1
|
Parks CG, Wilson LE, Capello M, Deane KD, Hanash SM. Tumor-Associated and Systemic Autoimmunity in Pre-Clinical Breast Cancer among Post-Menopausal Women. Biomolecules 2023; 13:1566. [PMID: 38002248 PMCID: PMC10669589 DOI: 10.3390/biom13111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
Autoantibodies to tumor-associated antigens (anti-TAA) are potential biomarkers for breast cancer, but their relationship systemic autoimmunity as ascertained though antinuclear antibodies (ANA) is unknown and warrants consideration given the common occurrence of autoimmunity and autoimmune diseases among women. The relationship between anti-TAAs and ANA among women who were later diagnosed with breast cancer and others who remained cancer free in the Women's Health Initiative cohort. The study sample included 145 post-menopausal women with baseline ANA data. A total of 37 ANA-positive women who developed breast cancer (i.e., cases; mean time to diagnosis 6.8 years [SE 3.9]) were matched to a random sample of 36 ANA-negative cases by age and time to diagnosis. An age-matched control sample was selected including 35 ANA-positive and 37 ANA-negative women who did not develop breast cancer (i.e., controls; follow-up time ~13 years [SE 3]). Baseline sera were assessed for Immunoglobulin G (IgG) antibodies, measured by custom microarray for 171 breast and other cancer-associated TAA. We used linear regression to estimate cross-sectional associations of ANA with log-transformed anti-TAA among cases and controls. Most anti-TAA did not vary by ANA status. Two anti-TAA were elevated in ANA-positive compared to ANA-negative cases: anti-PGM3 (p = 0.004) and anti-TTN (p = 0.005, especially in cases up to 7 years before diagnosis, p = 0.002). Anti-TAA antibodies were not generally related to ANA, a common marker of systemic autoimmunity. Associations of ANA with particular antigens inducing autoimmunity prior to breast cancer warrant further investigation.
Collapse
Affiliation(s)
- Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lauren E. Wilson
- Center for Population Health, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michela Capello
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (S.M.H.)
| | - Kevin D. Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samir M. Hanash
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (S.M.H.)
| |
Collapse
|
2
|
Lastwika KJ, Wu W, Zhang Y, Ma N, Zečević M, Pipavath SNJ, Randolph TW, Houghton AM, Nair VS, Lampe PD, Kinahan PE. Multi-Omic Biomarkers Improve Indeterminate Pulmonary Nodule Malignancy Risk Assessment. Cancers (Basel) 2023; 15:3418. [PMID: 37444527 PMCID: PMC10341085 DOI: 10.3390/cancers15133418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The clinical management of patients with indeterminate pulmonary nodules is associated with unintended harm to patients and better methods are required to more precisely quantify lung cancer risk in this group. Here, we combine multiple noninvasive approaches to more accurately identify lung cancer in indeterminate pulmonary nodules. We analyzed 94 quantitative radiomic imaging features and 41 qualitative semantic imaging variables with molecular biomarkers from blood derived from an antibody-based microarray platform that determines protein, cancer-specific glycan, and autoantibody-antigen complex content with high sensitivity. From these datasets, we created a PSR (plasma, semantic, radiomic) risk prediction model comprising nine blood-based and imaging biomarkers with an area under the receiver operating curve (AUROC) of 0.964 that when tested in a second, independent cohort yielded an AUROC of 0.846. Incorporating known clinical risk factors (age, gender, and smoking pack years) for lung cancer into the PSR model improved the AUROC to 0.897 in the second cohort and was more accurate than a well-characterized clinical risk prediction model (AUROC = 0.802). Our findings support the use of a multi-omics approach to guide the clinical management of indeterminate pulmonary nodules.
Collapse
Affiliation(s)
- Kristin J. Lastwika
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.J.L.); (N.M.); (A.M.H.); (V.S.N.)
- Translational Research Program, Public Health Sciences Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Wei Wu
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA; (W.W.); (M.Z.); (S.N.J.P.)
| | - Yuzheng Zhang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (Y.Z.); (T.W.R.)
| | - Ningxin Ma
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.J.L.); (N.M.); (A.M.H.); (V.S.N.)
| | - Mladen Zečević
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA; (W.W.); (M.Z.); (S.N.J.P.)
| | - Sudhakar N. J. Pipavath
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA; (W.W.); (M.Z.); (S.N.J.P.)
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Timothy W. Randolph
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (Y.Z.); (T.W.R.)
| | - A. McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.J.L.); (N.M.); (A.M.H.); (V.S.N.)
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viswam S. Nair
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.J.L.); (N.M.); (A.M.H.); (V.S.N.)
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul E. Kinahan
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA; (W.W.); (M.Z.); (S.N.J.P.)
| |
Collapse
|
3
|
Pagaza-Straffon C, Marchat LA, Herrera L, Díaz-Chávez J, Avante MG, Rodríguez YP, Arreola MC, López-Camarillo C. Evaluation of a panel of tumor-associated antigens in breast cancer. Cancer Biomark 2020; 27:207-211. [PMID: 31839604 DOI: 10.3233/cbm-190708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent studies indicate that serum from cancer patients contains auto-antibodies against oncoproteins so called tumor-associated antigens (TAAs), which represent promising diagnostic and prognostic biomarkers. OBJECTIVES In this study we searched for breast cancer-associated auto-antibodies against individual TAAs. Also we evaluated if a panel of multiple TTAs would improve the detection of auto-antibodies. We screened CEA, CCBN1, c-Myc, p53, Ki-67, Nm23, PRDX6, eIF5A, PARK7, GLIO-1, Hsp27 and Hsp70 proteins, previously detected as up-regulated in breast tumors of Mexican patients. METHODS Enzyme-linked immunosorbent assays (ELISA) were performed to detect auto-antibodies in sera from a cohort of 104 breast cancer patients and 50 sera from healthy individuals. RESULTS Our data showed that antibodies frequency to any individual TAA was low and ranged from 0.96% to 4.8%. However, the successive addition of multiple TAAs represented by panels of three-to-five TAAs resulted in increased ELISA positive reactions. The first panel of three combined TAAs (p53/PRDX6/CEA) had a sensitivity of 19%, while a second set of four TAAs (p53/PRDX6/c-Myc/Hsp70) reached 28% sensitivity. Likewise, a third panel of five antigens (p53/PRDX6/c-Myc/Hsp70/Nm23) showed 34% sensitivity. CONCLUSIONS Our data showed that detection of individual autoantibodies against TAAs in the cohort of patients analyzed here was low, which was enhanced by adding multiple TAAs. Data support the notion that frequencies of autoantibodies could be impacted by geographical and heterogeneous genetic factors of breast cancer patients.
Collapse
Affiliation(s)
| | - Laurence A Marchat
- Molecular Biomedicine Program, Biotechnology Network, Instituto Politécnico Nacional, CDMX, Mexico
| | - Luis Herrera
- Carcinogenesis Laboratory, National Institute of Cancerology, CDMX, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, CDMX, Mexico
| | | | | | | | | |
Collapse
|
4
|
Navarro SL, Herrero M, Martinez H, Zhang Y, Ladd J, Lo E, Shelley D, Randolph TW, Lampe JW, Lampe PD. Differences in Serum Biomarkers Between Combined Glucosamine and Chondroitin Versus Celecoxib in a Randomized, Double-blind Trial in Osteoarthritis Patients. Antiinflamm Antiallergy Agents Med Chem 2020; 19:190-201. [PMID: 30648524 DOI: 10.2174/1871523018666190115094512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs, e.g., celecoxib, are commonly used for inflammatory conditions, but can be associated with adverse effects. Combined glucosamine hydrochloride plus chondroitin sulfate (GH+CS) are commonly used for joint pain and have no known adverse effects. Evidence from in vitro, animal and human studies suggest that GH+CS have anti-inflammatory activity, among other mechanisms of action. OBJECTIVE We evaluated the effects of GH+CS versus celecoxib on a panel of 20 serum proteins involved in inflammation and other metabolic pathways. METHODS Samples were from a randomized, parallel, double-blind trial of pharmaceutical grade 1500 mg GH + 1200 mg CS (n=96) versus 200 mg celecoxib daily (n=93) for 6- months in knee osteoarthritis (OA) patients. Linear mixed models adjusted for age, sex, body mass index, baseline serum protein values, and rescue medicine use assessed the intervention effects of each treatment arm adjusting for multiple testing. RESULTS All serum proteins except WNT16 were lower after treatment with GH+CS, while about half increased after celecoxib. Serum IL-6 was significantly reduced (by 9%, P=0.001) after GH+CS, and satisfied the FDR<0.05 threshold. CCL20, CSF3, and WNT16 increased after celecoxib (by 7%, 9% and 9%, respectively, P<0.05), but these serum proteins were no longer statistically significant after controlling for multiple testing. CONCLUSION The results of this study using samples from a previously conducted trial in OA patients, demonstrate that GH+CS reduces circulating IL-6, an inflammatory cytokine, but is otherwise comparable to celecoxib with regard to effects on other circulating protein biomarkers.
Collapse
Affiliation(s)
- Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marta Herrero
- Bioiberica S.A.U., Plaza Francesc Macia 7, 08029 Barcelona, Spain
| | - Helena Martinez
- Bioiberica S.A.U., Plaza Francesc Macia 7, 08029 Barcelona, Spain
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jon Ladd
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edward Lo
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David Shelley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Timothy W Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul D Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
5
|
Laaksonen J, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Lepistö M, Almusa H, Ellonen P, Hutri-Kähönen N, Juonala M, Kähönen M, Raitakari O, Salonen JT, Lehtimäki T. Discovery of mitochondrial DNA variants associated with genome-wide blood cell gene expression: a population-based mtDNA sequencing study. Hum Mol Genet 2019; 28:1381-1391. [PMID: 30629177 DOI: 10.1093/hmg/ddz011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
The effect of mitochondrial DNA (mtDNA) variation on peripheral blood transcriptomics in health and disease is not fully known. Sex-specific mitochondrially controlled gene expression patterns have been shown in Drosophila melanogaster but in humans, evidence is lacking. Functional variation in mtDNA may also have a role in the development of type 2 diabetes and its precursor state, i.e. prediabetes. We examined the associations between mitochondrial single-nucleotide polymorphisms (mtSNPs) and peripheral blood transcriptomics with a focus on sex- and prediabetes-specific effects. The genome-wide blood cell expression data of 19 637 probes, 199 deep-sequenced mtSNPs and nine haplogroups of 955 individuals from a population-based Young Finns Study cohort were used. Significant associations were identified with linear regression and analysis of covariance. The effects of sex and prediabetes on the associations between gene expression and mtSNPs were studied using random-effect meta-analysis. Our analysis identified 53 significant expression probe-mtSNP associations after Bonferroni correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after conditional analysis. In addition, five genes showed differential expression between haplogroups. The meta-analysis did not show any significant differences in linear model effect sizes between males and females but identified the association between the OASL gene and mtSNP C16294T to show prediabetes-specific effects. This study pinpoints new independent mtSNPs associated with peripheral blood transcriptomics and replicates six previously reported associations, providing further evidence of the mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that prediabetes might lead to perturbations in mitochondrial control.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover Germany.,Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,MAS-Metabolic Analytical Services Oy, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Núñez C. Blood-based protein biomarkers in breast cancer. Clin Chim Acta 2018; 490:113-127. [PMID: 30597138 DOI: 10.1016/j.cca.2018.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Breast cancer (BCa) is a significant healthcare problem on women worldwide. Thus, early detection is very important to reduce mortality. Furthermore, better BCa prognosis could improve selection of patients eligible for adjuvant therapy. New markers for early diagnosis, accurate prognosis and prediction of response to treatment are necessary to improve BCa care. The present review summarizes important aspects of the potential usefulness of modern technologies, strategies, and scientific findings in proteomic research for discovery of breast cancer-associated blood-based protein biomarkers in the clinic.
Collapse
Affiliation(s)
- Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain.
| |
Collapse
|
7
|
Rho JH, Ladd JJ, Li CI, Potter JD, Zhang Y, Shelley D, Shibata D, Coppola D, Yamada H, Toyoda H, Tada T, Kumada T, Brenner DE, Hanash SM, Lampe PD. Protein and glycomic plasma markers for early detection of adenoma and colon cancer. Gut 2018; 67:473-484. [PMID: 27821646 PMCID: PMC5420499 DOI: 10.1136/gutjnl-2016-312794] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To discover and confirm blood-based colon cancer early-detection markers. DESIGN We created a high-density antibody microarray to detect differences in protein levels in plasma from individuals diagnosed with colon cancer <3 years after blood was drawn (ie, prediagnostic) and cancer-free, matched controls. Potential markers were tested on plasma samples from people diagnosed with adenoma or cancer, compared with controls. Components of an optimal 5-marker panel were tested via immunoblotting using a third sample set, Luminex assay in a large fourth sample set and immunohistochemistry (IHC) on tissue microarrays. RESULTS In the prediagnostic samples, we found 78 significantly (t-test) increased proteins, 32 of which were confirmed in the diagnostic samples. From these 32, optimal 4-marker panels of BAG family molecular chaperone regulator 4 (BAG4), interleukin-6 receptor subunit beta (IL6ST), von Willebrand factor (VWF) and CD44 or epidermal growth factor receptor (EGFR) were established. Each panel member and the panels also showed increases in the diagnostic adenoma and cancer samples in independent third and fourth sample sets via immunoblot and Luminex, respectively. IHC results showed increased levels of BAG4, IL6ST and CD44 in adenoma and cancer tissues. Inclusion of EGFR and CD44 sialyl Lewis-A and Lewis-X content increased the panel performance. The protein/glycoprotein panel was statistically significantly higher in colon cancer samples, characterised by a range of area under the curves from 0.90 (95% CI 0.82 to 0.98) to 0.86 (95% CI 0.83 to 0.88), for the larger second and fourth sets, respectively. CONCLUSIONS A panel including BAG4, IL6ST, VWF, EGFR and CD44 protein/glycomics performed well for detection of early stages of colon cancer and should be further examined in larger studies.
Collapse
Affiliation(s)
- Jung-hyun Rho
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA,Human Biology Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Jon J. Ladd
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA,Human Biology Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Christopher I. Li
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - John D. Potter
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA,School of Public Health, University of Washington, Seattle, Washington, United States of America; Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Yuzheng Zhang
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - David Shelley
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA,Human Biology Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN
| | | | | | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Toshifumi Tada
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Dean E. Brenner
- Great Lakes New England (GLNE) Clinical Validation Center of EDRN, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; VA Medical Center, Ann Arbor, MI 48105, USA
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, 6767 Bertner Street, Houston, TX 77030, USA
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA,Human Biology Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Wang X, Shojaie A, Zhang Y, Shelley D, Lampe PD, Levy L, Peters U, Potter JD, White E, Lampe JW. Exploratory plasma proteomic analysis in a randomized crossover trial of aspirin among healthy men and women. PLoS One 2017; 12:e0178444. [PMID: 28542447 PMCID: PMC5444835 DOI: 10.1371/journal.pone.0178444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Long-term use of aspirin is associated with lower risk of colorectal cancer and other cancers; however, the mechanism of chemopreventive effect of aspirin is not fully understood. Animal studies suggest that COX-2, NFκB signaling and Wnt/β-catenin pathways may play a role, but no clinical trials have systematically evaluated the biological response to aspirin in healthy humans. Using a high-density antibody array, we assessed the difference in plasma protein levels after 60 days of regular dose aspirin (325 mg/day) compared to placebo in a randomized double-blinded crossover trial of 44 healthy non-smoking men and women, aged 21-45 years. The plasma proteome was analyzed on an antibody microarray with ~3,300 full-length antibodies, printed in triplicate. Moderated paired t-tests were performed on individual antibodies, and gene-set analyses were performed based on KEGG and GO pathways. Among the 3,000 antibodies analyzed, statistically significant differences in plasma protein levels were observed for nine antibodies after adjusting for false discoveries (FDR adjusted p-value<0.1). The most significant protein was succinate dehydrogenase subunit C (SDHC), a key enzyme complex of the mitochondrial tricarboxylic acid (TCA) cycle. The other statistically significant proteins (NR2F1, MSI1, MYH1, FOXO1, KHDRBS3, NFKBIE, LYZ and IKZF1) are involved in multiple pathways, including DNA base-pair repair, inflammation and oncogenic pathways. None of the 258 KEGG and 1,139 GO pathways was found to be statistically significant after FDR adjustment. This study suggests several chemopreventive mechanisms of aspirin in humans, which have previously been reported to play a role in anti- or pro-carcinogenesis in cell systems; however, larger, confirmatory studies are needed.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David Shelley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul D. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lisa Levy
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ulrike Peters
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John D. Potter
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Johanna W. Lampe
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Garrison CB, Lastwika KJ, Zhang Y, Li CI, Lampe PD. Proteomic Analysis, Immune Dysregulation, and Pathway Interconnections with Obesity. J Proteome Res 2017; 16:274-287. [PMID: 27769113 PMCID: PMC5234688 DOI: 10.1021/acs.jproteome.6b00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteomic studies can offer information on hundreds to thousands of proteins and potentially provide researchers with a comprehensive understanding of signaling response during stress and disease. Large data sets, such as those obtained in high-dimensional proteomic studies, can be leveraged for pathway analysis to discover or describe the biological implications of clinical disease states. Obesity is a worldwide epidemic that is considered a risk factor for numerous other diseases. We performed analysis on plasma proteomic data from 3 separate sample sets of postmenopausal women to identify the pathways that are altered in subjects with a high body mass index (BMI) compared to normal BMI. We found many pathways consistently and significantly associated with inflammation dysregulated in plasma from obese/overweight subjects compared to plasma from normal BMI subjects. These pathways indicate alterations of soluble inflammatory regulators, cellular stress, and metabolic dysregulation. Our results highlight the importance of high-dimensional pathway analysis in complex diseases as well as provide information on the interconnections between pathways that are dysregulated with obesity. Specifically, overlap of obesity related pathways with those activated during cancer and infection could help describe why obesity is a risk factor for disease and help devise treatment options that mitigate its effect.
Collapse
Affiliation(s)
- Carly B. Garrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kristin J. Lastwika
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Christopher I. Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Paul D. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
10
|
Pattern-based sensing of triple negative breast cancer cells with dual-ligand cofunctionalized gold nanoclusters. Biomaterials 2016; 116:21-33. [PMID: 27914264 DOI: 10.1016/j.biomaterials.2016.11.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Early detection of breast cancer is a critical component in patient prognosis and establishing effective therapy regimens. Here, we developed an easily accessible yet potentially powerful sensor to detect cancer cell targets by utilizing seven dual-ligand cofunctionalized gold nanoclusters (AuNCs) as both effective cell recognition elements and signal transducers. On the basis of this AuNC multichannel sensor, we have successfully distinguished healthy, cancerous and metastatic human breast cells with excellent reproducibility and high sensitivity. Triple negative breast cancer cells (TNBCs), which exhibit low expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2, were identified. The high accuracy of the blind breast cell sample tests further validates the practical application of the sensor array. In addition, the versatility of the sensor array is further justified by identifying amongst distinct cell types, different cell concentrations and cell mixtures. Notably, the drug-resistant cancer cells can also be efficiently discriminated. Furthermore, the dual-ligand cofunctionalized AuNCs can efficiently differentiate different cells from the peripheral blood of tumor-free and tumor-bearing mice. Taken together, this fluorescent AuNCs based array provides a powerful cell analysis tool with potential applications in biomedical diagnostics.
Collapse
|
11
|
Ewaisha R, Gawryletz CD, Anderson KS. Crucial considerations for pipelines to validate circulating biomarkers for breast cancer. Expert Rev Proteomics 2016; 13:201-11. [PMID: 26653344 DOI: 10.1586/14789450.2016.1132170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite decades of progress in breast imaging, breast cancer remains the second most common cause of cancer mortality in women. The rapidly proliferative breast cancers that are associated with high relapse rates and mortality frequently present in younger women, in unscreened individuals, or in the intervals between screening mammography. Biomarkers exist for monitoring metastatic disease, such as CEA, CA27.29 and CA15-3, but there are no circulating biomarkers clinically available for early detection, prognosis, or monitoring for clinical relapse. There has been significant progress in the discovery of potential circulating biomarkers, including proteins, autoantibodies, nucleic acids, exosomes, and circulating tumor cells, but the vast majority of these biomarkers have not progressed beyond initial research discovery, and none have yet been approved for clinical use in early stage disease. Here, the authors review the crucial considerations of developing pipelines for the rapid evaluation of circulating biomarkers for breast cancer.
Collapse
Affiliation(s)
- Radwa Ewaisha
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Chelsea D Gawryletz
- b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| | - Karen S Anderson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA.,b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| |
Collapse
|
12
|
Buas MF, Rho JH, Chai X, Zhang Y, Lampe PD, Li CI. Candidate early detection protein biomarkers for ER+/PR+ invasive ductal breast carcinoma identified using pre-clinical plasma from the WHI observational study. Breast Cancer Res Treat 2015; 153:445-54. [PMID: 26319120 PMCID: PMC4721565 DOI: 10.1007/s10549-015-3554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023]
Abstract
Estrogen receptor (ER)-positive/progesterone receptor (PR)-positive invasive ductal carcinoma accounts for ~45 % of invasive breast cancer (BC) diagnoses in the U.S. Despite reductions in BC mortality attributable to mammography screening and adjuvant hormonal therapy, an important challenge remains the development of clinically useful blood-based biomarkers for risk assessment and early detection. The objective of this study was to identify novel protein markers for ER+/PR+ ductal BC. A nested case-control study was conducted within the Women's Health Initiative observational study. Pre-clinical plasma specimens, collected up to 12.5 months before diagnosis from 121 cases and 121 matched controls, were equally divided into training and testing sets and interrogated using a customized antibody array targeting >2000 proteins. Statistically significant differences (P < 0.05) in matched case versus control signals were observed for 39 candidates in both training and testing sets, and four markers (CSF2, RYBP, TFRC, ITGB4) remained significant after Bonferroni correction (P < 2.03 × 10(-5)). A multivariate modeling procedure based on elastic net regression with Monte Carlo cross-validation achieved an estimated AUC of 0.75 (SD 0.06). Most candidates did not overlap with those described previously for triple-negative BC, suggesting sub-type specificity. Gene set enrichment analyses identified two GO gene sets as upregulated in cases-microtubule cytoskeleton and response to hormone stimulus (P < 0.05, q < 0.25). This study has identified a pool of novel candidate plasma protein biomarkers for ER+/PR+ ductal BC using pre-diagnostic biospecimens. Further validation studies are needed to confirm these candidates and assess their potential clinical utility for BC risk assessment/early detection.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/blood
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Case-Control Studies
- Computational Biology/methods
- Early Detection of Cancer
- Female
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Proteome
- Proteomics/methods
- ROC Curve
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Matthew F Buas
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,
| | | | | | | | | | | |
Collapse
|
13
|
Wang J, Figueroa JD, Wallstrom G, Barker K, Park JG, Demirkan G, Lissowska J, Anderson KS, Qiu J, LaBaer J. Plasma Autoantibodies Associated with Basal-like Breast Cancers. Cancer Epidemiol Biomarkers Prev 2015; 24:1332-40. [PMID: 26070530 DOI: 10.1158/1055-9965.epi-15-0047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detecting and managing this deadly disease. METHODS Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. RESULTS We identified 13 AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (P = 0.009) in BLBC patients. In addition, MN1 and TP53 AAbs were associated with worse survival [MN1 AAb marker HR = 2.25, 95% confidence interval (CI), 1.03-4.91; P = 0.04; TP53, HR = 2.02, 95% CI, 1.06-3.85; P = 0.03]. We found limited evidence that AAb levels differed by demographic characteristics. CONCLUSIONS These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. IMPACT Our study identifies 13 AAb markers associated specifically with BLBC and may improve detection or management of this deadly disease.
Collapse
Affiliation(s)
- Jie Wang
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Kristi Barker
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Gokhan Demirkan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | | | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
14
|
Mirus JE, Zhang Y, Li CI, Lokshin AE, Prentice RL, Hingorani SR, Lampe PD. Cross-species antibody microarray interrogation identifies a 3-protein panel of plasma biomarkers for early diagnosis of pancreas cancer. Clin Cancer Res 2015; 21:1764-71. [PMID: 25589628 PMCID: PMC4391639 DOI: 10.1158/1078-0432.ccr-13-3474] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related death in the United States, and its incidence is on the rise. Advanced disease is nearly uniformly lethal, emphasizing the need to identify PDA at its earliest stages. To discover early biomarkers of PDA, we evaluated the circulating proteome in murine preinvasive and invasive plasma samples and human prediagnostic and diagnostic samples. EXPERIMENTAL DESIGN Using a customized antibody microarray platform containing >4,000 features, we interrogated plasma samples spanning preinvasive and invasive disease from a highly faithful mouse model of PDA. In parallel, we mined prediagnostic plasma from women in the Women's Health Initiative (WHI) who would later succumb to PDA together with matched, cancer-free control samples. Samples collected after an establishing diagnosis of PDA were also interrogated to further validate markers. RESULTS We identified ERBB2 and TNC in our cross-species analyses, and multiple antibodies identified ESR1 in prediagnostic plasma from people that succumb to PDA. This 3-marker panel had an AUC of 0.86 (95% confidence interval [CI], 0.76-0.96) for the diagnostic cohort that increased to 0.97 (95% CI, 0.92-1.0) with CA19-9 included. The 3-marker panel also had an AUC of 0.68 (95% CI, 0.58-0.77) for the prediagnostic cohort. CONCLUSIONS We identified potential disease detection markers in plasma up to 4 years before death from PDA with superior performance to CA19-9. These markers might be especially useful in high-risk cohorts to diagnose early, resectable disease, particularly in patients that do not produce CA19-9.
Collapse
Affiliation(s)
- Justin E Mirus
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yuzheng Zhang
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christopher I Li
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna E Lokshin
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ross L Prentice
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sunil R Hingorani
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
15
|
Navarro SL, White E, Kantor ED, Zhang Y, Rho J, Song X, Milne GL, Lampe PD, Lampe JW. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One 2015; 10:e0117534. [PMID: 25719429 PMCID: PMC4342228 DOI: 10.1371/journal.pone.0117534] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. METHODS We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. RESULTS Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. CONCLUSION Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. TRIAL REGISTRATION ClinicalTrials.gov NCT01682694.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elizabeth D. Kantor
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Junghyun Rho
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xiaoling Song
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Paul D. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Johanna W. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Mirus JE, Zhang Y, Hollingsworth MA, Solan JL, Lampe PD, Hingorani SR. Spatiotemporal proteomic analyses during pancreas cancer progression identifies serine/threonine stress kinase 4 (STK4) as a novel candidate biomarker for early stage disease. Mol Cell Proteomics 2014; 13:3484-96. [PMID: 25225358 DOI: 10.1074/mcp.m113.036517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of <5%. Detection of resectable disease improves survival rates, but access to tissue and other biospecimens that could be used to develop early detection markers is confounded by the insidious nature of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue markers that could serve as signatures of disease stage, including early (resectable), and therefore clinically meaningful, stages.
Collapse
Affiliation(s)
- Justin E Mirus
- From the ‡Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; §Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Yuzheng Zhang
- From the ‡Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Michael A Hollingsworth
- ¶Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Joell L Solan
- From the ‡Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; §Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Paul D Lampe
- From the ‡Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; §Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Sunil R Hingorani
- From the ‡Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; **Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; ‡‡Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
17
|
Bevers TB, Brown PH, Maresso KC, Hawk ET. Cancer Prevention, Screening, and Early Detection. ABELOFF'S CLINICAL ONCOLOGY 2014:322-359.e12. [DOI: 10.1016/b978-1-4557-2865-7.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev 2013; 40:129-38. [PMID: 23891266 DOI: 10.1016/j.ctrv.2013.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
Abstract
Breast cancer is traditionally considered as a heterogeneous disease. Molecular profiling of breast cancer by gene expression studies has provided us an important tool to discriminate a number of subtypes. These breast cancer subtypes have been shown to be associated with clinical outcome and treatment response. In order to elucidate the functional consequences of altered gene expressions related to each breast cancer subtype, proteomic technologies can provide further insight by identifying quantitative differences at the protein level. In recent years, proteomic technologies have matured to an extent that they can provide proteome-wide expressions in different clinical materials. This technology can be applied for the identification of proteins or protein profiles to further refine breast cancer subtypes or for discovery of novel protein biomarkers pointing towards metastatic potential or therapy resistance in a specific subtype. In this review, we summarize the current state of knowledge of proteomic research on molecular breast cancer classification and discuss important aspects of the potential usefulness of proteomics for discovery of breast cancer-associated protein biomarkers in the clinic.
Collapse
Affiliation(s)
- S W Lam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|