1
|
Li M, Xia Z, Wang R, Xi M, Hou M. Unveiling DNA methylation: early diagnosis, risk assessment, and therapy for endometrial cancer. Front Oncol 2025; 14:1455255. [PMID: 39902129 PMCID: PMC11788147 DOI: 10.3389/fonc.2024.1455255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Endometrial cancer (EC), one of the most common gynecologic malignancies worldwide, poses a significant burden particularly among young women, with poor treatment outcomes and prognosis for advanced and recurrent patients. Epigenetic changes, encompassing DNA methylation, are involved in the occurrence and progression of tumors and hold promise as effective tools for screening, early diagnosis, treatment strategy, efficacy evaluation, and prognosis analysis. This review provides a comprehensive summary of DNA methylation-based early diagnostic biomarkers in EC, with a focus on recent valuable research findings published in the past two years. The discussion is organized according to sample sources, including cervical scraping, vaginal fluid, urine, blood, and tissue. Additionally, we outline the role of DNA methylation in EC risk assessment, such as carcinogenesis risk, feasibility of fertility preservation approaches, and overall prognosis, aiming to provide personalized treatment decisions for patients. Finally, we review researches on DNA methylation in resistance to first-line treatment of EC and the development of new drugs, and envision the future applications of DNA methylation in EC.
Collapse
Affiliation(s)
- Minzhen Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ruiyu Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Minmin Hou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
5
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Lamb CA, Fabris VT, Jacobsen B, Molinolo AA, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:ERC-18-0179. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PR), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have been also used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PR have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PR are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, that exert different functions and the relative abundance of one isoform respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- C Lamb, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Victoria T Fabris
- V Fabris, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Britta Jacobsen
- B Jacobsen, Department of Pathology, University of Colorado at Denver - Anschutz Medical Campus, Aurora, United States
| | - Alfredo A Molinolo
- A Molinolo, Biorepository and Tissue Technology Shared Resource, University of California San Diego Moores Cancer Center, La Jolla, United States
| | - Claudia Lanari
- C Lanari, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| |
Collapse
|
7
|
Pirouzpanah S, Taleban FA, Mehdipour P, Sabour S, Atri M. Hypermethylation pattern of ESR and PgR genes and lacking estrogen and progesterone receptors in human breast cancer tumors: ER/PR subtypes. Cancer Biomark 2018; 21:621-638. [PMID: 29278880 DOI: 10.3233/cbm-170697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The option of endocrine therapy in breast cancer remains conventionally promising. OBJECTIVE We aimed to investigate how accurately the pattern of hypermethylation at estrogen receptor (ESR) and progesterone receptor (PgR) genes may associate with relative expression and protein status of ER, PR and the combinative phenotype of ER/PR. METHODS In this consecutive case-series, we enrolled 139 primary diagnosed breast cancer. Methylation specific PCR was used to assess the methylation status (individual test). Tumor mRNA expression levels were evaluated using real-time RT-PCR. Immunohistochemistry data was used to present hormonal receptor status of a tumor (as test reference). RESULTS Methylation at ESR1 was comparably frequent in ER-breast tumors (83.0%, P< 0.001; sensitivity = 83.0%, specificity = 65.2% and diagnostic odds ratio, DOR = 12.0) and strongly correlated with ER-/PR- conditions (Cramer's V= 0.44, P< 0.001). Methylated PgRb promoter frequently was observed in tumors recognised as ER- or negative ER/PR (77.1%, P< 0.01). Assessment of DNA methylation of ESR1 harbouring methylation at PgRb was a case significantly suggested to be able to detect the lack of ER/PR expressions (55.6%, P< 0.01; sensitivity = 80.6%, specificity = 68.7% and DOR = 8.7). However, methylated PgRb was quite acceptable determinant to contribute with methylated ESR1 to rank tumors as ER-/PR- (64.4%, P< 0.01; sensitivity = 78.0%, specificity = 62.5% and DOR = 6.0). CONCLUSIONS Despite the methylation status of ESR1 showed preponderant contribution to tumoral phenotypes of ER- and ER-/PR-, the hypermethylation of PgRb seem another epigenetic signalling variable actively associate with methylated ESR1 to show lack of ER+/PR+ tumors in breast cancer.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough-Azam Taleban
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Safety Promotion and Injury Prevention Research Centre, Department of Clinical Epidemiology, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Atri
- Cancer Institute, Tehran University of Medical Sciences/Day General Hospital, Tehran, Iran
| |
Collapse
|
8
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
9
|
Rojas PA, May M, Sequeira GR, Elia A, Alvarez M, Martínez P, Gonzalez P, Hewitt S, He X, Perou CM, Molinolo A, Gibbons L, Abba MC, Gass H, Lanari C. Progesterone Receptor Isoform Ratio: A Breast Cancer Prognostic and Predictive Factor for Antiprogestin Responsiveness. J Natl Cancer Inst 2017; 109:3064537. [PMID: 28376177 DOI: 10.1093/jnci/djw317] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Compelling evidence shows that progestins regulate breast cancer growth. Using preclinical models, we demonstrated that antiprogestins are inhibitory when the level of progesterone receptor isoform A (PR-A) is higher than that of isoform B (PR-B) and that they might stimulate growth when PR-B is predominant. The aims of this study were to investigate ex vivo responses to mifepristone (MFP) in breast carcinomas with different PR isoform ratios and to examine their clinical and molecular characteristics. Methods We performed human breast cancer tissue culture assays (n = 36) to evaluate the effect of MFP on cell proliferation. PR isoform expression was determined by immunoblotting (n = 282). Tumors were categorized as PRA-H (PR-A/PR-B ≥ 1.2) or PRB-H (PR-A/PR-B ≤ 0.83). RNA was extracted for Ribo-Zero-Seq sequencing to evaluate differentially expressed genes. Subtypes and risk scores were predicted using the PAM50 gene set, the data analyzed using The Cancer Genome Atlas RNA-seq gene analysis and other publicly available gene expression data. Tissue microarrays were performed using paraffin-embedded tissues (PRA-H n = 53, PRB-H n = 24), and protein expression analyzed by immunohistochemistry. All statistical tests were two-sided. Results One hundred sixteen out of 222 (52.3%) PR+ tumors were PRA-H, and 64 (28.8%) PRB-H. Cell proliferation was inhibited by MFP in 19 of 19 tissue cultures from PRA-H tumors. A total of 139 transcripts related to proliferative pathways were differentially expressed in nine PRA-H and seven PRB-H tumors. PRB-H and PRA-H tumors were either luminal B or A phenotypes, respectively ( P = .03). PRB-H cases were associated with shorter relapse-free survival (hazard ratio [HR] = 2.70, 95% confidence interval [CI] = 1.71 to 6.20, P = .02) and distant metastasis-free survival (HR = 4.17, 95% CI = 2.18 to 7.97, P < .001). PRB-H tumors showed increased tumor size ( P < .001), Ki-67 levels ( P < .001), human epidermal growth factor receptor 2 expression ( P = .04), high grades ( P = .03), and decreased total PR ( P = .004) compared with PRA-H tumors. MUC-2 ( P < .001) and KRT6A ( P = .02) were also overexpressed in PRB-H tumors. Conclusion The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
Collapse
Affiliation(s)
- Paola A Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María May
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michelle Alvarez
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Martínez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Pedro Gonzalez
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Stephen Hewitt
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaping He
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Alfredo Molinolo
- Moores Cancer Center, University of California, San Diego, CA, USA
| | - Luz Gibbons
- Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - Martin C Abba
- CINIBA-CONICET, Escuela de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Lee O, Choi MR, Christov K, Ivancic D, Khan SA. Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation. Cancer Lett 2016; 376:310-7. [PMID: 27080304 DOI: 10.1016/j.canlet.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Blockade of the progestogen-progesterone receptor (PR) axis is a novel but untested strategy for breast cancer prevention. We report preclinical data evaluating telapristone acetate (TPA), ulipristal acetate (UPA), and mifepristone. METHODS Tumors were induced with medroxyprogesterone acetate (MPA) plus 7,12-dimethylbenz[a]anthracene (DMBA) in mice, and MPA or progesterone plus N-methyl-N-nitrosourea (MNU) in rats. Mammary gland histology, tumor incidence, latency, multiplicity, burden and histology were evaluated, along with immunohistochemical labeling of pHH3 (proliferation), CD34 (angiogenesis), and estrogen and progesterone receptors (ER and PR). A concentration gradient of TPA, UPA, and mifepristone was tested for growth inhibition of T47D spheroids. RESULTS In mouse mammary glands, no tumors formed, but TPA opposed the pro-hyperplastic effects of MPA (p = 0.002). In rats, TPA decreased tumor incidence (p = 0.037 for MPA + TPA vs. MPA, and p = 0.032 for progesterone + TPA vs. progesterone) and tumor burden (p = 0.042 for progesterone + TPA vs. progesterone), with significant decreases in pHH3 and CD34 positive cells. TPA and UPA were superior to mifepristone in growth inhibition of T47D spheroids. CONCLUSION TPA has consistent anti-tumorigenic effects in several models, which are accompanied by decreases in cell proliferation, angiogenesis, and hormone receptor expression.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Mi-Ran Choi
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Konstantin Christov
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - David Ivancic
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Seema A Khan
- Department of Surgery, Northwestern University, Chicago, IL, USA; Feinberg College of Medicine, The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Endometrial Endometrioid Carcinoma Metastases Show Decreased ER-Alpha and PR-A Expression Compared to Matched Primary Tumors. PLoS One 2015; 10:e0134969. [PMID: 26252518 PMCID: PMC4529229 DOI: 10.1371/journal.pone.0134969] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/15/2015] [Indexed: 11/24/2022] Open
Abstract
Patients with endometrial endometrioid carcinoma (EEC) that present with advanced primary disease and develop recurrences have a poor outcome. The phenotype of EEC metastases and recurrences is poorly studied. We evaluated the morphological features and ER-alpha/PRA/p53 immunohistochemical expression of a sample of 45 EEC metastases compared to matched primary tumors. Additionally, we studied methylation levels of ER-alpha/PRA gene promoters. The distribution of histological FIGO grade was significantly different in metastases, which disclosed higher grade than primary tumors (p = 0.005). Mitotic index was significantly lower in metastases compared to matched primary tumors (p<0.001). ER-alpha (p = 0.002) and PRA (p<0.001) median H-scores were significantly lower in metastases than in matched primary EECs, but there was no significant difference concerning p53 expression (p = 0.056). ER-alpha/PRA expression differences did not correlate with differences in metastases morphology. ER-alpha/PRA gene promoter levels were globally low (range: 0% to 11.9%). One case showed higher ER-alpha gene promoter methylation in metastasis compared to matched EEC primary tumor. Regarding PRA, there was a significant higher frequency of its promotor methylation in metastases compared to primary tumors (51.6% vs. 22.7%, p = 0.022). In conclusion, EEC metastatic disease displays phenotypic changes along with ER-alpha and PRA decreased expression compared to primary tumors. ER-alpha and PRA gene promoter methylation seems to play a limited role in the etiology of these alterations. PR expression assessment for hormonal treatment decision of patients with advanced tumors, may be more adequate in metastases than in EEC primary tumors.
Collapse
|
12
|
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics 2015; 7:847-62. [PMID: 25689414 DOI: 10.2217/epi.15.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML, Gorostiaga MA, Jacobsen B, Molinolo A, Novaro V, Lanari C. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 2014; 136:2680-92. [PMID: 25363551 DOI: 10.1002/ijc.29304] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/16/2014] [Indexed: 01/01/2023]
Abstract
There is emerging interest in understanding the role of progesterone receptors (PRs) in breast cancer. The aim of this study was to investigate the proliferative effect of progestins and antiprogestins depending on the relative expression of the A (PRA) and B (PRB) isoforms of PR. In mifepristone (MFP)-resistant murine carcinomas antiprogestin responsiveness was restored by re-expressing PRA using demethylating agents and histone deacetylase inhibitors. Consistently, in two human breast cancer xenograft models, one manipulated to overexpress PRA or PRB (IBH-6 cells), and the other expressing only PRA (T47D-YA) or PRB (T47D-YB), MFP selectively inhibited the growth of PRA-overexpressing tumors and stimulated IBH-6-PRB xenograft growth. Furthermore, in cells with high or equimolar PRA/PRB ratios, which are stimulated to proliferate in vitro by progestins, and are inhibited by MFP, MPA increased the interaction between PR and the coactivator AIB1, and MFP favored the interaction between PR and the corepressor SMRT. In a PRB-dominant context in which MFP stimulates and MPA inhibits cell proliferation, the opposite interactions were observed. Chromatin immunoprecipitation assays in T47D cells in the presence of MPA or MFP confirmed the interactions between PR and the coregulators at the CCND1 and MYC promoters. SMRT downregulation by siRNA abolished the inhibitory effect of MFP on MYC expression and cell proliferation. Our results indicate that antiprogestins are therapeutic tools that selectively inhibit PRA-overexpressing tumors by increasing the SMRT/AIB1 balance at the CCND1 and MYC promoters.
Collapse
Affiliation(s)
- Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chai SY, Smith R, Fitter JT, Mitchell C, Pan X, Ilicic M, Maiti K, Zakar T, Madsen G. Increased progesterone receptor A expression in labouring human myometrium is associated with decreased promoter occupancy by the histone demethylase JARID1A. Mol Hum Reprod 2014; 20:442-53. [PMID: 24442343 DOI: 10.1093/molehr/gau005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Progesterone regulates female reproductive function predominantly through two nuclear progesterone receptors (PRs), PR-A and PR-B. During human parturition myometrial PR expression is altered to favour PR-A, which activates pro-labour genes. We have previously identified histone H3 lysine 4 trimethylation (H3K4me3) as an activator of myometrial PR-A expression at labour. To further elucidate the mechanisms regulating PR isoform expression in the human uterus at labour, we have (i) determined the methylation profile of the cytosine-guanine dinucleotides (CpG) island in the promoter region of the PR gene and (ii) identified the histone-modifying enzymes that target the H3K4me3 mark at the PR promoters in term and preterm human myometrial tissues obtained before and after labour onset. Bisulphite sequencing showed that despite overall low levels of PR CpG island methylation, there was a significant decrease in methylated CpGs with labour in both preterm (P < 0.05) and term (P < 0.01) groups downstream of the PR-B transcription start site. This methylation change was not associated with altered PR-B expression, but may contribute to the increase in PR-A expression with labour. Chromatin immunoprecipitation revealed that the histone methyltransferase, SET and MYND domain-containing protein 3 (SMYD3), bound to the PR gene at significantly higher levels at the PR-A promoter compared with the PR-B promoter (P < 0.010), with no labour-associated changes observed. The H3K4 demethylase, Jumonji AT-rich interactive domain 1A (JARID1A), also bound to the PR-A, but not to the PR-B promoter prior to term labour, and decreased significantly at the onset of labour (P = 0.014), providing a mechanism for the previously reported increase in H3K4me3 level and PR-A expression with labour. Our studies suggest that epigenetic changes mediated by JARID1A, SMYD3 and DNA methylation may be responsible, at least in part, for the functional progesterone withdrawal that precipitates human labour.
Collapse
Affiliation(s)
- S Y Chai
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. BREAST CANCER (DOVE MEDICAL PRESS) 2014; 6:1-13. [PMID: 24648765 PMCID: PMC3929252 DOI: 10.2147/bctt.s37638] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| | - Laura Smith
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Dorfman VB, Saucedo L, Di Giorgio NP, Inserra PIF, Fraunhoffer N, Leopardo NP, Halperín J, Lux-Lantos V, Vitullo AD. Variation in Progesterone Receptors and GnRH Expression in the Hypothalamus of the Pregnant South American Plains Vizcacha, Lagostomus maximus (Mammalia, Rodentia)1. Biol Reprod 2013; 89:115. [DOI: 10.1095/biolreprod.113.107995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Janzen DM, Rosales MA, Paik DY, Lee DS, Smith DA, Witte ON, Iruela-Arispe ML, Memarzadeh S. Progesterone receptor signaling in the microenvironment of endometrial cancer influences its response to hormonal therapy. Cancer Res 2013; 73:4697-710. [PMID: 23744837 DOI: 10.1158/0008-5472.can-13-0930] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progesterone, an agonist for the progesterone receptor (PR), can be an efficacious and well-tolerated treatment in endometrial cancer. The clinical use of progesterone is limited because of the lack of biomarkers that predict hormone sensitivity. Despite its efficacy in cancer therapy, mechanisms and site of action for progesterone remain unknown. Using an in vivo endometrial cancer mouse model driven by clinically relevant genetic changes but dichotomous responses to hormonal therapy, we show that signaling through stromal PR is necessary and sufficient for progesterone antitumor effects. Endometrial cancers resulting from epithelial loss of PTEN (PTENKO) were hormone sensitive and had abundant expression of stromal PR. Stromal deletion of PR as a single genetic change in these tumors induced progesterone resistance indicating that paracrine signaling through the stroma is essential for the progesterone therapeutic effects. A hormone-refractory endometrial tumor with low levels of stromal PR developed when activation of KRAS was coupled with PTEN-loss (PTENKO/Kras). The innate progesterone resistance in PTENKO/Kras tumors stemmed from methylation of PR in the tumor microenvironment. Add-back of stromal PR expressed from a constitutively active promoter sensitized these tumors to progesterone therapy. Results show that signaling through stromal PR is sufficient for inducing hormone responsiveness. Our findings suggest that epigenetic derepression of stromal PR could be a potential therapeutic target for sensitizing hormone-refractory endometrial tumors to progesterone therapy. On the basis of these results, stromal expression of PR may emerge as a reliable biomarker in predicting response to hormonal therapy.
Collapse
Affiliation(s)
- Deanna M Janzen
- Departments of Obstetrics and Gynecology, Molecular and Medical Pharmacology, and Molecular, Cell and Developmental Biology, David Geffen School of Medicine, Los Angeles, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Qiao EQ, Ji M, Wu J, Li J, Xu X, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu L, Tang JH. Joint detection of multiple immunohistochemical indices and clinical significance in breast cancer. Mol Clin Oncol 2013; 1:703-710. [PMID: 24649232 PMCID: PMC3915321 DOI: 10.3892/mco.2013.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/17/2013] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women. This study was conducted to analyze the association between the expressions of eight immunohistochemical (IHC) indices and clinicopathological characteristics in breast cancers (BCs) and investigate the clinical significance. IHC Envision ldpe-g-nvp was used to detect the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), p53, type II topoisomerase (TOPO II) and Ki-67 in postoperative paraffin blocks of 286 cases of invasive BC and statistically analyzed their correlations with clinicopathological characteristics. The positive rates of ER, PR, HER2, VEGF, p53, EGFR, TOPO II and Ki-67 expression were 62.24, 41.96, 57.34, 53.85, 81.82, 46.85, 54.55 and 69.93%, respectively. ER expression was negatively correlated with age, tumor size and histological grade (P<0.05) and PR expression was negatively correlated with age and histological grade (P<0.05). Among the ER, PR and c-erbB-2 statuses, a significant correlation was observed between ER expression and PR status (P=0.0000), whereas the expression of ER and PR exhibited a negative correlation with HER2 status (P<0.05). We also demonstrated a significant correlation between EGFR expression and lymph node metastasis (P=0.0240), p53 expression and tumor size (P=0.0300), p53 and Ki-67 expression and histological grade (P<0.05) and the expressions of VEGF, EGFR, p53, TOPO II, Ki-67 and HER2 status (P<0.05). In addition, the Luminal B and HER2/neu subtypes exhibited a close correlation with age (P<0.01), while the HER2/neu and triple-negative subtypes were positively correlated with poor histological grade (P<0.05). In conclusion, there is a definite correlation between IHC indices and clinicopathological characteristics in BCs. Combined detection of these indices may be significant in the evaluation of biological behavior and prognosis of BC and thus in the diagnosis and comprehensive treatment of this disease.
Collapse
Affiliation(s)
- En-Qi Qiao
- Departments of General Surgery, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Minghua Ji
- Radiotherapy, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Jian Li
- Departments of General Surgery, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Rong Ma
- Research Center for Clinical Oncology, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | | | - Yuejun He
- Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Quanbin Zha
- Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Xue Song
- Departments of General Surgery, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Liwei Zhu
- Departments of General Surgery, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| | - Ji-Hai Tang
- Departments of General Surgery, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009
| |
Collapse
|
19
|
Hansberg-Pastor V, González-Arenas A, Peña-Ortiz MA, García-Gómez E, Rodríguez-Dorantes M, Camacho-Arroyo I. The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 2013; 78:500-7. [PMID: 23474171 DOI: 10.1016/j.steroids.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Many progesterone (P4) effects are mediated by its intracellular receptor (PR), which has two isoforms, PR-A and PR-B, each of them with different function and regulation. Differential PR expression in cancer cells has been associated to a PR isoform-specific promoter methylation. In astrocytomas, the most frequent and aggressive brain tumors, PR isoforms expression is directly correlated to the tumor's evolution grade. However, there is no evidence of the role of epigenetic regulation of PR expression in astrocytomas. We evaluated the effect of the demethylating agent 5-aza-2'-deoxycytidine (5AzadC) and the histone deacetylase inhibitor trichostatin A (TSA) on PR expression in human astrocytoma cell lines U373 (grade III) and D54 (grade IV) by RT-PCR and Western blot. Total PR expression increased with 5 μM 5AzadC treatment, whereas PR-B expression increased with 5 and 10 μM 5AzadC treatment in U373 cells, but not in D54 cells. In U373 cells, PR-A protein content augmented with 10 μM 5AzadC treatment, while PR-B content increased with 5 and 10 μM 5AzadC. PR-B expression was not modified by the TSA concentrations that were used, and the combination with 5AzadC did not change the effects of the latter. The study of 5AzadC effects on the number of astrocytoma cells showed that P4 treatment increased the number of U373 cells, whereas 5AzadC and the combined treatment with P4 reduced it. Our results suggest that PR-B expression is regulated by methylation and not by histone acetylation in U373 cells, and that DNA demethylation reduced the number of U373 cells.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Khan JA, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line. PLoS One 2012; 7:e45993. [PMID: 23029355 PMCID: PMC3454371 DOI: 10.1371/journal.pone.0045993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.
Collapse
Affiliation(s)
- Junaid A. Khan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Catherine Bellance
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
22
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
23
|
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERα) and respond to antiestrogen therapies. Most of these ER+ tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Collapse
Affiliation(s)
- Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
24
|
Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, Hilsenbeck SG, Issa JPJ, Oesterreich S. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 2011; 17:4177-86. [PMID: 21459801 DOI: 10.1158/1078-0432.ccr-10-2950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE ERα and PR levels are critical determinants for breast cancer prognosis and response to endocrine therapy. Although PR is known to be silenced by methylation of its promoter, few studies have correlated methylation with PR levels and outcome in breast cancer. There is only one previous small study comparing methylation of the two PR isoforms, PRA and PRB, which are expressed from different promoters, and finally, there is no prior knowledge of associations between isoform-specific methylation and outcome. EXPERIMENTAL DESIGN We conducted a cohort-based study to test for associations between PRA and PRB methylation, expression, and clinical outcome in tamoxifen-treated patients (n = 500), and in patients who underwent surgery only (n = 500). Methylation and PR levels were measured by bisulfite pyrosequencing and ligand-binding assay, respectively. RESULTS Low PR levels were significantly associated with worse outcome in all patients. PRA and PRB promoters were methylated in 9.6% and 14.1% of the breast tumors, respectively. The majority (74%) of PR-negative tumors were not methylated despite the significant inverse correlation of methylation and PR levels. PRA methylation was significantly associated with PRB methylation, although a subset of tumors had PRA only (3.9%) or PRB only (8.3%) methylated. Methylation of PRA, but not PRB was significantly associated with worse outcome in the tamoxifen-treated group. CONCLUSIONS Mechanisms other than promoter methylation may be more dominant for loss of PR. Isoform-specific methylation events suggest independent regulation of PRA and PRB. Finally, this article shows for the first time that PRA methylation plays a unique role in tamoxifen-resistant breast cancer.
Collapse
|