionally been encountered. Methods The results of adjunctive imprint cytology (AIC) coinciding with CNB in 2,820 patients suspected to have breast cancer were retrospectively reviewed. The feasibility and clinical usefulness of AIC-assisted diagnosis were analyzed. Results Fourteen-hundred and sixty-four cases were diagnosed as not malignant using CNB alone. Forty-seven of 1464 cases were suspected to be malignant on a cytological review of AIC, and 42 were confirmed to be breast cancer on additional biopsies. The combination of CNB and AIC achieved a sensitivity of 100% (1398/1398) and a specificity of 99.6% (1417/1422). Small lesions and large noninvasive- or scirrhous-type carcinomas were the common features of the CNB-negative/AIC-positive cases. Conclusions Adjunctive imprint cytodiagnosis is a simple and easy procedure that assists the pathological diagnosis of breast cancer using CNB and therefore serves as a possible novel standard application.
Collapse
|
24
|
Ma F, Zhang P, Lin D, Yu D, Yuan P, Wang J, Fan Y, Xu B. There is no association between microRNA gene polymorphisms and risk of triple negative breast cancer in a Chinese Han population. PLoS One 2013; 8:e60195. [PMID: 23555923 PMCID: PMC3608627 DOI: 10.1371/journal.pone.0060195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/22/2013] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined by the lack of the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). It is characterized by aggressive behavior, poor prognosis and lack of targeted therapies. MicroRNA (miRNA) as a novel modulator of gene expression has played an important regulatory role in the malignancy. Dysregulation and/or mutation of the miRNAs may also contribute to the TNBC susceptibility since it is associated with the expression of ER, PR and HER2. Single nucleotide polymorphisms (SNPs) in miRNAs may be extremely relevant for TNBC. We tried to validate the hypothesis that genetic variations in miRNA are associated with TNBC development, and identify candidate biomarkers for TNBC susceptibility and clinical treatment. We screened the genetic variants in all miRNA genes listed in the public database miRBase and NCBI. A total of 23 common SNPs in 22 miRNAs, which tagged the known common variants in the Chinese Han people with a minor allele frequency greater than 0.05, were genotyped. This case-control study involved 191 patients with TNBC and 192 healthy female controls. Frequencies of SNPs were compared between cases and controls to identify the SNPs associated with TNBC susceptibility. No significant association was found between TNBC risk and the SNPs in the miRNA genes in the Chinese Han people (P>0.05), but this warrants further studies.
Collapse
Affiliation(s)
- Fei Ma
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Zhang
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianke Yu
- Department of Etiology and Carcinogenesis, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Yuan
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Fan
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Joensuu H, Gligorov J. Adjuvant treatments for triple-negative breast cancers. Ann Oncol 2012; 23 Suppl 6:vi40-5. [DOI: 10.1093/annonc/mds194] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Witkiewicz AK, Ertel A, McFalls J, Valsecchi ME, Schwartz G, Knudsen ES. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 2012; 18:5110-22. [PMID: 22811582 DOI: 10.1158/1078-0432.ccr-12-0903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We sought to determine whether dysregulation of the retinoblastoma (RB) tumor suppressor pathway was associated with improved response to neoadjuvant chemotherapy in breast cancer. EXPERIMENTAL DESIGN An RB-loss signature was used to analyze the association between pathway status and pathologic complete response in gene expression datasets encompassing three different neoadjuvant regimens. Parallel immunohistochemical analysis of the RB pathway was conducted on pretreatment biopsies to determine the association with pathologic response to neoadjuvant chemotherapy. RESULTS An RB-loss gene expression signature was associated with increased pathologic complete response in datasets from breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC; P < 0.001), T/FAC (P < 0.001), and Taxane/Adriaymcin (P < 0.001) neoadjuvant therapy encompassing approximately 1,000 patients. The association with improved response to neoadjuvant chemotherapy was true in both estrogen receptor (ER)-positive and ER-negative breast cancer. Elevated expression of p16ink4a is associated with the RB-loss signature (R = 0.493-0.5982), and correspondingly p16ink4a mRNA levels were strongly associated with pathologic complete response in the same datasets analyzed. In an independent cohort, immunohistochemical analyses of RB and p16ink4a revealed an association of RB loss (P = 0.0018) or elevated p16ink4a (P = 0.0253) with pathologic complete response. In addition, by Miller-Payne and clinicopathologic scoring analyses, RB-deficient tumors experienced an overall improved response to neoadjuvant chemotherapy. CONCLUSION Disruption of the RB pathway as measured by several independent methods was associated with improved response to neoadjuvant chemotherapy. The RB-pathway status was relevant for pathologic response in both ER-positive and ER-negative breast cancer with similar results observed with multiple chemotherapy regimens. Combined, these data indicate that RB status is associated with the response to neoadjuvant chemotherapy in breast cancer and could be used to inform treatment.
Collapse
|
27
|
Adamo V, Ricciardi G, De Placido S, Colucci G, Conte P, Giuffrida D, Gebbia N, Masci G, Cognetti F, Dondi D, Venturini M. Management and treatment of triple-negative breast cancer patients from the NEMESI study: An Italian experience. Eur J Cancer 2012; 48:642-7. [DOI: 10.1016/j.ejca.2011.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/15/2022]
|
28
|
Fantini M, Santelmo C, Drudi F, Ridolfi C, Barzotti E, Gianni L, Arcangeli V, Affatato A, Ravaioli A. Triple Negative Breast Cancer Treatment: Use of Platinum and Platinum Analogs. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jct.2012.325097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Kashiwagi S, Yashiro M, Takashima T, Aomatsu N, Ikeda K, Ogawa Y, Ishikawa T, Hirakawa K. Advantages of adjuvant chemotherapy for patients with triple-negative breast cancer at Stage II: usefulness of prognostic markers E-cadherin and Ki67. Breast Cancer Res 2011; 13:R122. [PMID: 22126395 PMCID: PMC3326564 DOI: 10.1186/bcr3068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/14/2011] [Accepted: 11/30/2011] [Indexed: 01/05/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC), which is characterized by negativity for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 (HER2), is a high risk breast cancer that lacks specific targets for treatment selection. Chemotherapy is, therefore, the primary systemic modality used in the treatment of this disease, but reliable parameters to predict the chemosensitivity of TNBC have not been clinically available. Methods A total of 190 TNBC patients who had undergone a curative resection of a primary breast cancer were enrolled. The adjuvant chemotherapy was performed for 138 (73%) of 190 TNBC cases; 60 cases had an anthracyclin-based regimen and 78 a 5-fluorouracil-based regimen. The prognostic value of E-cadherin, Ki67 and p53 expression in the outcome of TNBC patients with adjuvant chemotherapy was evaluated by immunohistochemistry. Results The adjuvant therapy group, especially those with Stage II TNBC, had a more favorable prognosis than the surgery only group (P = 0.0043), while there was no significant difference in prognosis between the anthracyclin-based regimen and 5-fluorouracil-based regimen. Patients with E-cadherin-negative and Ki67-positive expression showed significantly worse overall survival time than those with either E-cadherin-positive or Ki67-negative expression (P < 0.001). Multivariate analysis showed that the combination of E-cadherin-negative and Ki67-positive expression was strongly predictive of poor overall survival (P = 0.004) in TNBC patients receiving adjuvant chemotherapy. In contrast, p53 status was not a specific prognostic factor. Conclusions Adjuvant therapy is beneficial for Stage II TNBC patients. The combination of E-cadherin and Ki67 status might be a useful prognostic marker indicating the need for adjuvant chemotherapy in Stage II TNBC patients.
Collapse
Affiliation(s)
- Shinichiro Kashiwagi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Oliver PG, LoBuglio AF, Zhou T, Forero A, Kim H, Zinn KR, Zhai G, Li Y, Lee CH, Buchsbaum DJ. Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 2011; 133:417-26. [PMID: 21901385 DOI: 10.1007/s10549-011-1755-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/27/2022]
Abstract
The purpose is to evaluate sensitivity of basal-like breast cancer to treatment with anti-DR5 alone and in combination with chemotherapy. Cytotoxicity of TRA-8 anti-DR5 alone and in combination with doxorubicin or paclitaxel was examined. The role of a DR5-associated molecule (DDX3) in the regulation of apoptosis by recruitment of cIAP1 to the DR5/DDX3 complex was studied. SUM159 and 2LMP orthotopic xenografts were treated with TRA-8 alone and in combination with Abraxane or doxorubicin, and tumor growth inhibition determined. Diffusion-weighted magnetic resonance imaging was used to monitor early tumor response. The majority (12/15) of basal-like cell lines were very sensitive to TRA-8-induced cytotoxicity (IC(50) values of 1.0-49 ng/ml). In contrast, 8/11 luminal or HER2-positive cell lines were resistant (IC(50) > 1,000 ng/ml). Enhanced killing of basal-like cell lines was produced by combination treatment with TRA-8 and doxorubicin. Majority of basal cell lines expressed lower levels of DR5-associated DDX3 and cIAP1 than luminal and HER2-positive cell lines. TRA-8 inhibited growth of basal xenografts and produced 20% complete 2LMP tumor regressions. TRA-8 and chemotherapy produced greater 2LMP growth inhibition than either alone. An increase in apparent diffusion coefficient in 2LMP tumors was measured in a week of therapy with TRA-8 and Abraxane. Basal-like cell lines were more sensitive to TRA-8-mediated cytotoxicity than HER2-over-expressing and luminal cell lines, and chemotherapy enhanced cytotoxicity. High sensitivity of basal cells to TRA-8 correlated with low expression of DR5/DDX3/cIAP1 complex. Treatment with TRA-8 and chemotherapy may be an effective therapy for basal-like breast cancer.
Collapse
Affiliation(s)
- Patsy G Oliver
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Verma S, Provencher L, Dent R. Emerging trends in the treatment of triple-negative breast cancer in Canada: a survey. Curr Oncol 2011; 18:180-90. [PMID: 21874117 PMCID: PMC3149546 DOI: 10.3747/co.v18i4.913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis compared to other subtypes and lacks common therapeutic targets, including HER 2 and the estrogen and progesterone receptors. The clinicopathological heterogeneity of the disease and limited treatment options make clinical management particularly challenging. Here we present the results of a survey of Canadian clinical oncologists regarding treatment of TNBC, and review recent and ongoing clinical research in this area. Our survey results show that the majority of respondents use a combination of anthracyclines-taxanes as adjuvant therapy for early TNBC. For the first-line treatment of metastatic TNBC, most clinicians recommend taxanes, while single agent capecitabine and platinum-based therapies are more common for subsequent lines of therapy. Despite the ongoing development of novel targeted therapies, chemotherapy remains the mainstay of treatment for TNBC.
Collapse
Affiliation(s)
- S. Verma
- University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON
| | - L. Provencher
- Centre des maladies du sein Dechênes-Fabia, CHA, Université Laval, Quebec City, QC
| | - R. Dent
- University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON
| |
Collapse
|
32
|
Sabatier R, Jacquemier J, Bertucci F, Esterni B, Finetti P, Azario F, Birnbaum D, Viens P, Gonçalves A, Extra JM. Peritumoural vascular invasion: A major determinant of triple-negative breast cancer outcome. Eur J Cancer 2011; 47:1537-45. [DOI: 10.1016/j.ejca.2011.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 01/03/2023]
|
33
|
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CCH, Lau S, Somlo G, Yen Y. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011; 30:4437-46. [PMID: 21532620 DOI: 10.1038/onc.2011.145] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is genetically and clinically heterogeneous. Triple negative breast cancer (TNBC) is a subtype of breast cancer that is usually associated with poor outcome and lack of benefit from targeted therapy. We used microarray analysis to perform a pathway analysis of TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), low density lipoprotein receptor-related protein 6 and transcription factor 7 (TCF7) was observed in TNBC, and we directed our focus to the Wnt pathway receptor, FZD7. To validate the function of FZD7, FZD7shRNA was used to knock down FZD7 expression. Notably, reduced cell proliferation and suppressed invasiveness and colony formation were observed in TNBC MDA-MB-231 and BT-20 cells. Study of the possible mechanism indicated that these effects occurred through silencing of the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of β-catenin and decreased transcriptional activity of TCF7. In vivo studies revealed that FZD7shRNA significantly suppressed tumor formation, through reduced cell proliferation, in mice bearing xenografts without FZD7 expression. Our findings suggest that FZD7-involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC, and thus, FZD7 shows promise as a biomarker and a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- L Yang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li X, Ferrel GL, Guerra MC, Hode T, Lunn JA, Adalsteinsson O, Nordquist RE, Liu H, Chen WR. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochem Photobiol Sci 2011; 10:817-21. [PMID: 21373701 DOI: 10.1039/c0pp00306a] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report our preliminary results of a pilot clinical trial of late-stage breast cancer patients treated by laser immunotherapy (LIT), a local intervention using an 805 nm laser for non-invasive irradiation, indocyanine green for selective thermal effect, and immunoadjuvant (glycated chitosan) for immunological stimulation. Ten breast cancer patients were enrolled in this study; all patients were considered to be out of other available treatment options. Toxicity was individually evaluated through physical exams and laboratory tests. Adverse reactions only occurred in the area of treatment due to photothermal injury and local administration of immunoadjuvant. No grade 3 or 4 side effects were observed. Treatment efficacy of LIT was also evaluated by physical examination and tomography. In 8 patients available for evaluation, the objective response rate was 62.5% and the clinical beneficial response rate was 75%. While the study is still ongoing, the initial outcomes of this clinical trial show that LIT is well tolerated and is promising in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Xiaosong Li
- Department of Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Veiseh M, Turley EA. Hyaluronan metabolism in remodeling extracellular matrix: probes for imaging and therapy of breast cancer. Integr Biol (Camb) 2011; 3:304-15. [PMID: 21264398 DOI: 10.1039/c0ib00096e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical and experimental evidence increasingly support the concept of cancer as a disease that emulates a component of wound healing, in particular abnormal stromal extracellular matrix remodeling. Here we review the biology and function of one remodeling process, hyaluronan (HA) metabolism, which is essential for wound resolution but closely linked to breast cancer (BCA) progression. Components of the HA metabolic cycle (HAS2, SPAM1 and HA receptors CD44, RHAMM/HMMR and TLR2) are discussed in terms of their known functions in wound healing and in breast cancer progression. Finally, we discuss recent advances in the use of HA-based platforms for developing nanoprobes to image areas of active HA metabolism and for therapeutics in breast cancer.
Collapse
Affiliation(s)
- M Veiseh
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA, USA.
| | | |
Collapse
|
36
|
Histopathological subclassification of triple negative breast cancer using prognostic scoring system: five variables as candidates. Virchows Arch 2010; 458:65-72. [PMID: 21104095 DOI: 10.1007/s00428-010-1009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/11/2010] [Accepted: 11/04/2010] [Indexed: 12/29/2022]
Abstract
We attempted to subclassify triple negative breast cancer (TNBC) cases into subgroups according to clinical outcome or prognosis of TNBC patients using archival specimens. We analyzed 102 Japanese cases of invasive TNBC who underwent surgery between January 1998 and December 2007. The clinicopathological factors and clinical information were retrospectively retrieved from reviewing the charts of the patients. Immunohistochemical staining was performed for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor 1 (EGFR1), CK5/6, CK14, Ki-67, and CD31 for microvessel density (MVD). Median follow-up time of the patients was 68.5 months. Multivariable analysis demonstrated that pathologic node status was the most significantly associated with relapse-free survival (RFS) and breast cancer-specific survival (BCSS) of these patients. Pathological tumor size, basal-like type, Ki-67 labeling index (LI) and MVD were also independently associated with RFS and BCSS. Based on these results, we devised the risk score system reflecting hazard ratios of these prognostic factors above. With this system, TNBC patients in this study were classified into three subgroups (low-risk group: score 0-3, intermediate-risk group: score 4-7 and high-risk group: score 8-10). The significant difference of RFS and BCSS was detected among these three different subgroups of the patients (p < 0.05). We propose the risk score system, which incorporated pathologic nodal status, size of the primary tumor, the presence or absence of basal-like features, Ki-67 LI, and MVD in order to predict postoperative clinical course of the Japanese TNBC patients.
Collapse
|
37
|
Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 2010; 36 Suppl 3:S80-6. [DOI: 10.1016/s0305-7372(10)70025-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Min J, Zhang W, Gu Y, Hong L, Yao L, Li F, Zhao D, Feng Y, Zhang H, Li Q. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma. Med Oncol 2010; 28 Suppl 1:S219-27. [PMID: 20957525 DOI: 10.1007/s12032-010-9702-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023]
Abstract
Cell death-inducing DFF45-like effector-3 (CIDE-3) is a novel member of an apoptosis-inducing protein family, but its function is unknown. CIDE-3 shows a different distribution pattern in hepatocellular carcinoma (HCC) tissues and normal adjacent tissues. Therefore, this work tested the hypothesis that CIDE-3 induces apoptosis in HCC cells, inhibiting oncogenesis and tumor development. We used immunohistochemistry to evaluate the expression of CIDE-3 in 82 HCC samples and 51 adjacent liver tissues. Overexpression of CIDE-3 induced apoptosis, as detected by flow cytometry, in the HCC cell line SMMC-7721, which had undetectable levels of CIDE-3 in the absence of CIDE-3 overexpression. A yeast two-hybrid system was employed to screen for proteins that interact with CIDE-3. The expression of CIDE-3 was decreased in HCC tissue, compared to adjacent normal tissues, and CIDE-3 expression and HCC differentiation were positively correlated. CIDE-3 expression levels were lower in poorly differentiated HCC tissue than in well-differentiated HCC tissue. Overexpressed CIDE-3 inhibited proliferation and induced apoptosis in HCC cells. We found that lipopolysaccharide-induced tumor necrosis factor (LITAF) interacted with CIDE-3 in hepatic cells. This is the first demonstrated interaction between CIDE-3 and LITAF, and the first report that CIDE-3 induces apoptosis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Min
- State Key Laboratory Of Cancer Biology, Department of pathology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Banerjee D. Reinventing diagnostics for personalized therapy in oncology. Cancers (Basel) 2010; 2:1066-91. [PMID: 24281107 PMCID: PMC3835119 DOI: 10.3390/cancers2021066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/15/2010] [Accepted: 05/28/2010] [Indexed: 11/16/2022] Open
Abstract
Human cancers are still diagnosed and classified using the light microscope. The criteria are based upon morphologic observations by pathologists and tend to be subject to interobserver variation. In preoperative biopsies of non-small cell lung cancers, the diagnostic concordance, even amongst experienced pulmonary pathologists, is no better than a coin-toss. Only 25% of cancer patients, on average, benefit from therapy as most therapies do not account for individual factors that influence response or outcome. Unsuccessful first line therapy costs Canada CAN$1.2 billion for the top 14 cancer types, and this extrapolates to $90 billion globally. The availability of accurate drug selection for personalized therapy could better allocate these precious resources to the right therapies. This wasteful situation is beginning to change with the completion of the human genome sequencing project and with the increasing availability of targeted therapies. Both factors are giving rise to attempts to correlate tumor characteristics and response to specific adjuvant and neoadjuvant therapies. Static cancer classification and grading systems need to be replaced by functional classification systems that not only account for intra- and inter- tumor heterogeneity, but which also allow for the selection of the correct chemotherapeutic compounds for the individual patient. In this review, the examples of lung and breast cancer are used to illustrate the issues to be addressed in the coming years, as well as the emerging technologies that have great promise in enabling personalized therapy.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Centre for Translational and Applied Genomics (CTAG), Provincial Health Services Authority (PHSA) Laboratories, Vancouver, British Columbia, Canada.
| |
Collapse
|