1
|
Niu X, Yang H, Wu X, Huo F, Ma K, Yin C. A thiol-triggered croconaine-chromene integration to induce ferroptosis and photothermal synergistic efficient tumor ablation. Chem Sci 2024:d4sc03688c. [PMID: 39246356 PMCID: PMC11376015 DOI: 10.1039/d4sc03688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Theranostic probes, combining diagnostic and treatment capabilities, have emerged as promising tools in tumor precision medicine. However, existing probes with constant fluorescence and photothermal activity can result in low signal-to-background ratios and phototoxicity. In this study, we introduced CM-Croc, a novel probe comprised of chromene and croconaine, selectively triggered by thiol. CM-Croc exhibited turn-on fluorescence and released croconaine for photothermal therapy. The croconaine moiety possesses high photothermal conversion efficiency up to 55%. Besides, it demonstrated potent activity against various cancer cell lines at low micromolar concentrations, including drug-resistant variants, through enhanced photothermal therapy combined with the ferroptosis effect. What's more, CM-Croc was proved to inhibit the activity of GPX4 to induce ferroptosis. Finally, CM-Croc was demonstrated to be the first croconaine-derived SOP, which targeted tumors and significantly inhibited tumor growth in vivo following intravenous administration with irradiation. This study showed CM-Croc's potential for enhancing tumor precision medicine.
Collapse
Affiliation(s)
- Xinya Niu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan 030006 China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
- Zhendong Research Institute, Shanxi-Zhendong Pharmaceutical Co., Ltd Changzhi 047100 China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
2
|
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI, Sharma A. Chronic Inflammation's Transformation to Cancer: A Nanotherapeutic Paradigm. Molecules 2023; 28:molecules28114413. [PMID: 37298889 DOI: 10.3390/molecules28114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Banglore 560056, India
| | - Amka Nagar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mohammad Amjad Kamal
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics Inc., Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow G1 0RE, UK
| |
Collapse
|
3
|
Salama ABM, Salem YY, Mohamed TMA. Controlled and Targeted Drug Delivery Using Smart Nanovectors. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2023; 2:84-90. [PMID: 39524321 PMCID: PMC11545783 DOI: 10.53941/ijddp.0201010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conventional drug delivery systems have several limitations, such as the high frequency of administration, several off-target effects, and the need for tissue specificity. Recently, smart drug shuttles have emerged, and the nano applications provided a new opportunity for advancing the drug delivery system to become tissue targeted and decrease the frequency of administration. The recent development of nanovectors as drug carriers has gone through several steps of evolution that ended with the development of logic-embedded nanovectors. Here, we summarize the different types of nanovectors and their applications in various clinical situations, and finally, we spot the light on the future of this area of research.
Collapse
Affiliation(s)
- Abou Bakr M. Salama
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY 40208, U.S.A
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin Y. Salem
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY 40208, U.S.A
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer M. A. Mohamed
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY 40208, U.S.A
- Envirome Institute, Centre for Cardiometabolic Sciences, Department of Medicine, University of Louisville, KY 40208, U.S.A
- Department of Bioengineering, Speed School of Engineering, University of Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, KY 40208, U.S.A
- Institute of Cardiovascular Sciences, University of Manchester M13 9PL, U.K
| |
Collapse
|
4
|
Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis Photodyn Ther 2023; 42:103312. [PMID: 36731732 DOI: 10.1016/j.pdpdt.2023.103312] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
AuNPs-mediated photothermal therapy (PTT) is gaining popularity in both laboratory research and medical applications. It has proven clear advantages in breast cancer therapy over conventional thermal ablation because of its easily-tuned features of irradiation light with inside hyperthermia ability. Notwithstanding this significant progress, the therapeutic potential of AuNPs-mediated PTT in cancer treatments is still impeded by several challenges, including inherent non-specificity, low photothermal conversion effectiveness, and the limitation of excitation light tissue penetration. Given the rapid progress of AuNPs-mediated PTT, we present a comprehensive overview of significant breakthroughs in the recent advancements of AuNPs for PTT, focusing on breast cancer cells. With the improvement of chemical synthesis technology, AuNPs of various sizes and shapes with desired properties can be synthesized, allowing breast cancer targeting and treatment. In this study, we summarized the different sizes and features of four major types of AuNPs in this review: Au nanospheres, Au nanocages, Au nanoshells, and Au nanorods, and explored their benefits and drawbacks in PTT. We also discussed the diagnostic, bioconjugation, targeting, and cellular uptake of AuNPs, which could improve the performance of AuNP-based PTT. Besides that, potential challenges and future developments of AuNP-mediated PTT for clinical applications are discussed. AuNP-mediated PTT is expected to become a highly promising avenue in cancer treatment in the near future.
Collapse
|
5
|
Gámez-Chiachio M, Sarrió D, Moreno-Bueno G. Novel Therapies and Strategies to Overcome Resistance to Anti-HER2-Targeted Drugs. Cancers (Basel) 2022; 14:4543. [PMID: 36139701 PMCID: PMC9496705 DOI: 10.3390/cancers14184543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The prognosis and quality of life of HER2 breast cancer patients have significantly improved due to the crucial clinical benefit of various anti-HER2 targeted therapies. However, HER2 tumors can possess or develop several resistance mechanisms to these treatments, thus leaving patients with a limited set of additional therapeutic options. Fortunately, to overcome this problem, in recent years, multiple different and complementary approaches have been developed (such as antibody-drug conjugates (ADCs)) that are in clinical or preclinical stages. In this review, we focus on emerging strategies other than on ADCs that are either aimed at directly target the HER2 receptor (i.e., novel tyrosine kinase inhibitors) or subsequent intracellular signaling (e.g., PI3K/AKT/mTOR, CDK4/6 inhibitors, etc.), as well as on innovative approaches designed to attack other potential tumor weaknesses (such as immunotherapy, autophagy blockade, or targeting of other genes within the HER2 amplicon). Moreover, relevant technical advances such as anti-HER2 nanotherapies and immunotoxins are also discussed. In brief, this review summarizes the impact of novel therapeutic approaches on current and future clinical management of aggressive HER2 breast tumors.
Collapse
Affiliation(s)
- Manuel Gámez-Chiachio
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - David Sarrió
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
- MD Anderson International Foundation, 28033 Madrid, Spain
| |
Collapse
|
6
|
Multifunctional nanoparticles as optical biosensing probe for breast cancer detection: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112249. [PMID: 34225888 DOI: 10.1016/j.msec.2021.112249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Optical biosensors show attractive performance in medical sensing in the event of using different nanoparticles in their design. Owing to their unique optical characteristics and biological compatibility, gold nanoparticles (GNPs), silver nanoparticles (AgNPs), bimetallic nanoparticles and magnetic nanoparticles have been broadly implemented in making sensing tools. The functionalization of these nanoparticles with different components provides an excellent opportunity to assemble selective and sensitive sensing materials to detect various biological molecules related to breast cancer. This review summarizes the recent application of optical biosensing devices based on nanomaterials and discusses their pros and cons to improve breast cancer detection in real samples. In particular, the main constituent elements of these optical biosensors including recognition and transducer elements, types of applied nanostructures, analytical sensing procedures, sensor detection ranges and limit of detection (LOD), are expressed in detail.
Collapse
|
7
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
8
|
Longo R, Gorrasi G, Guadagno L. Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:848. [PMID: 33810343 PMCID: PMC8065448 DOI: 10.3390/nano11040848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) in the biomedical field are known for many decades as carriers for drugs that are used to overcome biological barriers and reduce drug doses to be administrated. Some types of NPs can interact with external stimuli, such as electromagnetic radiations, promoting interesting effects (e.g., hyperthermia) or even modifying the interactions between electromagnetic field and the biological system (e.g., electroporation). For these reasons, at present these nanomaterial applications are intensively studied, especially for drugs that manifest relevant side effects, for which it is necessary to find alternatives in order to reduce the effective dose. In this review, the main electromagnetic-induced effects are deeply analyzed, with a particular focus on the activation of hyperthermia and electroporation phenomena, showing the enhanced biological performance resulting from an engineered/tailored design of the nanoparticle characteristics. Moreover, the possibility of integrating these nanofillers in polymeric matrices (e.g., electrospun membranes) is described and discussed in light of promising applications resulting from new transdermal drug delivery systems with controllable morphology and release kinetics controlled by a suitable stimulation of the interacting systems (nanofiller and interacting cells).
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| | | | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| |
Collapse
|
9
|
Zafar M, Ijaz M, Iqbal T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Chen X, Zou J, Zhang K, Zhu J, Zhang Y, Zhu Z, Zheng H, Li F, Piao JG. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta Pharm Sin B 2021; 11:271-282. [PMID: 33532192 PMCID: PMC7838055 DOI: 10.1016/j.apsb.2020.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
The chemotherapy combined with photothermal therapy has been a favorable approach for the treatment of breast cancer. In present study, nanoparticles with the characteristics of photothermal/matrix metalloproteinase-2 (MMP-2) dual-responsive, tumor targeting, and size-variability were designed for enhancing the antitumor efficacy and achieving "on-demand" drug release markedly. Based on the thermal sensitivity of gelatin, we designed a size-variable gelatin nanoparticle (GNP) to encapsulate indocyanine green (ICG) and doxorubicin (DOX). Under an 808 nm laser irradiation, GNP-DOX/ICG responded photothermally and swelled in size from 71.58 ± 4.28 to 160.80 ± 9.51 nm, which was beneficial for particle retention in the tumor sites and release of the loaded therapeutics. Additionally, GNP-DOX/ICG showed a size reduction of the particles to 33.24 ± 4.11 nm and further improved drug release with the degradation of overexpressed MMP-2 in tumor. In the subsequently performed in vitro experiments, it was confirmed that GNP-DOX/ICG could provide a therapeutic effect that was enhanced and synergistic. Consequently, GNP-DOX/ICG could efficiently suppress the growth of 4T1 tumor in vivo. In conclusion, this study may provide a promising strategy in the rational design of drug delivery nanosystems based on gelatin for chemo-photothermal therapy to achieve synergistically enhanced therapeutic efficacy against breast cancer.
Collapse
Affiliation(s)
- Xiaojie Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiafeng Zou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingjing Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhihong Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
11
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci 2020; 21:E6018. [PMID: 32825618 PMCID: PMC7504566 DOI: 10.3390/ijms21176018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common invasive tumor in women and the second leading cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as it can provide better, more efficient, and affordable healthcare, and it has the potential to develop novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation with antibodies-the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain breast cancer subtypes and indications have limited therapeutic options, this field provides hope for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their translation to the clinic is placed on the revision.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad Oncología Traslacional, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
12
|
Manrique-Bedoya S, Abdul-Moqueet M, Lopez P, Gray T, Disiena M, Locker A, Kwee S, Tang L, Hood RL, Feng Y, Large N, Mayer KM. Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Arrays. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:17172-17182. [PMID: 34367407 PMCID: PMC8341645 DOI: 10.1021/acs.jpcc.0c02443] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Induced hyperthermia has been demonstrated as an effective oncological treatment due to the reduced heat tolerance of most malignant tissues; however, most techniques for heat generation within a target volume are insufficiently selective, inducing heating and unintended damage to surrounding healthy tissues. Plasmonic photothermal therapy (PPTT) utilizes light in the near-infrared (NIR) region to induce highly localized heating in gold nanoparticles, acting as exogenous chromophores, while minimizing heat generation in nearby tissues. However, optimization of treatment parameters requires extensive in vitro and in vivo studies for each new type of pathology and tissue targeted for treatment, a process that can be substantially reduced by implementing computational modeling. Herein, we describe the development of an innovative model based on the finite element method (FEM) that unites photothermal heating physics at the nanoscale with the micron scale to predict the heat generation of both single and arrays of gold nanoparticles. Plasmonic heating from laser illumination is computed for gold nanoparticles with three different morphologies: nanobipyramids, nanorods, and nanospheres. Model predictions based on laser illumination of nanorods at a visible wavelength (655 nm) are validated through experiments, which demonstrate a temperature increase of 5 °C in the viscinity of the nanorod array when illuminated by a 150 mW red laser. We also present a predictive model of the heating effect induced at 810 nm, wherein the heating efficiencies of the various morphologies sharing this excitation peak are compared. Our model shows that the nanorod is the most effective at heat generation in the isolated scenario, and arrays of 91 nm long nanorods reached hyperthermic levels (an increase of at least 5 °C) within a volume of over 20 μm3.
Collapse
Affiliation(s)
- Santiago Manrique-Bedoya
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mohammad Abdul-Moqueet
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Priscilla Lopez
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Tara Gray
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Matthew Disiena
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Andrew Locker
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sharon Kwee
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Liang Tang
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - R Lyle Hood
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yusheng Feng
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Large
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kathryn M Mayer
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
13
|
Kang MS, Lee SY, Kim KS, Han DW. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics 2020; 12:pharmaceutics12080701. [PMID: 32722426 PMCID: PMC7463491 DOI: 10.3390/pharmaceutics12080701] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
Research on cancer theragnosis with gold nanoparticles (AuNPs) has rapidly increased, as AuNPs have many useful characteristics for various biomedical applications, such as biocompatibility, tunable optical properties, enhanced permeability and retention (EPR), localized surface plasmon resonance (LSPR), photothermal properties, and surface enhanced Raman scattering (SERS). AuNPs have been widely utilized in cancer theragnosis, including phototherapy and photoimaging, owing to their enhanced solubility, stability, biofunctionality, cancer targetability, and biocompatibility. In this review, specific characteristics and recent modifications of AuNPs over the past decade are discussed, as well as their application in cancer theragnostics and future perspectives. In the future, AuNP-based cancer theragnosis is expected to facilitate the development of innovative and novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (K.S.K.); (D.-W.H.); Tel.: +82-051-510-2496 (K.S.K.); +82-51-510-7725 (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (K.S.K.); (D.-W.H.); Tel.: +82-051-510-2496 (K.S.K.); +82-51-510-7725 (D.-W.H.)
| |
Collapse
|
14
|
Strategies for Precise Engineering and Conjugation of Antibody Targeted-nanoparticles for Cancer Therapy. Curr Med Sci 2020; 40:463-473. [DOI: 10.1007/s11596-020-2200-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Indexed: 12/16/2022]
|
15
|
Bloise N, Massironi A, Della Pina C, Alongi J, Siciliani S, Manfredi A, Biggiogera M, Rossi M, Ferruti P, Ranucci E, Visai L. Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Front Bioeng Biotechnol 2020; 8:132. [PMID: 32195232 PMCID: PMC7065572 DOI: 10.3389/fbioe.2020.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| | - Alessio Massironi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Pisa, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Rossi
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | - Livia Visai
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| |
Collapse
|
16
|
Nouri S, Mohammadi E, Mehravi B, Majidi F, Ashtari K, Neshasteh-Riz A, Einali S. NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2316-2324. [PMID: 31184218 DOI: 10.1080/21691401.2019.1593187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, gold nanoshells are used in targeted nano photothermal cancer therapy. This study surveyed the application of gold nanoshell (GNs) to thermal ablative therapy for melanoma cancer cells and it takes advantage of the near infrared absorption of gold nanoshells. The synthesis and characterization of glycosylated gold nanoshells (GGNs) were done. The cytotoxicity and photothermal effects of GNs on melanoma cells were evaluated using MTT assay and flow cytometry. The characterization data showed that GGNs are spherical, with a hydrodynamic size of 46.7 nm. Results suggest that the cellular uptake of GGNs was about 78%. Viability assays showed no significant toxicity at low concentrations of GNs. The higher heating rate and toxicity of cancer cells were obtained for the cells exposed to 808 nm NIR laser after incubation with GGNs rather than the GNs. The viability of these cells has dramatically decreased by 29%. Furthermore, 61% more cell lethality was achieved for A375 cells using combined photothermal therapy and treatment with GGNs in comparison to NIR radiation alone. In conclusion, our findings suggest that the synthesized gold/silica core-shell nanoparticles conjugated with glucosamine have high potentials to be considered as an efficient metal-nanoshell in the process of targeted cancer photothermal therapy.
Collapse
Affiliation(s)
- Samira Nouri
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran.,c Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Elham Mohammadi
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Bita Mehravi
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Fatemehsadat Majidi
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran.,c Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Khadijeh Ashtari
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Ali Neshasteh-Riz
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Samira Einali
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
Kane KA, Bertino MF. Pulsed laser synthesis of highly active Ag-Rh and Ag-Pt antenna-reactor-type plasmonic catalysts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1958-1963. [PMID: 31598463 PMCID: PMC6774074 DOI: 10.3762/bjnano.10.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Ag, Pt, and Rh monometallic colloids were produced via laser ablation. Separate Ag-Rh and Ag-Pt heterostructures were formed by mixing and resulted in groupings of Rh/Pt nanoparticles adsorbing to the concavities of the larger Ag nanostructures. The 400 nm Ag plasmonic absorption peak was slightly blue-shifted for Ag-Pt and red-shifted for Ag-Rh heterostructures. Catalytic activity for the reduction of 4-nitrophenol increased significantly for Ag-Pt and Ag-Rh compared to the monometallic constituents, and persisted at lower loading ratios and consecutive reduction cycles. The enhancement is attributed to the Rh and Pt nanoparticles forming antenna-reactor-type plasmonic catalysts with the Ag nanostructures.
Collapse
Affiliation(s)
- Kenneth A Kane
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23220, USA
| | - Massimo F Bertino
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23220, USA
| |
Collapse
|
18
|
Nunes T, Pons T, Hou X, Van Do K, Caron B, Rigal M, Di Benedetto M, Palpant B, Leboeuf C, Janin A, Bousquet G. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:306. [PMID: 31299997 PMCID: PMC6626398 DOI: 10.1186/s13046-019-1305-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/30/2019] [Indexed: 01/09/2023]
Abstract
Background HER2-overexpressing metastatic breast cancers are challenging practice in oncology when they become resistant to anti-HER2 therapies such as trastuzumab. In these clinical situations, HER2-overexpression persists in metastatic localizations, and can thus be used for active targeting using innovative therapeutic approaches. Functionalized gold nanoparticles with anti-HER2 antibody can be stimulated by near-infrared light to induce hyperthermia. Methods Here, hybrid anti-HER2 gold nanoshells were engineered for photothermal therapy to overcome trastuzumab resistance in HER2-overexpressing breast cancer xenografts. Results When gold nanoshells were administered in HER2-tumor xenografts, no toxicity was observed. A detailed pharmacokinetic study showed a time-dependent accumulation of gold nanoshells within the tumors, significantly greater with functionalized gold nanoshells at 72 h. This enabled us to optimize the treatment protocol and irradiate the mice when the anti-HER2 gold nanoshells had accumulated most in the tumors. After weekly injections of anti-HER2 gold nanoshells, and repeated irradiations with a femtosecond-pulsed laser over four weeks, tumor growth was significantly inhibited. Detailed tissue microscopic analyses showed that the tumor growth inhibition was due to an anti-angiogenic effect, coherent with a preferential distribution of the nanoshells in tumor microvessels. We also showed a direct tumor cell effect with apoptosis and inhibition of proliferation, coherent with an immune-mediated targeting of tumor cells by anti-HER2 nanoshells. Conclusion This preclinical study thus supports the use of anti-HER2 gold nanoshells and photothermal therapy to overcome trastuzumab resistance in HER2-overexpressing breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1305-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toni Nunes
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire Pathologie, UMR-S942, F-75010, Paris, France.,INSERM, U942, Paris, France
| | - Thomas Pons
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC, F-75005, Paris, France
| | - Xue Hou
- Laboratoire de Photonique Quantique et Moléculaire, CentraleSupélec, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, CNRS UMR 8537, 3 rue Joliot Curie, F-91190, Gif-sur-Yvette, France
| | - Khanh Van Do
- Laboratoire de Photonique Quantique et Moléculaire, CentraleSupélec, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, CNRS UMR 8537, 3 rue Joliot Curie, F-91190, Gif-sur-Yvette, France
| | - Benoît Caron
- ALIPP6, Institut des Sciences de la Terre de Paris UMR 7193, CNRS, Sorbonne Université, F-75005, Paris, France
| | - Marthe Rigal
- AP-HP-Hôpital Avicenne, Service-Pharmacie-Paris, Paris, France
| | | | - Bruno Palpant
- Laboratoire de Photonique Quantique et Moléculaire, CentraleSupélec, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, CNRS UMR 8537, 3 rue Joliot Curie, F-91190, Gif-sur-Yvette, France
| | - Christophe Leboeuf
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire Pathologie, UMR-S942, F-75010, Paris, France.,INSERM, U942, Paris, France
| | - Anne Janin
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire Pathologie, UMR-S942, F-75010, Paris, France. .,INSERM, U942, Paris, France. .,AP-HP-Hôpital Saint-Louis, Laboratoire-Pathologie-Paris, Paris, France.
| | - Guilhem Bousquet
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire Pathologie, UMR-S942, F-75010, Paris, France. .,INSERM, U942, Paris, France. .,Université Paris 13, F-93430, Villetaneuse, France. .,AP-HP-Hôpital Avicenne, Service-Oncologie-Paris, Paris, France.
| |
Collapse
|
19
|
|
20
|
Chavez S, Rao VG, Linic S. Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. Faraday Discuss 2019; 214:441-453. [DOI: 10.1039/c8fd00143j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Direct electronic transitions act as a preferential dissipation pathway for plasmon energy in multicomponent plasmonic systems.
Collapse
Affiliation(s)
- Steven Chavez
- Department of Chemical Engineering
- University of Michigan – Ann Arbor
- Ann Arbor
- USA
| | - Vishal Govind Rao
- Department of Chemical Engineering
- University of Michigan – Ann Arbor
- Ann Arbor
- USA
| | - Suljo Linic
- Department of Chemical Engineering
- University of Michigan – Ann Arbor
- Ann Arbor
- USA
| |
Collapse
|
21
|
Wang YC, Rhéaume É, Lesage F, Kakkar A. Synthetic Methodologies to Gold Nanoshells: An Overview. Molecules 2018; 23:E2851. [PMID: 30400168 PMCID: PMC6278292 DOI: 10.3390/molecules23112851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gold nanostructures that can be synthetically articulated to adapt diverse morphologies, offer a versatile platform and tunable properties for applications in a variety of areas, including biomedicine and diagnostics. Among several conformational architectures, gold nanoshells provide a highly advantageous combination of properties that can be fine-tuned in designing single or multi-purpose nanomaterials, especially for applications in biology. One of the important parameters for evaluating the efficacy of gold nano-architectures is their reproducible synthesis and surface functionalization with desired moieties. A variety of methods now exist that allow fabrication and chemical manipulation of their structure and resulting properties. This review article provides an overview and a discussion of synthetic methodologies to a diverse range of gold nanoshells, and a brief summary of surface functionalization and characterization methods employed to evaluate their overall composition.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Éric Rhéaume
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.
| | - Frédéric Lesage
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-ville, Montreal, QC H3C 3A7, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
22
|
Functionalization of gold-nanoparticles by the Clostridium perfringens enterotoxin C-terminus for tumor cell ablation using the gold nanoparticle-mediated laser perforation technique. Sci Rep 2018; 8:14963. [PMID: 30297847 PMCID: PMC6175838 DOI: 10.1038/s41598-018-33392-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
A recombinant produced C-terminus of the C. perfringens enterotoxin (C-CPE) was conjugated to gold nanoparticles (AuNPs) to produce a C-CPE-AuNP complex (C-CPE-AuNP). By binding to claudins, the C- CPE should allow to target the AuNPs onto the claudin expressing tumor cells for a subsequent cell killing by application of the gold nanoparticle-mediated laser perforation (GNOME-LP) technique. Using qPCR and immunocytochemistry, we identified the human Caco-2, MCF-7 and OE-33 as well as the canine TiHoDMglCarc1305 as tumor cells expressing claudin-3, -4 and -7. Transepithelial electrical resistance (TEER) measurements of Caco-2 cell monolayer showed that the recombinant C-CPE bound to the claudins. GNOME-LP at a laser fluence of 60 mJ/cm2 and a scanning speed of 0.5 cm/s specifically eliminated more than 75% of claudin expressing human and canine cells treated with C-CPE-AuNP. The same laser fluence did not affect the cells when non-functionalized AuNPs were used. Furthermore, most of the claudin non-expressing cells treated with C-CPE-AuNP were not killed by GNOME-LP. Additionally, application of C-CPE-AuNP to spheroids formed by MCF-7 and OE-33 cells grown in Matrigel reduced spheroid area. The results demonstrate that specific ablation of claudin expressing tumor cells is efficiently increased by activated C-CPE functionalized AuNPs using optical methods.
Collapse
|
23
|
Aslam U, Rao VG, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 2018. [DOI: 10.1038/s41929-018-0138-x] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Near-Infrared-Responsive Cancer Photothermal and Photodynamic Therapy Using Gold Nanoparticles. Polymers (Basel) 2018; 10:polym10090961. [PMID: 30960886 PMCID: PMC6403910 DOI: 10.3390/polym10090961] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Rapid growth of nanotechnology is one of the most quickly emerging tendencies in cancer therapy. Gold nanoparticles roused a distinctive interest in the field, due to their incomparable light-to-thermal energy conversion efficiency, and their ability to load and deliver a variety of anticancer drugs. Therefore, simultaneous photothermal (PTT) and photodynamic (PDT) cancer therapy is available by the role of the thermal agent of the gold nanoparticle itself and the drug delivery carrier for photosensitizer (PS) transport. In this review, the physical, chemical, and biological properties of gold nanoparticle, which can promote PTT and PDT efficiency, are briefly demonstrated, and we highlight recent progression in the development of PS-containing gold nanocomposites for effective cancer therapy.
Collapse
|
25
|
Zhang Y, Zhan X, Peng S, Cai Y, Zhang YS, Liu Y, Wang Z, Yu Y, Wang Y, Shi Q, Zeng X, Yuan K, Zhou N, Joshi R, Zhang M, Zhang Z, Min W. Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:1679-1693. [PMID: 29684526 DOI: 10.1016/j.nano.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023]
Abstract
Melanoma is significantly associated with mutant BRAF gene, a suitable target for siRNA-based anti-melanoma therapy. However, a tumor-specific delivery system is a major hurdle for clinical applications. Here, we developed a novel nano-carrier, FA-GNR-siBRAF for safe topical application, which consists of folic acid (FA) as the tumor-targeting moiety, golden nanorods (GNR) providing photothermal capability to kill tumor cells under laser irradiation, and siRNA specifically silencing BRAF (siBRAF). The in vitro and in vivo results revealed that FA-GNR-siBRAF displayed high transfection rates, and subsequently induced remarkable gene knockdown of BRAF, resulting in suppression of melanoma growth due to the interruption of the MEK/ERK pathway. Combinatorial photothermal effects and BRAF knockdown by FA-GNR-siBRAF effectively killed tumor cells through apoptosis, with enhanced efficiency than individual treatments. Therefore, the FA-GNR-siBRAF simultaneously induced BRAF gene silencing and photothermal effects which achieved synergistic efficacy in the treatment of melanoma, paving a new path for developing clinical treatment methods for melanoma.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| | - Xuelin Zhan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Shanshan Peng
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China; Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Ying Cai
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yanling Liu
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Zhigang Wang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanrong Yu
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Qiaofa Shi
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Xiaoping Zeng
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Keng Yuan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Meng Zhang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China; Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Zhuxu Zhang
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China; Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China; Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
26
|
Zhang Y, Zhan X, Xiong J, Peng S, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K, Zhou N, Min W. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 2018; 8:8720. [PMID: 29880902 PMCID: PMC5992202 DOI: 10.1038/s41598-018-26978-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Photothermal therapy (PTT) is a promising approach for cancer targeting therapy. However, the temperature-dependent killing of tumor cells in PTT remains unclear. In this study, we report necroptosis plays a role in the anti-tumor effects observed in gold nanorod (GNR)-mediated PTT in melanoma. We first synthesized gold nanorods with a targeting adaptor FA (GNRs-FA), which achieved high efficacy of targeted delivery to melanoma cells. We further demonstrated PTT, precipitated by GNRs-FA under the induction of near-infrared laser, was temperature-dependent. Furthermore, the photothermal killing of melanoma cells showed different patterns of cell death depending on varying temperature in PTT. In a lower temperature at 43 °C, the percentages of apoptosis, necroptosis and necrosis of tumor cells were 10.2%, 18.3%, and 17.6%, respectively, suggesting the cell killing is ineffective at lower temperatures. When the temperature increased to 49 °C, the cell death pattern switched to necrosis dominant (52.8%). Interestingly, when the PTT achieved a moderate temperature of 46 °C, necroptosis was significantly increased (35.1%). Additionally, GNRs-FA/PPT-mediated necroptosis was regulated by RIPK1 pathway. Taken together, this study is the first to demonstrate that temperature-dependent necroptosis is an important mechanism of inducing melanoma cell death in GNR-mediated PTT in addition to apoptosis and necrosis.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.
| | - Xuelin Zhan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Juan Xiong
- Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Shanshan Peng
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Wei Huang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Ying Cai
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanling Liu
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rong Li
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Keng Yuan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Weiping Min
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
27
|
Xiao Q, Lu Y, Chen M, Chen B, Yang Y, Cui D, Pan B, Xu N. Antibody-Conjugated Silica-Modified Gold Nanorods for the Diagnosis and Photo-Thermal Therapy of Cryptococcus neoformans: an Experiment In Vitro. NANOSCALE RESEARCH LETTERS 2018; 13:77. [PMID: 29516271 PMCID: PMC5842168 DOI: 10.1186/s11671-018-2487-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/27/2018] [Indexed: 07/01/2023]
Abstract
BACKGROUND Cryptococcus neoformans is an encapsulated yeast. There is still little quick and effective solution for the diagnosis or treatment of C. neoformans infection at an early stage in clinical. Antibody-conjugated silica-modified gold nanorods (GNR-SiO2-Ab) can conjugate C. neoformans selectively. It may provide a possibility for treatment of cryptococcosis safely and effectively. METHODS Gold nanorods (GNRs) were synthesized according to the seed-mediated template-assisted protocol. Anti-C. neoformans antibody was covalently anchored on the surface of GNRs with silane coupling agent. In vitro computer tomography imaging was performed to explore the diagnostic effect of the GNR-SiO2-Ab. The viability of cells was evaluated to confirm the photo-thermal therapy effect of GNR-SiO2-Ab combined with near-infrared (NIR) laser light. RESULTS GNR-SiO2-Ab has a potential application as a positive X-ray/CT imaging contrast agent. An antibody can induce a much greater aggregation of GNRs by binding to the surface of C. neoformans cells resulting in a much higher attenuation values than ever. After irradiation, C. neoformans cells suffered photo-thermal damages and the normal structure of cells were destroyed. The viability of cells reduced significantly compared to the untreated cells. CONCLUSIONS Our work confirmed that antibody-conjugated silica-modified gold nanorods could enhance X-ray attenuation of C. neoformans cells in CT images. And immune GNRs, which were mediated by antibodies, could increase the effects of NIR-induced photo-thermal therapy in C. neoformans cells.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Min Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Chen
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yuming Yang
- Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Pan
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
28
|
Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23:331-345. [DOI: 10.1007/s00775-018-1542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
29
|
Wu T, Zhang D, Qiao Q, Qin X, Yang C, Kong M, Deng H, Zhang Z. Biomimetic Nanovesicles for Enhanced Antitumor Activity of Combinational Photothermal and Chemotherapy. Mol Pharm 2018; 15:1341-1352. [PMID: 29397741 DOI: 10.1021/acs.molpharmaceut.7b01142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of multiple modalities has shown great potential in cancer treatment with improved therapeutic effects and minimized side effects. Here, we fabricated a type of doxorubicin-encapsulated biomimetic nanovesicle (NV) by a facile method with near-infrared dye insertion in the membrane for combinatorial photothermal and chemotherapy. With innate biomimetic properties, NVs enhanced the uptake by tumor cells while reducing the phagocytosis of macrophages. Upon laser irradiation, NVs can convert the absorbed fluorescent energy into heat for effective tumor killing. Hyperthermia can further induce membrane ablation of NVs to accelerate the release of chemotherapeutic drug for potent cytotoxicity to tumor cells. The NVs improved drug accumulation and showed a more efficient in vivo photothermal effect with a rapid temperature increase in tumors. Moreover, the NV-based combinational photothermal and chemotherapy exhibited significant tumor growth suppression with a high inhibitory rate of 91.6% and negligible systemic toxicity. The results indicate that NVs could be an appealing vehicle for combinational cancer treatment.
Collapse
|
30
|
DeWitt MR, Rylander MN. Tunable Collagen Microfluidic Platform to Study Nanoparticle Transport in the Tumor Microenvironment. Methods Mol Biol 2018; 1831:159-178. [PMID: 30051431 DOI: 10.1007/978-1-4939-8661-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes the motivation and protocol for creating a perfused 3D microfluidic in vitro platform representative of the tumor microenvironment to study nanoparticle transport. The cylindrical vascularized tumor platform described consists of a central endothelialized microchannel surrounded by a collagen hydrogel matrix containing cancer cells. This system can be employed to investigate key nanoparticle transport events in the tumor such as extravasation, diffusion within the extracellular matrix, and nanoparticle uptake. This easily manufactured tumor platform can be used for novel nanoparticle refinement focused on optimizing nanoparticle features such as size, shape, and functionalization method. This can yield ideal nanoparticles with properties that facilitate increased transport within the tumor microenvironment, leading to more effective nanoparticle-based treatments for cancer including nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Matthew R DeWitt
- Virginia Tech- Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA.
| | - M Nichole Rylander
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF. Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol 2017; 8:7. [PMID: 29104700 PMCID: PMC5658477 DOI: 10.1186/s12645-017-0030-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 01/17/2023] Open
Abstract
Chemotherapeutic agents have limited efficacy and resistance to them limits today and will limit tomorrow our capabilities of cure. Resistance to treatment with anticancer drugs results from a variety of factors including individual variations in patients and somatic cell genetic differences in tumours. In front of this, multimodality has appeared as a promising strategy to overcome resistance. In this context, the use of nanoparticle-based platforms enables many possibilities to address cancer resistance mechanisms. Nanoparticles can act as carriers and substrates for different ligands and biologically active molecules, antennas for imaging, thermal and radiotherapy and, at the same time, they can be effectors by themselves. This enables their use in multimodal therapies to overcome the wall of resistance where conventional medicine crash as ageing of the population advance. In this work, we review the cancer resistance mechanisms and the advantages of inorganic nanomaterials to enable multimodality against them. In addition, we comment on the need of a profound understanding of what happens to the nanoparticle-based platforms in the biological environment for those possibilities to become a reality.
Collapse
Affiliation(s)
- Eudald Casals
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Muriel F Gusta
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Macarena Cobaleda-Siles
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ana Garcia-Sanz
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Victor F Puntes
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
32
|
Tang X, Loc WS, Dong C, Matters GL, Butler PJ, Kester M, Meyers C, Jiang Y, Adair JH. The use of nanoparticulates to treat breast cancer. Nanomedicine (Lond) 2017; 12:2367-2388. [PMID: 28868970 DOI: 10.2217/nnm-2017-0202] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major ongoing public health issue among women in both developing and developed countries. Significant progress has been made to improve the breast cancer treatment in the past decades. However, the current clinical approaches are invasive, of low specificity and can generate severe side effects. As a rapidly developing field, nanotechnology brings promising opportunities to human cancer diagnosis and treatment. The use of nanoparticulate-based platforms overcomes biological barriers and allows prolonged blood circulation time, simultaneous tumor targeting and enhanced accumulation of drugs in tumors. Currently available and clinically applicable innovative nanoparticulate-based systems for breast cancer nanotherapies are discussed in this review.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Welley S Loc
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Peter J Butler
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Craig Meyers
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yixing Jiang
- Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James H Adair
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Riley RS, Day ES. Frizzled7 Antibody-Functionalized Nanoshells Enable Multivalent Binding for Wnt Signaling Inhibition in Triple Negative Breast Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700544. [PMID: 28544579 PMCID: PMC5545881 DOI: 10.1002/smll.201700544] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/26/2017] [Indexed: 05/08/2023]
Abstract
Antibodies that antagonize cell signaling pathways specific to their targeted receptor are invaluable tools to study and treat malignancies, but their utility is limited by high production costs and treatment dosages. Researchers have shown that antibodies conjugated to nanoparticles display increased affinity for their target relative to freely delivered antibodies due to multivalency, and this study investigates how this multivalency can enable antibody-nanoparticle conjugates to inhibit oncogenic cell signaling more effectively than freely delivered antibodies. This effect was evaluated using triple negative breast cancer (TNBC) cells that are characterized by hyperactive Wnt signaling mediated through overexpressed Frizzled7 (FZD7) transmembrane receptors. Through analysis of the expression of β-catenin and Axin2, two downstream targets in the Wnt pathway, the results demonstrate that FZD7 antibody-nanoshell conjugates (FZD7-NS) are drastically more effective at inhibiting Wnt signaling in TNBC cells than freely delivered FZD7 antibodies. Additionally, cells treated with FZD7-NS, but not cells treated with freely delivered FZD7 antibodies, have decreased viability, indicating the therapeutic potential of this technology. The results demonstrate that antibody-functionalized nanoparticles can exploit multivalency for improved signal cascade interference over free antibodies, and this may ultimately permit lower antibody dosages to be administered to study signaling pathways or to manage diseases.
Collapse
Affiliation(s)
- Rachel S Riley
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, DE, 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Helen F. Graham Cancer Center and Research Institute, Newark, DE, 19713, USA
| |
Collapse
|
34
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
35
|
Kang X, Guo X, Niu X, An W, Li S, Liu Z, Yang Y, Wang N, Jiang Q, Yan C, Wang H, Zhang Q. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep 2017; 7:42069. [PMID: 28155894 PMCID: PMC5290475 DOI: 10.1038/srep42069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and trastuzumab, called TGNs and investigated the TGN-mediated photothermal therapy as a potential alternative treatment of targeting HER2-positive breast cancers. By conjugating trastuzumab and porphyrin to the surface of gold nanorods, we have increased the targeting specificity and amplified the detecting effectiveness at the same time. TGN-mediated photothermal ablation by near-infrared laser led to a selective destruction of HER2-positive cancer cells and significantly inhibited tumor growth in mouse models bearing HER2 over-expressed breast cancer xenograft with less toxicity. Moreover, TGNs provided better therapeutic efficacy in comparison with the conventional molecule targeted therapy. Our current data suggest a highly promising future of TGNs for its therapeutic application in trastuzumab-resistant breast cancers.
Collapse
Affiliation(s)
- Xinmei Kang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Ximing Guo
- School of Life Science of Technology, Harbin Institute of Technology, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Suhan Li
- School of Life Science of Technology, Harbin Institute of Technology, Harbin 150081, Heilongjiang, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Na Wang
- School of Life Science of Technology, Harbin Institute of Technology, Harbin 150081, Heilongjiang, China
| | - Qicheng Jiang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Caichuan Yan
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Hui Wang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
36
|
Watanabe F, Nima ZA, Honda T, Mitsuhara M, Nishida M, Biris AS. X-ray photoelectron spectroscopy and transmission electron microscopy analysis of silver-coated gold nanorods designed for bionanotechnology applications. NANOTECHNOLOGY 2017; 28:025704. [PMID: 27922833 DOI: 10.1088/1361-6528/28/2/025704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multicomponent nano-agents were designed and built via a core-shell approach to enhance their surface enhanced Raman scattering (SERS) signals. These nano-agents had 36 nm × 12 nm gold nanorod cores coated by 4 nm thick silver shell films and a subsequent thin bifunctional thiolated polyethylene glycol (HS-PEG-COOH) layer. Ambient time-lapsed SERS signal measurements of these functionalized nanorods taken over a two-week period indicated no signal degradation, suggesting that large portions of the silver shells remained in pure metallic form. The morphology of the nanorods was characterized by transmission electron microscopy (TEM) and ultra-high resolution scanning TEM. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were utilized to assess the oxidation states of the silver shells covered by HS-PEG-COOH. The binding energies of Ag 3d XPS spectra yielded very small chemical shifts with oxidation; however, the AES peak shapes gave meaningful information about the extent of oxidation undergone by the nano-agent. While the silver shells without HS-PEG-COOH coatings oxidized significantly, the silver shells with HS-PEG-COOH remained predominantly metallic. In fact, six month-old samples still retained mostly metallic silver shells. These findings further demonstrate the stability and longevity of the nanostructures, indicating their significant potential as plasmonically active agents for highly sensitive detection in various biological systems, including cancer cells, tissues, or even organisms.
Collapse
Affiliation(s)
- Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA
| | | | | | | | | | | |
Collapse
|
37
|
Falagan-Lotsch P, Grzincic EM, Murphy CJ. New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjug Chem 2017; 28:135-152. [DOI: 10.1021/acs.bioconjchem.6b00591] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Priscila Falagan-Lotsch
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Elissa M. Grzincic
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Catherine J. Murphy
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Wu CC, Yang YC, Hsu YT, Wu TC, Hung CF, Huang JT, Chang CL. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer. Oncotarget 2016; 6:26861-75. [PMID: 26318039 PMCID: PMC4694958 DOI: 10.18632/oncotarget.4766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperthermic intraperitoneal chemotherapy is effective in treating various intra-abdominal malignancies. However, this therapeutic modality can only be performed during surgical operations and cannot be used repeatedly. We propose repeatedly noninvasive hyperthermia mediated by pegylated silica-core gold nanoshells (pSGNs) in vivo with external near-infrared (NIR) laser irradiation. This study demonstrated that repeated photothermal treatment can effectively eliminate intraperitoneal tumors in mouse ovarian cancer models without damage of normal tissues. By conjugating pSGNs with anti-human CD47 monoclonal antibody, a significant photoablative effect can be achieved using lower amount of pSGNs and shorter NIR laser irradiation. Conjugated pSGNs specifically targeted and bound to cancer cells inside the peritoneal cavity. Our results indicate the possibility of a noninvasive method of repeated hyperthermia and photoablative therapies using nanoparticles. This has substantial clinical potential in treating ovarian and other intraperitoneal cancers.
Collapse
Affiliation(s)
- Chao-Chih Wu
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yuh-Cheng Yang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yun-Ting Hsu
- Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jung-Tang Huang
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan
| | - Chih-Long Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, Sanchi, New Taipei City, Taiwan
| |
Collapse
|
39
|
Boerigter C, Aslam U, Linic S. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. ACS NANO 2016; 10:6108-15. [PMID: 27268233 DOI: 10.1021/acsnano.6b01846] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies.
Collapse
Affiliation(s)
- Calvin Boerigter
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Umar Aslam
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Durán-Meza AL, Moreno-Gutiérrez DS, Ruiz-Robles JF, Bañuelos-Frías A, Segovia-González XF, Longoria-Hernández AM, Gomez E, Ruiz-García J. Synthesis and characterization of extremely small gold nanoshells, and comparison of their photothermal conversion capacity with gold nanorods. NANOSCALE 2016; 8:11091-11098. [PMID: 27227737 DOI: 10.1039/c6nr00027d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current methods for preparing gold nanoshells (AuNSs) produce shells with a diameter of approximately 40 nm or larger, with a relatively large polydispersity. However, AuNSs with smaller diameters and more monodispersity are better suited for biomedical applications. In this work, we present a modified method for the preparation of AuNSs, based on the use of sacrificial silver nanoparticles (AgNPs). We customized the Lee-Meisel method to prepare small and monodisperse AgNPs that were used as sacrificial nanoparticles to prepare extremely small monodispersed AuNSs with an average diameter from 17 to 25 ± 4 nm. We found that these AuNSs are faceted, and that the oxidized silver likely dissolves out of the nanoparticles through some of the facets on the AuNSs. This leads to a silver oxide plug on the surface of the AuNSs, which has not been reported before. The smaller AuNSs, prepared under the best conditions, absorb in the near infrared region (NIR) that is appropriate for applications, such as photothermal therapy or medical imaging. The AuNSs showed absorption peaks in the NIR similar to those of gold nanorods (AuNRs) but with better photothermal capacity. In addition, because of their negative charge, these AuNSs are more biocompatible than the positively charged AuNRs. The synthesis of small, monodisperse, stable and biocompatible nanoparticles, like the ones presented in this work, is of prime importance in biomedical applications.
Collapse
Affiliation(s)
- A L Durán-Meza
- Biological Physics Laboratory, Institute of Physics, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S. L. P., 78000 México.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fekrazad R, Naghdi N, Nokhbatolfoghahaei H, Bagheri H. The Combination of Laser Therapy and Metal Nanoparticles in Cancer Treatment Originated From Epithelial Tissues: A Literature Review. J Lasers Med Sci 2016; 7:62-75. [PMID: 27330701 DOI: 10.15171/jlms.2016.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several methods have been employed for cancer treatment including surgery, chemotherapy and radiation therapy. Today, recent advances in medical science and development of new technologies, have led to the introduction of new methods such as hormone therapy, Photodynamic therapy (PDT), treatments using nanoparticles and eventually combinations of lasers and nanoparticles. The unique features of LASERs such as photo-thermal properties and the particular characteristics of nanoparticles, given their extremely small size, may provide an interesting combined therapeutic effect. The purpose of this study was to review the simultaneous application of lasers and metal nanoparticles for the treatment of cancers with epithelial origin. A comprehensive search in electronic sources including PubMed, Google Scholar and Science Direct was carried out between 2000 and 2013. Among the initial 400 articles, 250 articles applied nanoparticles and lasers in combination, in which more than 50 articles covered the treatment of cancer with epithelial origin. In the future, the combination of laser and nanoparticles may be used as a new or an alternative method for cancer therapy or diagnosis. Obviously, to exclude the effect of laser's wavelength and nanoparticle's properties more animal studies and clinical trials are required as a lack of perfect studies.
Collapse
Affiliation(s)
- Reza Fekrazad
- Laser Research Center in Medical Sciences (LRCMS), Department of Periodontics, Faculty of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Naghdi
- Laser Research Center of Dentistry, Tehran Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center and Department of Operative Dentistry, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Chu CK, Tu YC, Hsiao JH, Yu JH, Yu CK, Chen SY, Tseng PH, Chen S, Kiang YW, Yang CC. Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. NANOTECHNOLOGY 2016; 27:115102. [PMID: 26878331 DOI: 10.1088/0957-4484/27/11/115102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.
Collapse
Affiliation(s)
- Chih-Ken Chu
- Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gallina ME, Zhou Y, Johnson CJ, Harris-Birtill D, Singh M, Zhao H, Ma D, Cass T, Elson DS. Aptamer-conjugated, fluorescent gold nanorods as potential cancer theradiagnostic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:324-332. [PMID: 26652380 DOI: 10.1016/j.msec.2015.09.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
GNRs are emerging as a new class of probes for theradiagnostic applications thanks to their unique optical properties. However, the achievement of proper nanoconstructs requires the synthesis of highly pure GNRs with well-defined aspect ratio (AR), in addition to extensive surface chemistry modification to provide them with active targeting and, possibly, multifunctionality. In this work, we refined the method of the seed mediated growth and developed a robust procedure for the fabrication of GNRs with specific AR. We also revealed and characterized unexplored aging phenomena that follow the synthesis and consistently alter GNRs' final AR. Such advances appreciably improved the feasibility of GNRs fabrication and offered useful insights on the growth mechanism. We next produced fluorescent, biocompatible, aptamer-conjugated GNRs by performing ligand exchange followed by bioconjugation to anti-cancer oligonucleotide AS1411. In vitro studies showed that our nanoconstructs selectively target cancer cells while showing negligible cytotoxicity. As a result, our aptamer-conjugated GNRs constitute ideal cancer-selective multifunctional probes and promising candidates as photothermal therapy agents.
Collapse
Affiliation(s)
- Maria Elena Gallina
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK.
| | - Yu Zhou
- Department of Chemistry, Institute of Biomedical Engineering and Chemical Biology Centre, Imperial College London, UK
| | - Christopher J Johnson
- Department of Chemistry, Institute of Biomedical Engineering and Chemical Biology Centre, Imperial College London, UK
| | - David Harris-Birtill
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK
| | - Mohan Singh
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK
| | - Hailin Zhao
- Department of Surgery and Cancer, Imperial College London, UK
| | - Daqing Ma
- Department of Surgery and Cancer, Imperial College London, UK
| | - Tony Cass
- Department of Chemistry, Institute of Biomedical Engineering and Chemical Biology Centre, Imperial College London, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
44
|
Fan L, Lou D, Zhang Y, Gu N. Rituximab-Au nanoprobes for simultaneous dark-field imaging and DAB staining of CD20 over-expressed on Raji cells. Analyst 2015; 139:5660-3. [PMID: 25276866 DOI: 10.1039/c4an01342e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel dual-modal cell immunodetection method based on both dark-field imaging and catalysis functions of gold nanoparticles has been established, where the Rituximab-Au conjugates were used as nanoprobes to label and image specifically the CD20 overexpressed on the surface of malignant lymphoma cells of Raji with high affinity.
Collapse
Affiliation(s)
- Lin Fan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China.
| | | | | | | |
Collapse
|
45
|
Chen D, Zhao C, Ye J, Li Q, Liu X, Su M, Jiang H, Amatore C, Selke M, Wang X. In Situ Biosynthesis of Fluorescent Platinum Nanoclusters: Toward Self-Bioimaging-Guided Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18163-9. [PMID: 26227621 DOI: 10.1021/acsami.5b05805] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Among the noble-metal clusters, very few reports about platinum clusters were used as bioimaging probes of tumors except as a reducing catalyst. It is first established herein that the biocompatible platinum nanoclusters are spontaneously biosynthesized by cancerous cells (i.e., HepG2 (human hepatocarcinoma), A549 (lung cancer), and others) rather than noncancerous cells (i.e., L02 (human embryo liver cells)) when incubated with micromolar chloroplatinic acid solutions. These in situ biosynthesized platinum nanoclusters could be readily realized in a biological environment and emit a bright fluorescence at 460 nm, which could be further utilized to facilitate an excellent cancer-cell-killing efficiency when combined with porphyrin derivatives for photothermal treatment. This raises the possibility of providing a promising and precise bioimaging strategy for specific fluorescent self-biomarking of tumor locations and realizing fluorescence imaging-guided photothermal therapy of tumors.
Collapse
Affiliation(s)
- Donghua Chen
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- ‡School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chunqiu Zhao
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoli Liu
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Meina Su
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Christian Amatore
- §CNRS UMR 8640 PASTEUR and LIA NanoBioCatEchem, Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Paris 6, 24 rue Lhomond, 75005 Paris, France
| | - Matthias Selke
- ∥Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| | - Xuemei Wang
- †State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
46
|
MUC1-Targeted Cancer Cell Photothermal Ablation Using Bioinspired Gold Nanorods. PLoS One 2015; 10:e0128756. [PMID: 26147830 PMCID: PMC4493038 DOI: 10.1371/journal.pone.0128756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
Recent studies have highlighted the overexpression of mucin 1 (MUC1) in various epithelial carcinomas and its role in tumorigenesis. These mucins present a novel targeting opportunity for nanoparticle-mediated photothermal cancer treatments due to their unique antenna-like extracellular extension. In this study, MUC1 antibodies and albumin were immobilized onto the surface of gold nanorods using a "primer" of polydopamine (PD), a molecular mimic of catechol- and amine-rich mussel adhesive proteins. PD forms an adhesive platform for the deposition of albumin and MUC1 antibodies, achieving a surface that is stable, bioinert and biofunctional. Two-photon luminescence confocal and darkfield scattering imaging revealed targeting of MUC1-BSA-PD-NRs to MUC1+ MCF-7 breast cancer and SCC-15 squamous cell carcinoma cells lines. Treated cells were exposed to a laser encompassing the near-infrared AuNR longitudinal surface plasmon and assessed for photothermal ablation. MUC1-BSA-PD-NRs substantially decreased cell viability in photoirradiated MCF-7 cell lines vs. MUC1- MDA-MB-231 breast cancer cells (p < 0.005). Agents exhibited no cytotoxicity in the absence of photothermal treatment. The facile nature of the coating method, combined with targeting and photoablation efficacy, are attractive features of these candidate cancer nanotherapeutics.
Collapse
|
47
|
Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. NATURE MATERIALS 2015; 14:567-76. [PMID: 25990912 DOI: 10.1038/nmat4281] [Citation(s) in RCA: 781] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/20/2015] [Indexed: 05/19/2023]
Abstract
The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this light-matter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.
Collapse
Affiliation(s)
- Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Umar Aslam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Calvin Boerigter
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew Morabito
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Heidari Z, Salouti M, Sariri R. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide. NANOTECHNOLOGY 2015; 26:195101. [PMID: 25900323 DOI: 10.1088/0957-4484/26/19/195101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photothermal therapy, a minimally invasive treatment method for killing cancers cells, has generated a great deal of interest. In an effort to improve treatment efficacy and reduce side effects, better targeting of photoabsorbers to tumors has become a new concept in the battle against cancer. In this study, a bombesin (BBN) analog that can bind to all gastrin-releasing peptide (GRP) receptor subtypes was bound covalently with gold nanorods (GNRs) using Nanothinks acid as a link. The BBN analog was also coated with poly(ethylene glycol) to increase its stability and biocompatibility. The interactions were confirmed by ultraviolet-visible and Fourier transform infrared spectroscopy. A methylthiazol tetrazolium assay showed no cytotoxicity of the PEGylated GNR-BBN conjugate. The cell binding and internalization studies showed high specificity and uptake of the GNR-BBN-PEG conjugate toward breast cancer cells of the T47D cell line. The in vitro study revealed destruction of the T47D cells exposed to the new photothermal agent combined with continuous-wave near-infrared laser irradiation. The biodistribution study showed significant accumulation of the conjugate in the tumor tissue of mice with breast cancer. The in vivo photothermal therapy showed the complete disappearance of xenographted breast tumors in the mouse model.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Biology, University of Guilan, Rasht, Iran. Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
49
|
Sasidharan A, Monteiro-Riviere NA. Biomedical applications of gold nanomaterials: opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:779-96. [PMID: 25808787 DOI: 10.1002/wnan.1341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 01/26/2023]
Abstract
In the past few years, there has been an unprecedented development of gold nanomaterials (AuNMs) for potential clinical applications. Owing to their advantageous physical, chemical, and biological properties, AuNMs have attracted great attention in the nanomedicine arena for applications in biological sensing, biomedical imaging, drug delivery, and photothermal therapy. Their tunable size, shape, and surface characteristics coupled with excellent biocompatibility render them ideal candidates for translation from bench-top to bedside. This review summarizes the recent research on the applications of AuNM with a focus on biomedical diagnostics and therapeutics. The bio-interaction of these NM with cells and their in vivo responses are presented. After reviewing these potential applications, future challenges and prospects are discussed and the suitability of how AuNMs are used as effective tools in clinical medicine is assessed.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
50
|
Chu CK, Tu YC, Chang YW, Chu CK, Chen SY, Chi TT, Kiang YW, Yang CC. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. NANOTECHNOLOGY 2015; 26:075102. [PMID: 25642800 DOI: 10.1088/0957-4484/26/7/075102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.
Collapse
Affiliation(s)
- Che-Kuan Chu
- Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|