1
|
Najjar F, Alsabe H, Sabbagh H, Al-Massarani G, Aljapawe A, Alamalla N, Banat I, Ikhtiar A. Endothelial progenitor cells as an angiogenic biomarker for the diagnosis and prognosis of lung cancer. Rep Pract Oncol Radiother 2024; 29:544-557. [PMID: 39759554 PMCID: PMC11698562 DOI: 10.5603/rpor.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2024] [Indexed: 01/07/2025] Open
Abstract
Background Angiogenesis is mediated by endothelial progenitor cells (EPCs) derived from bone-marrow. In this prospective study, we tried to investigate the clinical utility of circulating EPCs in lung cancer (LC) patients. Materials and methods Flow cytometry technique was used to assess circulating EPCs according to the immuno-phenotype CD45- CD34+ CD133+ CD146+ mononuclear cells. Sixty patients and 30 controls were included in this prospective study. Results The mean of baseline EPC numbers was significantly higher in LC patients than in controls (p =0.003). Pretreatment EPC values were significantly correlated with primary tumor size (p = 0.05) and tumor response (p = 0.04). Receiver operating characteristics (ROC) curves were plotted to discriminate EPC numbers between patients and controls. Using ROC analysis, the optimal cutoff value was 125 cells/mL with a sensitivity and a specificity for baseline EPCs of 76.7% and 63.3%, respectively. According to this cutoff value, basal EPC values were significantly correlated with primary tumor size (p = 0.047) and response to chemotherapy (p = 0.034). High EPC levels were significantly associated with longer progression-free survival (PFS) and overall survival (OS) duration (p = 0.0043 and p = 0.02, respectively). Conclusion Increased baseline EPC values seem to be a useful biomarker for the prediction of prognosis and tumor response in LC patients. Furthermore, high EPC levels at diagnosis might be an indicator of tumor growth and longer survival in LC patients.
Collapse
Affiliation(s)
- Fadi Najjar
- Biomarkers Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Hassan Alsabe
- Division of Thoracic Oncology, Department of Oncology, Al-Bairouni University Hospital, Damascus, Syria
| | - Hussein Sabbagh
- Division of Thoracic Oncology, Department of Oncology, Al-Bairouni University Hospital, Damascus, Syria
| | - Ghassan Al-Massarani
- Biomarkers Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Abdulmunim Aljapawe
- Radiobiology Laboratory, Department of Molecular Biology and Biotechnology, Atomic Energy Commission (AEC), Damascus, Syria
| | - Nissreen Alamalla
- Biomarkers Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Issraa Banat
- Biomarkers Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Adnan Ikhtiar
- Radiobiology Laboratory, Department of Molecular Biology and Biotechnology, Atomic Energy Commission (AEC), Damascus, Syria
| |
Collapse
|
2
|
Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. J Clin Med 2022; 11:jcm11205986. [PMID: 36294305 PMCID: PMC9604853 DOI: 10.3390/jcm11205986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system plays a fundamental role in neoplastic disease. In the era of immunotherapy, the adaptive immune response has been in the spotlight whereas the role of innate immunity in cancer development and progression is less known. The tumor microenvironment influences the terminal differentiation of innate immune cells, which can explicate their pro-tumor or anti-tumor effect. Different cells are able to recognize and eliminate no self and tumor cells: macrophages, natural killer cells, monocytes, dendritic cells, and neutrophils are, together with the elements of the complement system, the principal players of innate immunity in cancer development and evolution. Metastatic breast cancer is a heterogeneous disease from the stromal, immune, and biological point of view and requires deepened exploration to understand different patient outcomes. In this review, we summarize the evidence about the role of innate immunity in breast cancer metastatic sites and the potential targets for optimizing the innate response as a novel treatment opportunity.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
- Correspondence:
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Marta Palafox Sancez
- Tumor Heterogeneity, Metastasis and Resistance Laboratory, University of Basel, 4001 Basel, Switzerland
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
4
|
Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, Cobham M, Andreopoulou E, Cigler T, Moore A, LaPolla D, Fitzpatrick V, Ward M, Warren JD, Fischbach C, Mittal V, Vahdat LT. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 2021; 7:108. [PMID: 34426581 PMCID: PMC8382701 DOI: 10.1038/s41523-021-00313-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.
Collapse
Affiliation(s)
- Ying L Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Anne Moore
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Linda T Vahdat
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Chen G, Zhou Z, Jin J, Zhou Y, Liu Y, Wang W. CXCR4 is a prognostic marker that inhibits the invasion and migration of gastric cancer by regulating VEGF expression. Oncol Lett 2021; 22:587. [PMID: 34149898 PMCID: PMC8200941 DOI: 10.3892/ol.2021.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Metastasis is the main cause of poor prognosis of patients with gastric cancer (GC). Thus, current research is focused on identifying biomarkers that can predict the prognosis of patients with GC. C-X-C motif chemokine receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF) have been reported to play important roles in different types of malignancies; however, their role in the prognosis of GC remains unknown. The present study aimed to investigate the potential role of CXCR4 and VEGF in predicting the prognosis of patients with GC. Immunohistochemistry analysis was performed to analyze the expression levels of CXCR4 and VEGF in a GC tissue microarray containing GC tissues and adjacent normal tissues. The association between CXCR4 or VEGF expression levels and the clinicopathological characteristics or survival outcomes were assessed. Furthermore, Transwell and wound healing assays were performed to determine the cell invasive and migratory abilities in vitro. The results demonstrated that CXCR4 promoted AGS cell invasion and migration by regulating VEGF expression. In addition, CXCR4 and VEGF expression levels were significantly upregulated in GC tissues compared with adjacent normal tissues, which was associated with a poorer overall survival (OS). Cox regression analysis demonstrated that both upregulated CXCR4 and VEGF expression were independent negative biomarkers of OS. To the best of our knowledge, the present study was the first to discover that CXCR4 and VEGF exert synergistic roles as efficient prognostic indicators for patients with GC.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China.,Department of Oncology, The Second People's Hospital of Taizhou City Jiangsu, Jiangsu, Taizhou 225300, P.R. China
| | - Zhen Zhou
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China
| | - Jun Jin
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Yan Zhou
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Yanqing Liu
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China.,Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Weimin Wang
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China.,Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Jiangsu, Yixing 214200, P.R. China
| |
Collapse
|
6
|
Zarychta E, Ruszkowska-Ciastek B, Bielawski K, Rhone P. Stromal Cell-Derived Factor 1α (SDF-1α) in Invasive Breast Cancer: Associations with Vasculo-Angiogenic Factors and Prognostic Significance. Cancers (Basel) 2021; 13:1952. [PMID: 33919589 PMCID: PMC8072989 DOI: 10.3390/cancers13081952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Tumour angiogenesis is critical for the progression of neoplasms. A prospective study was designed to examine the utility of stromal cell-derived factor 1α (SDF-1α) and selected vasculo-angiogenic parameters for estimating the probability of disease relapse in 84 primary, operable invasive breast cancer (IBrC) patients (40 (48%) with stage IA and 44 (52%) with stage IIA and IIB). (2) Methods: We explored the prognostic value of the plasma levels of SDF-1α, vascular endothelial growth factor A (VEGF-A), the soluble forms of VEGF receptors type 1 and 2, and the number of circulating endothelial progenitor cells (circulating EPCs) in breast cancer patients. The median follow-up duration was 58 months, with complete follow-up for the first event. (3) Results: According to ROC curve analysis, the optimal cut-off point for SDF-1α (for discriminating between patients at high and low risk of relapse) was 42 pg/mL, providing 57% sensitivity and 75% specificity. Kaplan-Meier curves for disease-free survival (DFS) showed that concentrations of SDF-1α lower than 42 pg/dL together with a VEGFR1 lower than 29.86 pg/mL were significantly associated with shorter DFS in IBrC patients (p = 0.0381). Patients with both SDF-1α lower than 42 pg/dL and a number of circulating EPCs lower than 9.68 cells/µL had significantly shorter DFS (p = 0.0138). (4) Conclusions: Our results imply the clinical usefulness of SDF-1α, sVEGFR1 and the number of circulating EPCs as prognostic markers for breast cancer in clinical settings.
Collapse
Affiliation(s)
- Elżbieta Zarychta
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Kornel Bielawski
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (B.R.-C.); (K.B.)
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chin Med J (Engl) 2020; 133:2444-2455. [PMID: 32969861 PMCID: PMC7575183 DOI: 10.1097/cm9.0000000000001124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the research of immune checkpoint inhibitors has made a great breakthrough in lung cancer treatment. Currently, a variety of immune checkpoint inhibitors have been applied into clinical practice, including antibodies targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-lymphocyte antigen 4, and so on. However, not all patients can benefit from the treatment. Abnormal antigen presentation, functional gene mutation, tumor microenvironment, and other factors can lead to primary or secondary resistance. In this paper, we reviewed the molecular mechanism of immune checkpoint inhibitor resistance and various combination strategies to overcome resistance, in order to expand the beneficial population and enable precision medicine.
Collapse
|
8
|
Lacal PM, Atzori MG, Ruffini F, Scimeca M, Bonanno E, Cicconi R, Mattei M, Bernardini R, D'Atri S, Tentori L, Graziani G. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Pharmacol Res 2020; 159:104957. [PMID: 32485280 DOI: 10.1016/j.phrs.2020.104957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The vascular endothelial growth factor receptor-1 (VEGFR-1) is a membrane receptor for VEGF-A, placenta growth factor (PlGF) and VEGF-B that plays a crucial role in melanoma invasiveness, vasculogenic mimicry and tumor-associated angiogenesis. Furthermore, activation of VEGFR-1 is involved in the mobilization of myeloid progenitors from the bone marrow that infiltrate the tumor. Myeloid-derived suppressor cells and tumor-associated macrophages have been involved in tumor progression and resistance to cancer treatment with immune checkpoint inhibitors (ICIs). We have recently demonstrated that the anti-VEGFR-1 monoclonal antibody (mAb) D16F7 developed in our laboratories is able to inhibit melanoma growth in preclinical in vivo models and to reduce monocyte/macrophage progenitor mobilization and tumor infiltration by myeloid cells. Aim of the study was to investigate whether the anti-VEGFR-1 mAb D16F7 affects the activity of protumoral M2 macrophages in vitro in response to PlGF and inhibits the recruitment of these cells to the melanoma site in vivo. Finally, we tested whether, through its multi-targeted action, D16F7 mAb might increase the efficacy of ICIs against melanoma. The results indicated that VEGFR-1 expression is up-regulated in human activated M2 macrophages compared to activated M1 cells and exposure to the D16F7 mAb decreases in vitro chemotaxis of activated M2 macrophages. In vivo treatment with the anti-VEGFR-1 mAb D16F7 of B6D2F1 mice injected with syngeneic B16F10 melanoma cells resulted in tumor growth inhibition associated with the modification of tumor microenvironment that involves a decrease of melanoma infiltration by M2 macrophages and PD-1+ and FoxP3+ cells. These alterations result in increased M1/M2 and CD8+/FoxP3+ ratios, which favor an antitumor and immunostimulating milieu. Accordingly, D16F7 mAb increased the antitumor activity of the ICIs anti-CTLA-4 and anti-PD-1 mAbs. Overall, these data reinforce the role of VEGFR-1-mediated-signalling as a valid target for reducing tumor infiltration by protumoral macrophages and for improving the efficacy of immunotherapy with ICIs.
Collapse
Affiliation(s)
- Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Federica Ruffini
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milan, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Rosella Cicconi
- "Centro di Servizi Interdipartimentale - Stazione per la Tecnologia Animale", University of Rome Tor Vergata, Italy
| | - Maurizio Mattei
- "Centro di Servizi Interdipartimentale - Stazione per la Tecnologia Animale", University of Rome Tor Vergata, Italy; Department of Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberta Bernardini
- "Centro di Servizi Interdipartimentale - Stazione per la Tecnologia Animale", University of Rome Tor Vergata, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Lucio Tentori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
9
|
Low Pre-Treatment Count of Circulating Endothelial Progenitors as a Prognostic Biomarker of the High Risk of Breast Cancer Recurrence. J Clin Med 2019; 8:jcm8111984. [PMID: 31731627 PMCID: PMC6912643 DOI: 10.3390/jcm8111984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Neoangiogenesis is mediated by circulating bone marrow-derived endothelial progenitors (circulating EPCs). The aim of the study was the quantification of circulating EPCs from the peripheral blood mononuclear cells of invasive breast cancer (IBrC) patients by flow cytometry, before and after cancer adjuvant treatment. A total of 88 stage IA-IIB primary IBrC patients were enrolled prospectively. Circulating EPCs with the immune-phenotype CD45−CD34+CD133+CD31+ were assessed. Treatment significantly reduced the number of EPCs/µL in the general IBrC cohort. However, there was a relevant elevation in the number of circulating EPCs after nine months of adjuvant treatment in the group of patients aged ≥ 55 years, of T2 clinical type, with nodal involvement (N1) and Ki67 expression > 15%. Follow-up revealed a significantly higher incidence of disease relapse in breast cancer patients with low pre-treatment circulating EPCs levels compared with those with a high baseline circulating EPCs count. The receiver-operating characteristic curve identified a tumour diameter of 2.1 cm as the best cut-off value to discriminate between disease-relapse subjects and non-relapse disease cases. Our study strongly indicates that, next to tumour diameter and Ki67 expression, circulating bone marrow-derived EPCs may serve as useful markers for predicting therapeutic outcomes as well as a future prognosis.
Collapse
|
10
|
Chen X, Qiu T, Zhu Y, Sun J, Li P, Wang B, Lin P, Cai X, Han X, Zhao F, Shu Y, Chang L, Jiang H, Gu Y. A Single-Arm, Phase II Study of Apatinib in Refractory Metastatic Colorectal Cancer. Oncologist 2019; 24:883-e407. [PMID: 30877190 PMCID: PMC6656475 DOI: 10.1634/theoncologist.2019-0164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
LESSONS LEARNED Patients with metastatic colorectal cancer with good performance status or no liver metastasis could benefit from apatinib.Circulating tumor DNA abundance may be a predictor in serial monitoring of tumor load. BACKGROUND Apatinib, an oral vascular endothelial growth factor (VEGF) receptor-2 inhibitor, has been approved as third-line treatment for metastatic gastric cancer in China. The aim of this study was to evaluate the efficacy and safety of apatinib, in the treatment of patients with refractory metastatic colorectal cancer after failure of two or more lines of chemotherapy. METHODS In this open-label, single-arm, phase II study, patients with histological documentation of adenocarcinoma of the colon or rectum were eligible if they had received at least two prior regimens of standard therapies including fluoropyrimidine, oxaliplatin, and irinotecan. These patients were treated with apatinib in a daily dose of 500 mg, p.o., in the third-line or higher setting. Capture sequencing was dynamically performed to identify somatic variants in circulating tumor DNA (ctDNA) with a panel of 1,021 cancer-related genes. The primary endpoint was progression-free survival (PFS) and the tumor response was determined according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Interim analysis was applied as predefined. RESULTS From June 1, 2016 to December 31, 2017, 26 patients were enrolled. The median PFS of the whole group was 3.9 months (95% confidence interval [CI]: 2.1-5.9). The median overall survival (OS) was 7.9 months (95% CI: 4.6-10.1+). Patients with performance status (PS) 0-1 had longer PFS than those with PS 2 (4.17 months vs. 1.93 months, p = .0014). Patients without liver metastasis also had longer PFS than those who had live metastasis (5.87 months vs. 3.33 months, p = .0274). The common side effects of apatinib were hypertension, hand-foot syndrome, proteinuria, and diarrhea. The incidence of grade 3-4 hypertension, hand-foot syndrome, proteinuria, and diarrhea was 76.92%, 11.54%, 73.08%, and 23.08%, respectively. All of the patients received dose reduction because of adverse effect. Results of capture sequencing showed APC, TP53, and KRAS were most frequently mutant genes. ctDNA abundance increased before the radiographic assessment in ten patients. CONCLUSION Apatinib monotherapy showed promising efficiency for patients with refractory colorectal cancer, especially in patients with PS 0-1 or no liver metastasis. ctDNA abundance may be a predictor in serial monitoring of tumor load.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tianzhu Qiu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingwei Zhu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Jing Sun
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ping Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Biao Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peinan Lin
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, People's Republic of China
| | - Xiaomin Cai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Han
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengjiao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Lianpeng Chang
- Geneplus-Beijing Institute, Beijing, People's Republic of China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Yanhong Gu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Affiliation(s)
- Shiqun Shao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Jingxing Si
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceClinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou 310014 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
12
|
Cattin S, Fellay B, Pradervand S, Trojan A, Ruhstaller T, Rüegg C, Fürstenberger G. Bevacizumab specifically decreases elevated levels of circulating KIT+CD11b+ cells and IL-10 in metastatic breast cancer patients. Oncotarget 2017; 7:11137-50. [PMID: 26840567 PMCID: PMC4905463 DOI: 10.18632/oncotarget.7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Whether bevacizumab exerts its anti-tumor properties through systemic effects beyond local inhibition of angiogenesis and how these effects can be monitored in patients, remain largely elusive. To address these questions, we investigated bone marrow-derived cells and cytokines in the peripheral blood of metastatic breast cancer patients undergoing therapy with bevacizumab. METHODS Circulating endothelial cells (CEC), circulating endothelial progenitor (CEP) and circulating CD11b+ cells in metastatic breast cancer patients before and during therapy with paclitaxel alone (n = 11) or in combination with bevacizumab (n = 10) were characterized using flow cytometry, real time PCR and RNASeq. Circulating factors were measured by ELISA. Aged-matched healthy donors were used as baseline controls (n = 12). RESULTS Breast cancer patients had elevated frequencies of CEC, CEP, TIE2+CD11b+ and KIT+CD11b+ cell subsets. CEC decreased during therapy, irrespective of bevacizumab, while TIE2+CD11b+ remained unchanged. KIT+CD11b+ cells decreased in response to paclitaxel with bevacizumab, but not paclitaxel alone. Cancer patients expressed higher mRNA levels of the M2 polarization markers CD163, ARG1 and IL-10 in CD11b+ cells and increased levels of the M2 cytokines IL-10 and CCL20 in plasma. M1 activation markers and cytokines were low or equally expressed in cancer patients compared to healthy donors. Chemotherapy with paclitaxel and bevacizumab, but not with paclitaxel alone, significantly decreased IL-10 mRNA in CD11b+ cells and IL-10 protein in plasma. CONCLUSIONS This pilot study provides evidence of systemic immunomodulatory effects of bevacizumab and identified circulating KIT+CD11b+ cells and IL-10 as candidate biomarkers of bevacizumab activity in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sarah Cattin
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Benoît Fellay
- Central Laboratory, HFR Hôpital Cantonal, CH-1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Center of Integrative Genomic (CIG), University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | | | - Thomas Ruhstaller
- Breast Center, Kantonsspital St.Gallen, CH-9000 St.Gallen, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
13
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
14
|
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017; 17:302-317. [PMID: 28303905 DOI: 10.1038/nrc.2017.6] [Citation(s) in RCA: 1304] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well established that organs of future metastasis are not passive receivers of circulating tumour cells, but are instead selectively and actively modified by the primary tumour before metastatic spread has even occurred. Sowing the 'seeds' of metastasis requires the action of tumour-secreted factors and tumour-shed extracellular vesicles that enable the 'soil' at distant metastatic sites to encourage the outgrowth of incoming cancer cells. In this Review, we summarize the main processes and new mechanisms involved in the formation of the pre-metastatic niche.
Collapse
Affiliation(s)
- Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Irina R Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bruno Costa-Silva
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Goncalo Rodrigues
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Bethan Psaila
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London W12 0HS, UK
| | - Rosandra N Kaplan
- Center for Cancer Research, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10-Hatfield CRC, Room 1-3940, Bethesda, Maryland 20892, USA
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen 2200, Denmark
| | - Sachie Hiratsuka
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Tokyo 162-8666, Japan
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
15
|
Chan N, Willis A, Kornhauser N, Ward MM, Lee SB, Nackos E, Seo BR, Chuang E, Cigler T, Moore A, Donovan D, Vallee Cobham M, Fitzpatrick V, Schneider S, Wiener A, Guillaume-Abraham J, Aljom E, Zelkowitz R, Warren JD, Lane ME, Fischbach C, Mittal V, Vahdat L. Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clin Cancer Res 2017; 23:666-676. [PMID: 27769988 DOI: 10.1158/1078-0432.ccr-16-1326] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Bone marrow-derived progenitor cells, including VEGFR2+ endothelial progenitor cells (EPCs) and copper-dependent pathways, model the tumor microenvironment. We hypothesized that copper depletion using tetrathiomolybdate would reduce EPCs in high risk for patients with breast cancer who have relapsed. We investigated the effect of tetrathiomolybdate on the tumor microenvironment in preclinical models. EXPERIMENTAL DESIGN Patients with stage II triple-negative breast cancer (TNBC), stage III and stage IV without any evidence of disease (NED), received oral tetrathiomolybdate to maintain ceruloplasmin (Cp) between 8 and 17 mg/dL for 2 years or until relapse. Endpoints were effect on EPCs and other biomarkers, safety, event-free (EFS), and overall survival (OS). For laboratory studies, MDA-LM2-luciferase cells were implanted into CB17-SCID mice and treated with tetrathiomolybdate or water. Tumor progression was quantified by bioluminescence imaging (BLI), copper depletion status by Cp oxidase levels, lysyl oxidase (LOX) activity by ELISA, and collagen deposition. RESULTS Seventy-five patients enrolled; 51 patients completed 2 years (1,396 cycles). Most common grade 3/4 toxicity was neutropenia (3.7%). Lower Cp levels correlated with reduced EPCs (P = 0.002) and LOXL-2 (P < 0.001). Two-year EFS for patients with stage II-III and stage IV NED was 91% and 67%, respectively. For patients with TNBC, EFS was 90% (adjuvant patients) and 69% (stage IV NED patients) at a median follow-up of 6.3 years, respectively. In preclinical models, tetrathiomolybdate decreased metastases to lungs (P = 0.04), LOX activity (P = 0.03), and collagen crosslinking (P = 0.012). CONCLUSIONS Tetrathiomolybdate is safe, well tolerated, and affects copper-dependent components of the tumor microenvironment. Biomarker-driven clinical trials in high risk for patients with recurrent breast cancer are warranted. Clin Cancer Res; 23(3); 666-76. ©2016 AACR.
Collapse
Affiliation(s)
- Nancy Chan
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Amy Willis
- Department of Statistical Science, Cornell University, Ithaca, New York
| | - Naomi Kornhauser
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maureen M Ward
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Sharrell B Lee
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Eleni Nackos
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Bo Ri Seo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Ellen Chuang
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tessa Cigler
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Anne Moore
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Diana Donovan
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | | | - Sarah Schneider
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Alysia Wiener
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | - Elnaz Aljom
- Investigational Pharmacy, New York Presbyterian Hospital, New York, New York
| | | | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, New York
| | - Maureen E Lane
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York.
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
16
|
Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation. Mol Clin Oncol 2016; 4:909-917. [PMID: 27284422 DOI: 10.3892/mco.2016.823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer.
Collapse
Affiliation(s)
- Marco Danova
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuditta Comolli
- Microbiology and Virology, Biotechnology Laboratories, IRCCS San Matteo Foundation, I-27100 Pavia, Italy
| | | | - Martina Torchio
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuliano Mazzini
- Molecular Genetics Institute, National Research Council and Biology and Biotechnology Department 'L. Spallanzani', University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
17
|
Flamini V, Jiang WG, Lane J, Cui YX. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis. Crit Rev Oncol Hematol 2016; 100:177-89. [PMID: 26917455 DOI: 10.1016/j.critrevonc.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.
Collapse
Affiliation(s)
- Valentina Flamini
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK.
| |
Collapse
|
18
|
Predictive biomarker candidates to delineate efficacy of antiangiogenic treatment in renal cell carcinoma. Clin Transl Oncol 2015; 18:1-8. [PMID: 26169213 DOI: 10.1007/s12094-015-1332-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Antiangiogenic therapy is currently considered as the cornerstone of treatment in metastatic kidney cancer. A monoclonal antibody against the vascular endothelial growth factor (VEGF) and several tyrosine kinase inhibitors targeting the VEGF receptors demonstrated, 7 years ago, to deeply impact the outcome of this tumor and became a model of integration of molecular knowledge into clinical practice. Unfortunately, no further improvement in survival has been made and 20-25 % of cases remain primary refractory to these drugs, with an overall dismal prognosis. Since biomarker predictors of activity are lacking, their development could highly help in the process of making clinical decisions when choosing the best option for every patient or prompting the inclusion in clinical trials. This unmet medical need could become even more relevant if new immunotherapy confirms its initial promising results in this pathology. In this article, we provide an insight of current state of the art regarding the prediction of antiangiogenic efficacy in kidney cancer and propose new strategies for the implementation of such markers in clinical practice.
Collapse
|
19
|
Liu Y, Wang Y, Zhou L, Yin K, Yin W, Lu J. Prognostic effect of menstrual cycle on timing of surgery in premenopausal breast cancer patients. Am J Surg 2015; 210:506-11. [PMID: 26066864 DOI: 10.1016/j.amjsurg.2015.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/30/2014] [Accepted: 01/07/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND It is controversial whether surgery during different menstrual phases (a kind of host milieu may influence biological characteristics of micrometastatic foci) affects clinical outcomes. METHODS Survival outcomes were compared between patients who underwent surgery during the follicular (cycle days 1 to 14) and luteal (days 15 to 31) phases. A range of cutoff days from day 10 to 22 was used to observe the risk trend. RESULTS The follicular phase was associated with a more favorable prognosis than the luteal phase in disease-free survival (DFS) [hazard ratio (HR) .318, 95% confidence interval (CI) .10 to .99, P = .049] and overall survival (OS) (HR .260, 95% CI .07 to .92, P = .036). Similar results were detected when the cutoff day was set at days 14, 18, and 19 in DFS and days 11, 13, and 14 in OS. A low HR flat fluctuation was observed from cutoff days 10 to 22, and the risk went up thereafter for both DFS and OS. CONCLUSION Surgery performed during the follicular phase provides a more favorable prognosis compared with the luteal phase.
Collapse
Affiliation(s)
- Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Kai Yin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
20
|
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7:137-148. [PMID: 25621113 PMCID: PMC4300924 DOI: 10.4252/wjsc.v7.i1.137] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.
Collapse
|
21
|
Góralczyk K, Szymańska J, Łukowicz M, Drela E, Kotzbach R, Dubiel M, Michalska M, Góralczyk B, Zając A, Rość D. Effect of LLLT on endothelial cells culture. Lasers Med Sci 2014; 30:273-8. [PMID: 25231826 PMCID: PMC4289014 DOI: 10.1007/s10103-014-1650-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
Abstract
Growth factors as vascular endothelial growth factor (VEGF), produced by the endothelial cells, take an essential part in pathological and physiological angiogenesis. The possibility of angiogenesis modulation by application of laser radiation may contribute to the improvement of its use in this process. Thus, the aim of the study was to investigate the influence of low-level laser therapy (LLLT) on the proliferation of endothelial cells, secretion of VEGF-A and presence of soluble VEGF receptors (sVEGFR-1 and sVEGFR-2) in the medium after in vitro culture. Isolated human umbilical vein endothelial cells (HUVECs) were irradiated using a diode laser at a wavelength of 635 nm and power density of 1,875 mW/cm2. Depending on radiation energy density, the experiment was conducted in four groups: I 0 J/cm2 (control group), II 2 J/cm2, III 4 J/cm2, and IV 8 J/cm2. The use of laser radiation wavelength of 635 nm, was associated with a statistically significant increase in proliferation of endothelial cells (p = 0.0041). Moreover, at 635-nm wavelength, all doses of radiation significantly reduced the concentration of sVEGFR-1 (p = 0.0197).
Collapse
Affiliation(s)
- Krzysztof Góralczyk
- Department of Pathophysiology, Collegium Medicum in Bydgoszcz, The Nicolaus Copernicus University in Toruń (NCU), Ul. M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Virág J, Kenessey I, Haberler C, Piurkó V, Bálint K, Döme B, Tímár J, Garami M, Hegedűs B. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res 2013; 20:417-26. [PMID: 24190638 DOI: 10.1007/s12253-013-9711-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/10/2013] [Indexed: 01/07/2023]
Abstract
Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- József Virág
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Currently approved treatments for metastatic renal cell carcinoma (RCC) include vascular endothelial growth factor (VEGF)-blocking agents, mammalian target of rapamycin (mTOR) inhibitors, and cytokine therapy. In the near future, we are likely to add immune checkpoint blocking agents to this list. As we develop treatment platforms around each therapeutic class, determining which drug is best for a particular patient becomes increasingly important. At this point, we do not have validated predictive biomarkers for patients with RCC. Here, we discuss the logistical challenges surrounding biomarker development, summarize the current crop of biomarker candidates, and explore potential avenues for the development of more effective predictive tools for patients with advanced RCC.
Collapse
Affiliation(s)
- Jesus Garcia-Donas
- Genitourinary Tumors Programme Centro Integral Oncologico Clara Campal CIOCC, Madrid, Spain
| | | | | |
Collapse
|
24
|
Zheng PP, van der Weiden M, van der Spek PJ, Vincent AJ, Kros JM. Intratumoral, not circulating, endothelial progenitor cells share genetic aberrations with glial tumor cells. J Cell Physiol 2013; 228:1383-90. [DOI: 10.1002/jcp.24309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/07/2012] [Indexed: 12/26/2022]
|
25
|
Jain S, Cohen J, Ward MM, Kornhauser N, Chuang E, Cigler T, Moore A, Donovan D, Lam C, Cobham MV, Schneider S, Hurtado Rúa SM, Benkert S, Mathijsen Greenwood C, Zelkowitz R, Warren JD, Lane ME, Mittal V, Rafii S, Vahdat LT. Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann Oncol 2013; 24:1491-8. [PMID: 23406736 DOI: 10.1093/annonc/mds654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bone marrow-derived endothelial progenitor cells (EPCs) are critical for metastatic progression. This study explores the effect of tetrathiomolybdate (TM), an anti-angiogenic copper chelator, on EPCs in patients at high risk for breast cancer recurrence. PATIENTS AND METHODS This phase 2 study enrolled breast cancer patients with stage 3 and stage 4 without evidence of disease (NED), and stage 2 if triple-negative. TM 100 mg orally was administered to maintain ceruloplasmin <17 mg/dl for 2 years or until relapse. The primary end point was change in EPCs. RESULTS Forty patients (28 stage 2/3, 12 stage 4 NED) were enrolled. Seventy-five percent patients achieved the copper depletion target by 1 month. Ninety-one percent of triple-negative patients copper-depleted compared with 41% luminal subtypes. In copper-depleted patients only, there was a significant reduction in EPCs/ml by 27 (P = 0.04). Six patients relapsed while on study, of which only one patient had EPCs maintained below baseline. The 10-month relapse-free survival was 85.0% (95% CI 74.6%-96.8%). Only grade 3/4 toxicity was hematologic: neutropenia (3.1% of cycles), febrile neutropenia (0.2%), and anemia (0.2%). CONCLUSIONS TM is safe and appears to maintain EPCs below baseline in copper-depleted patients. TM may promote tumor dormancy and ultimately prevent relapse.
Collapse
Affiliation(s)
- S Jain
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kosaka Y, Kataoka A, Yamaguchi H, Ueo H, Akiyoshi S, Sengoku N, Kuranami M, Ohno S, Watanabe M, Mimori K, Mori M. Vascular endothelial growth factor receptor-1 mRNA overexpression in peripheral blood as a useful prognostic marker in breast cancer. Breast Cancer Res 2012; 14:R140. [PMID: 23113927 PMCID: PMC4053119 DOI: 10.1186/bcr3345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/03/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Identification of useful markers associated with poor prognosis in breast cancer patients is critically needed. We previously showed that expression of vascular endothelial growth factor receptor-1 mRNA in peripheral blood may be useful to predict distant metastasis in gastric cancer patients. However, expression of vascular endothelial growth factor receptor-1 mRNA in peripheral blood of breast cancer patients has not yet been studied. METHODS Real-time reverse transcriptase-PCR was used to analyze vascular endothelial growth factor receptor-1 mRNA expression status with respect to various clinical parameters in 515 patients with breast cancer and 25 controls. RESULTS Expression of vascular endothelial growth factor receptor-1 mRNA in peripheral blood was higher in breast cancer patients than in controls. Increased vascular endothelial growth factor receptor-1 mRNA expression was associated with large tumor size, lymph node metastasis and clinical stage. Patients with high vascular endothelial growth factor receptor-1 mRNA expression also experienced a poorer survival rate than those with low expression levels, including those patients with triple-negative type and luminal-HER2(-) type disease. CONCLUSIONS Expression of vascular endothelial growth factor receptor-1 mRNA in peripheral blood may be useful for prediction of poor prognosis in breast cancer, especially in patients with triple-negative type and luminal-HER2(-) type disease.
Collapse
|
27
|
Smith JP, Barbati AC, Santana SM, Gleghorn JP, Kirby BJ. Microfluidic transport in microdevices for rare cell capture. Electrophoresis 2012; 33:3133-42. [PMID: 23065634 DOI: 10.1002/elps.201200263] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022]
Abstract
The isolation and capture of rare cells is a problem uniquely suited to microfluidic devices, in which geometries on the cellular length scale can be engineered and a wide range of chemical functionalizations can be implemented. The performance of such devices is primarily affected by the chemical interaction between the cell and the capture surface and the mechanics of cell-surface collision and adhesion. As rare cell-capture technology has been summarized elsewhere (E. D. Pratt et al., Chem. Eng. Sci. 2011, 66, 1508-1522), this article focuses on the fundamental adhesion and transport mechanisms in rare cell-capture microdevices, and explores modern device design strategies in a transport context. The biorheology and engineering parameters of cell adhesion are defined; adhesion models and reaction kinetics briefly reviewed. Transport at the microscale, including diffusion and steric interactions that result in cell motion across streamlines, is discussed. The review concludes by discussing design strategies with a focus on leveraging the underlying transport phenomena to maximize device performance.
Collapse
Affiliation(s)
- James P Smith
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|