1
|
Priscilla L, Yoo C, Jang S, Park S, Lim G, Kim T, Lee DY. Immunotherapy targeting the obese white adipose tissue microenvironment: Focus on non-communicable diseases. Bioact Mater 2024; 35:461-476. [PMID: 38404641 PMCID: PMC10884763 DOI: 10.1016/j.bioactmat.2024.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Obesity triggers inflammatory responses in the microenvironment of white adipose tissue, resulting in chronic systemic inflammation and the subsequent development of non-communicable diseases, including type 2 diabetes, coronary heart disease, and breast cancer. Current therapy approaches for obesity-induced non-communicable diseases persist in prioritizing symptom remission while frequently overlooking the criticality of targeting and alleviating inflammation at its source. Accordingly, this review highlights the importance of the microenvironment of obese white adipose tissue and the promising potential of employing immunotherapy to target it as an effective therapeutic approach for non-communicable diseases induced by obesity. Additionally, this review discusses the challenges and offers perspective about the immunotherapy targeting the microenvironment of obese white adipose tissue.
Collapse
Affiliation(s)
- Lia Priscilla
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sewon Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gayoung Lim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Taekyun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea
| |
Collapse
|
2
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Abstract
Adipose tissue is the largest endocrine organ and an accepted contributor to overall energy homeostasis. There is strong evidence linking increased adiposity to the development of 13 types of cancer. With increased adiposity comes metabolic dysfunction and insulin resistance, and increased systemic insulin and glucose support the growth of many cancers, including those of the colon and endometrium. There is also an important direct crosstalk between adipose tissue and various organs. For instance, the healthy development and function of the mammary gland, as well as the development, growth, and progression of breast cancer, are heavily impacted by the breast adipose tissue in which breast epithelial cells are embedded. Cells of the adipose tissue are responsive to external stimuli, including overfeeding, leading to remodeling and important changes in the secretion of factors known to drive the development and growth of cancers. Loss of factors like adiponectin and increased production of leptin, endotrophin, steroid hormones, and inflammatory mediators have been determined to be important mediators of the obesity-cancer link. Obesity is also associated with a structural remodeling of the adipose tissue, including increased localized fibrosis and disrupted angiogenesis that contribute to the development and progression of cancers. Furthermore, tumor cells feed off the adipose tissue, where increased lipolysis within adipocytes leads to the release of fatty acids and stromal cell aerobic glycolysis leading to the increased production of lactate. Both have been hypothesized to support the higher energetic demands of cancer cells. Here, we aim to provide an update on the state of the literature revolving around the role of the adipose tissue in cancer initiation and progression.
Collapse
Affiliation(s)
- Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Gao L, Yang T, Xue Z, Chan CKD. Hot Spots and Trends in the Relationship between Cancer and Obesity: A Systematic Review and Knowledge Graph Analysis. Life (Basel) 2023; 13:life13020337. [PMID: 36836694 PMCID: PMC9961916 DOI: 10.3390/life13020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer is one of the most difficult medical problems in today's world. There are many factors that induce cancer in humans, and obesity has become an important factor in inducing cancer. This study systematically and quantitatively describes the development trend, current situation and research hotspot of the relationship between cancer and obesity by using document statistics and knowledge graph visualization technology. Through the visualization technology analysis of knowledge graph in this study, the research hotspot and knowledge base source of the relationship between cancer and obesity in the last 20 years have been ascertained. Obesity-related factors, such as immunity, insulin, adiponectin, adipocytokines, nonalcoholic fatty liver and inflammatory reaction, may affect the occurrence of obesity and increase the risk of cancer. Obesity-related cancers include respiratory cancer, colorectal cancer, hepatocellular cancer, prostate cancer, gastric cancer, etc. Our research provides direction and basis for future research in this field, as well as technical and knowledge basis support for experts and researchers in related medical fields.
Collapse
Affiliation(s)
- Le Gao
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
- Correspondence: (L.G.); (T.Y.)
| | - Tian Yang
- Institute for Guangdong Qiaoxiang Studies, Wuyi University, Jiangmen 529000, China
- Correspondence: (L.G.); (T.Y.)
| | - Ziru Xue
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
| | | |
Collapse
|
5
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, Zhang Q. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res 2022; 41:203. [PMID: 35701840 PMCID: PMC9199207 DOI: 10.1186/s13046-022-02408-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the leading female cancer type and the cause of cancer-related mortality worldwide. Adipocytes possess important functions of energy supply, metabolic regulation, and cytokine release, and are also the matrix cell that supports mammary gland tissue. In breast cancer tumor microenvironment (TME), adipocytes are the prominent stromal cells and are implicated in inflammation, metastatic formation, metabolic remodeling, and cancer susceptibility.
Main body
It is well-established that adipocyte secretome is a reservoir engaged in the regulation of tumor cell behavior by secreting a large number of cytokines (IL-6, IL-8, and chemokines), adipokines (leptin, adiponectin, autotaxin, and resistin), lipid metabolites (free fatty acids and β-hydroxybutyrate), and other exosome-encapsulated substances. These released factors influence the evolution and clinical outcome of breast cancer through complex mechanisms. The progression of breast cancer tumors revolves around the tumor-adipose stromal network, which may contribute to breast cancer aggressiveness by increasing the pro-malignant potential of TME and tumor cells themselves. Most importantly, the secretome alterations of adipocytes are regarded as distinctly important targets for breast cancer diagnosis, treatment, and drug resistance.
Conclusion
Therefore, this review will provide a comprehensive description of the specific adipocyte secretome characteristics and interactions within TME cell populations, which will enable us to better tailor strategies for tumor stratification management and treatment.
Collapse
|
6
|
Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G. Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 2022; 12:1037831. [PMID: 36419880 PMCID: PMC9678367 DOI: 10.3389/fonc.2022.1037831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer has a high mortality rate among malignant tumors, with metastases identified as the main cause of the high mortality. Dysbiosis of the gut microbiota has become a key factor in the development, treatment, and prognosis of breast cancer. The many microorganisms that make up the gut flora have a symbiotic relationship with their host and, through the regulation of host immune responses and metabolic pathways, are involved in important physiologic activities in the human body, posing a significant risk to health. In this review, we build on the interactions between breast tissue (including tumor tissue, tissue adjacent to the tumor, and samples from healthy women) and the microbiota, then explore factors associated with metastatic breast cancer and dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites, changes in the balance of the probiotic environment and diet. These factors highlight the existence of a complex relationship between host-breast cancer progression-gut flora. Suggesting that gut flora dysbiosis may be a host-intrinsic factor affecting breast cancer metastasis and progression not only informs our understanding of the role of microbiota dysbiosis in breast cancer development and metastasis, but also the importance of balancing gut flora dysbiosis and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
7
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
8
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
9
|
McClellan B, Pham T, Harlow B, Lee G, Quach D, Jolly C, Brenner A, deGraffenried L. Modulation of Breast Cancer Cell FASN Expression by Obesity-Related Systemic Factors. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221111374. [PMID: 36035625 PMCID: PMC9400406 DOI: 10.1177/11782234221111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: The objective of this study is to determine the impact of exposure to obesity-related systemic factors on fatty acid synthase enzyme (FASN) expression in breast cancer cells. Methods: MCF-7 breast cancer cells were exposed to sera from patients having obesity or not having obesity and subjected to quantitative reverse transcription polymerase chain reaction (RT-qPCR). Subsequent MTT and colony-forming assays using both MCF-7 and T-47D cells exposed to sera and treated with or without FASN inhibitor, TVB-3166, were used. MCF-7 cells were then treated with insulin and the sterol regulatory element–binding protein (SREBP) processing inhibitor, betulin, prior to analysis of FASN expression by quantitative RT-qPCR and western blot. Insulin-induced SREBP-FASN promoter binding was analyzed by chromatin immunoprecipitation with an anti-SREBP antibody. Results: In response to sera exposure (body mass index [BMI] >30) there was an increase in FASN expression in breast cancer cells. Furthermore, treatment with the FASN inhibitor, TVB-3166, resulted in a decreased breast cancer cell survival and proliferation while increasing apoptosis upon sera exposure (BMI >30). Insulin-exposed MCF-7 cells exhibited an increased FASN messenger RNA and protein expression, which is abrogated upon SREBP inhibition. In addition, insulin exposure induced enhanced SREBP binding to the FASN promoter. Conclusions: Our results implicate FASN as a potential mediator of obesity-induced breast cancer aggression and a therapeutic target of patients with obesity-induced breast cancer.
Collapse
Affiliation(s)
- Bryan McClellan
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Tommy Pham
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Brittany Harlow
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Gabby Lee
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Duan Quach
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Christopher Jolly
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Brenner
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Linda deGraffenried
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
11
|
Prognostic value of cytokines in breast cancer: Correlation with positive hormonal status and obesity. FORUM OF CLINICAL ONCOLOGY 2021. [DOI: 10.2478/fco-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
The relation of interleukin 6 (IL6) and molecular subtypes as well as body mass index is not well settled. Little is known about interferon gamma (IFγ) and prognosis of breast cancer.
Patient and methods
Serum level of IL6 and IFγ was assessed by enzyme-linked immunosorbent assay (ELISA) and correlated with the TNM staging, molecular subtypes, and body mass index.
Results
Among 78 patients, the median age was 54 years. The majority of the cases were T2 (62.8%), N1 (38.5%), and M0 (89.74%) with stage II being the most common (47.4%). Most females were estrogen receptor (97.9%) and progesterone receptor positive (96.9%) with high Ki67 ≥ 20 (61.5%). Her2 neu positive presented 16.7%. Luminal A and luminal B presented 29.5% and 53.8%, respectively. Obese patients presented by far the majority (82.1%).
The median level of IL6 and IFγ was 56.20 ± 28.715 and 76.37 ± 41.54, respectively. IL6 was significantly correlated with tumor size (P = 0.001), nodal involvement (P = >0.0001), the presence of metastasis (P = 0.008), and the stage (P = >0.0001). High level of IL6 was associated with positive estrogen receptor, Her2 neu positive, luminal A, and being obese (P = 0.09, 0.07, 0.06, and 0.05, respectively).
High IFγ was only associated with lower nodal burden being significantly higher in N1 than in N3 (118.15 ± 31.07 vs 76.37 ± 44.46, P = 0.01) and early stage (P = 0.02).
Conclusion
IL6 level was correlated to the initial staging, hormonal status, being Her2 positive, and obesity. The IFγ level was inversely correlated IL6 regarding the nodal status (P = 0.05).
Collapse
|
12
|
Chang MC, Eslami Z, Ennis M, Goodwin PJ. Crown-like structures in breast adipose tissue of breast cancer patients: associations with CD68 expression, obesity, metabolic factors and prognosis. NPJ Breast Cancer 2021; 7:97. [PMID: 34294716 PMCID: PMC8298396 DOI: 10.1038/s41523-021-00304-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Crown-like structures of the breast (CLS-B), defined by the clustering of macrophages (identified using CD68 immunohistochemical staining) to surround a dying adipocyte, are a sign of adipose-tissue inflammation. In human cohorts, CLS-B positively correlates with older age, obesity, dyslipidemia and higher levels of glucose, insulin, C-reactive protein and IL-6. In an existing cohort of early-stage breast cancer patients, CLS-B were identified using H&E stained histologic sections (hCLS-B), and by CD68 immunohistochemistry (CD68 + CLS-B). We examined associations of H&E and CD68-detected CLS-B with clinicopathologic features using χ2 tests, with metabolic factors using Wilcoxon rank sum tests and with disease free and overall survival using Cox regression models. hCLS-B were detected in 59 of 163 patients with slides (36.2%) and CD68 + CLS-B in 37 of 119 patients with paraffin blocks (31.1%). hCLS-B were positively correlated with higher weight (p = 0.003), BMI (p = 0.0008) and C-reactive protein (p = 0.045). CD68 + CLS-B were positively correlated with higher weight (p = 0.006), BMI p = 0.001), leptin (p = 0.034), insulin (p = 0.008) and Homeostasis Model Assessment (p = 0.027). CD68 + CLS-B were associated with poor distant disease-free with a hazard ratio (HR) of 2.81, 95% confidence interval (CI) 1.20-6.57, and overall survival with HR 3.97 (1.66-9.48), while hCLS-B were not associated with either: HR for distant recurrence 0.59 (0.26-1.30); HR for death 1.04 (0.50-2.16). The presence of hCLS-B and of CD68 + CLS-B were associated with obesity; CD68 + CLS-B were associated with insulin resistance and adverse prognosis. Similar patterns were not seen for hCLS-B. Research is needed to understand the biologic basis for these differences.
Collapse
Affiliation(s)
- Martin C Chang
- University of Vermont Cancer Center, Burlington, VT, USA.
- Department of Pathology & Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA.
| | - Zohreh Eslami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Pamela J Goodwin
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhao C, Hu W, Xu Y, Wang D, Wang Y, Lv W, Xiong M, Yi Y, Wang H, Zhang Q, Wu Y. Current Landscape: The Mechanism and Therapeutic Impact of Obesity for Breast Cancer. Front Oncol 2021; 11:704893. [PMID: 34350120 PMCID: PMC8326839 DOI: 10.3389/fonc.2021.704893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. Obesity is a widespread health problem with increasing prevalence worldwide. Breast cancer (BC) has already been the most common cancer and one of the leading causes of cancer death in women worldwide. Nowadays, the impact of the rising prevalence of obesity has been recognized as a nonnegligible issue for BC development, outcome, and management. Adipokines, insulin and insulin-like growth factor, sex hormone and the chronic inflammation state play critical roles in the vicious crosstalk between obesity and BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight management of BC. In this review, we focus on the current landscape of the mechanisms of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An in-depth exploration of the underlying mechanisms linking obesity and BC will improve the efficiency of the existing treatments and even provide novel treatment strategies for BC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiping Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Mechanistic Insights into the Link between Obesity and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22083935. [PMID: 33920379 PMCID: PMC8069048 DOI: 10.3390/ijms22083935] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity is a pandemic of increasing worldwide prevalence. There is evidence of an association between obesity and the risk of prostate cancer from observational studies, and different biologic mechanisms have been proposed. The chronic low-level inflammation within the adipose tissue in obesity results in oxidative stress, activation of inflammatory cytokines, deregulation of adipokines signaling, and increased circulating levels of insulin and insulin-like growth factors (IGF). These mechanisms may be involved in epithelial to mesenchymal transformation into a malignant phenotype that promotes invasiveness, aggressiveness, and metastatic potential of prostate cancer. A thorough understanding of these mechanisms may be valuable in the development of effective prostate cancer prevention strategies and treatments. This review provides an overview of these mechanisms.
Collapse
|
15
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
16
|
Scully T, Ettela A, LeRoith D, Gallagher EJ. Obesity, Type 2 Diabetes, and Cancer Risk. Front Oncol 2021; 10:615375. [PMID: 33604295 PMCID: PMC7884814 DOI: 10.3389/fonc.2020.615375] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and type 2 diabetes have both been associated with increased cancer risk and are becoming increasingly prevalent. Metabolic abnormalities such as insulin resistance and dyslipidemia are associated with both obesity and type 2 diabetes and have been implicated in the obesity-cancer relationship. Multiple mechanisms have been proposed to link obesity and diabetes with cancer progression, including an increase in insulin/IGF-1 signaling, lipid and glucose uptake and metabolism, alterations in the profile of cytokines, chemokines, and adipokines, as well as changes in the adipose tissue directly adjacent to the cancer sites. This review aims to summarize and provide an update on the epidemiological and mechanistic evidence linking obesity and type 2 diabetes with cancer, focusing on the roles of insulin, lipids, and adipose tissue.
Collapse
Affiliation(s)
- Tiffany Scully
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
17
|
Mercurio V, Cuomo A, Cadeddu Dessalvi C, Deidda M, Di Lisi D, Novo G, Manganaro R, Zito C, Santoro C, Ameri P, Spallarossa P, Arboscello E, Tocchetti CG, Penna C. Redox Imbalances in Ageing and Metabolic Alterations: Implications in Cancer and Cardiac Diseases. An Overview from the Working Group of Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology (SIC). Antioxidants (Basel) 2020; 9:E641. [PMID: 32708201 PMCID: PMC7402085 DOI: 10.3390/antiox9070641] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a well established risk factor for cardiovascular (CV) diseases. In addition, several studies indicate that MetS correlates with the increased risk of cancer in adults. The mechanisms linking MetS and cancer are not fully understood. Several risk factors involved in MetS are also cancer risk factors, such as the consumption of high calorie-food or high fat intake, low fibre intake, and sedentary lifestyle. Other common aspects of both cancer and MetS are oxidative stress and inflammation. In addition, some anticancer treatments can induce cardiotoxicity, including, for instance, left ventricular (LV) dysfunction and heart failure (HF), endothelial dysfunction and hypertension. In this review, we analyse several aspects of MetS, cancer and cardiotoxicity from anticancer drugs. In particular, we focus on oxidative stress in ageing, cancer and CV diseases, and we analyse the connections among CV risk factors, cancer and cardiotoxicity from anticancer drugs.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Daniela Di Lisi
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Giuseppina Novo
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Roberta Manganaro
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Concetta Zito
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy;
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Eleonora Arboscello
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
- Interdepartmental Center of Clinical and Translational Sciences, Federico II University, 80131 Naples, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Torino, Italy
| |
Collapse
|
18
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
19
|
Ellis PE, Barron GA, Bermano G. Adipocytokines and their relationship to endometrial cancer risk: A systematic review and meta-analysis. Gynecol Oncol 2020; 158:507-516. [PMID: 32507648 DOI: 10.1016/j.ygyno.2020.05.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the association between circulating levels of adipocytokines (adiponectin, leptin, tumour necrosis factor alpha (TNFα), interleukin 6 (IL-6)) and growth factors (insulin-like growth factor I (IGF-I) and II (IGF-II)), and the risk of endometrial cancer. METHODS Cochrane, CINAHL, Embase, Medline and Web of Science were searched for English-language manuscripts published between January 2000 and August 2018 using the following string of words: cancer and endometrial and (obesity or BMI) and (adiponectin or TNF* or IGF-I or IGF-II or IL-6 or leptin). RESULTS Twenty articles were included in this meta-analysis, which corresponded to 18 studies involving 2921 endometrial carcinoma cases and 5302 controls. Fourteen articles reported circulating levels for adiponectin, seven for leptin, three for TNFα, three for IL-6 and one for IGF-I. No article reported values for IGF-II. Patients with circulating adiponectin levels in the highest tertile had decreased endometrial cancer risk compared to women with levels in the lowest tertile, (summary of odds ratio (SOR) 0.51, 95% confidence interval (CI): 0.38-0.69, p < 0.00001). Women with circulating leptin concentrations in the highest tertile had increased endometrial cancer risk compared to women with concentrations in the lowest tertile (SOR 2.19, 95% CI: 1.45-3.30, p = 0.0002). There was no difference in cancer risk between participants with the highest TNFα and IL-6 levels compared to the lowest levels (SOR 1.27, 95% CI: 0.88-1.83, p = 0.20 and SOR 1.20, 95% CI: 0.89-1.63, p = 0.23, respectively). CONCLUSIONS Endometrial cancer risk is inversely affected by adiponectin and leptin levels. There appears to be no relationship between TNFα and IL-6 and the overall risk of endometrial cancer.
Collapse
Affiliation(s)
- Patricia E Ellis
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, United Kingdom of Great Britain and Northern Ireland; Royal Surrey County Hospital, Egerton Road, Guildford, Surrey GU2 7XX, United Kingdom of Great Britain and Northern Ireland
| | - Gemma A Barron
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, United Kingdom of Great Britain and Northern Ireland
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
20
|
Faria SS, Corrêa LH, Heyn GS, de Sant'Ana LP, Almeida RDN, Magalhães KG. Obesity and Breast Cancer: The Role of Crown-Like Structures in Breast Adipose Tissue in Tumor Progression, Prognosis, and Therapy. J Breast Cancer 2020; 23:233-245. [PMID: 32595986 PMCID: PMC7311368 DOI: 10.4048/jbc.2020.23.e35] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with increased risk and aggressiveness of many types of cancer. Women with obesity and breast cancer are more likely to be diagnosed with larger and higher-grade tumors and have higher incidence of metastases than lean individuals. Increasing evidence indicates that obesity includes systemic, chronic low-grade inflammation, and that adipose tissue can act as an important endocrine site, secreting a variety of substances that may regulate inflammation, immune response, and cancer predisposition. Obesity-associated inflammation appears to be initially mediated by macrophage infiltration into adipose tissue. Macrophages can surround damaged or necrotic adipocytes, forming "crown-like" structures (CLS). CLS are increased in breast adipose tissue from breast cancer patients and are more abundant in patients with obesity conditions. Moreover, the CLS index-ratio from individuals with obesity seems to influence breast cancer recurrence rates and survival. In this review, we discuss the most recent cellular and molecular mechanisms involved in CLS establishment in the white adipose tissue of women with obesity and their implications for breast cancer biology. We also explain how CLS influence the tumor microenvironment and affect breast cancer behavior. Targeting breast adipose tissue CLS can be a crucial therapeutic tool in cancer treatment, especially in patients with obesity.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gabriella Simões Heyn
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Raquel das Neves Almeida
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
21
|
Bhardwaj P, Au CC, Benito-Martin A, Ladumor H, Oshchepkova S, Moges R, Brown KA. Estrogens and breast cancer: Mechanisms involved in obesity-related development, growth and progression. J Steroid Biochem Mol Biol 2019; 189:161-170. [PMID: 30851382 PMCID: PMC6502693 DOI: 10.1016/j.jsbmb.2019.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
Obesity is a risk factor for estrogen receptor-positive (ER+) breast cancer after menopause. The pro-proliferative effects of estrogens are well characterized and there is a growing body of evidence to also suggest an important role in tumorigenesis. Importantly, obesity not only increases the risk of breast cancer, but it also increases the risk of recurrence and cancer-associated death. Aromatase is the rate-limiting enzyme in estrogen biosynthesis and its expression in breast adipose stromal cells is hypothesized to drive the growth of breast tumors and confer resistance to endocrine therapy in obese postmenopausal women. The molecular regulation of aromatase has been characterized in response to many obesity-related molecules, including inflammatory mediators and adipokines. This review is aimed at providing an overview of our current knowledge in relation to the regulation of estrogens in adipose tissue and their role in driving breast tumor development, growth and progression.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, USA
| | - CheukMan C Au
- Department of Medicine, Weill Cornell Medicine, New York, USA
| | | | - Heta Ladumor
- Department of Medicine, Weill Cornell Medicine, New York, USA; Weill Cornell Medicine - Qatar, Doha, Qatar
| | | | - Ruth Moges
- Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, USA; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
22
|
Bernasochi GB, Bell JR, Simpson ER, Delbridge LM, Boon WC. Impact of Estrogens on the Regulation of White, Beige, and Brown Adipose Tissue Depots. Compr Physiol 2019; 9:457-475. [DOI: 10.1002/cphy.c180009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Cranford TL, Velázquez KT, Enos RT, Sougiannis AT, Bader JE, Carson MS, Bellone RR, Chatzistamou I, Nagarkatti M, Murphy EA. Effects of high fat diet-induced obesity on mammary tumorigenesis in the PyMT/MMTV murine model. Cancer Biol Ther 2018; 20:487-496. [PMID: 30388923 DOI: 10.1080/15384047.2018.1537574] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical studies provide strong evidence that obesity and associated adipose tissue (AT) inflammation are risk factors for breast cancer (BrCA); however, mechanistic knowledge of the interaction of obesity, BrCA, and menopausal status has proven to be not only lacking, but contradictory. Obesity-induced inflammation and elevated biosynthesis of estrogens, through aromatase-mediated metabolism of precursors, have been linked with hormone receptor positive (HP) postmenopausal BrCA but not previously associated with premenopausal BrCA risk. Thus, further delineation of the interaction of obesity, inflammation, and aromatase is required for the development of therapeutic treatment options. The purpose of this study was to examine the effect of high fat diet (HFD)-induced inflammation on tumorigenesis in a model of pre and postmenopausal HP BrCA. Female PyMT/MMTV ovary intact and ovariectomized mice were fed low and HFD diets to examine the role of obesity-induced inflammation and hormone production in the development of HP BrCA. Tumor statistics for number, volume, weight, histopathology scoring and gene expression of macrophage and inflammatory mediators were measured in the AT and mammary gland at sacrifice. HFD feedings of ovary intact mice resulted in increased adiposity and tumorigenesis, indicated by increased primary tumor volume, multiplicity, tumor burden, and increased tumor progression represented by histopathological scoring. HFD-induced obesity significantly upregulated aromatase and macrophage marker expression in the AT (F4/80 and CD11c) and mammary gland (Mertk) in a premenopausal model of BrCA. Conversely, HFD feedings had no significant effect on tumorigenesis in a postmenopausal model of BrCA despite large increases in adiposity in ovariectomized mice; however, limitations within the model may have precluded any significant findings. This data suggests that obesity-induced increases in inflammation and hormone production, via aromatase expression, is associated with increases in tumorigenesis in a model of premenopausal HP BrCA in the PyMT/MMTV strain.
Collapse
Affiliation(s)
- Taryn L Cranford
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Kandy T Velázquez
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Reilly T Enos
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Alexander T Sougiannis
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Jackie E Bader
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Meredith S Carson
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Rebecca R Bellone
- b Department of Population Health & Reproduction, School of Veterinary Medicine , University of California at Davis , Davis , CA , USA
| | - Ioulia Chatzistamou
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - Mitzi Nagarkatti
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| | - E Angela Murphy
- a Department of Pathology, Microbiology & Immunology, School of Medicine , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
24
|
Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast Cancer and Its Relationship with the Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:1747. [PMID: 30110974 PMCID: PMC6121903 DOI: 10.3390/ijerph15081747] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The microorganisms that live symbiotically in human beings are increasingly recognized as important players in health and disease. The largest collection of these microorganisms is found in the gastrointestinal tract. Microbial composition reflects both genetic and lifestyle variables of the host. This microbiota is in a dynamic balance with the host, exerting local and distant effects. Microbial perturbation (dysbiosis) could contribute to the risk of developing health problems. Various bacterial genes capable of producing estrogen-metabolizing enzymes have been identified. Accordingly, gut microbiota is capable of modulating estrogen serum levels. Conversely, estrogen-like compounds may promote the proliferation of certain species of bacteria. Therefore, a crosstalk between microbiota and both endogenous hormones and estrogen-like compounds might synergize to provide protection from disease but also to increase the risk of developing hormone-related diseases. Recent research suggests that the microbiota of women with breast cancer differs from that of healthy women, indicating that certain bacteria may be associated with cancer development and with different responses to therapy. In this review, we discuss recent knowledge about the microbiome and breast cancer, identifying specific characteristics of the human microbiome that may serve to develop novel approaches for risk assessment, prevention and treatment for this disease.
Collapse
Affiliation(s)
- Mariana F Fernández
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Iris Reina-Pérez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Juan Manuel Astorga
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
| | - Andrea Rodríguez-Carrillo
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
| | - Julio Plaza-Díaz
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
| | - Luis Fontana
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
| |
Collapse
|
25
|
Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the Adipose Microenvironment and the Obesity-Cancer Link-A Systematic Review. Cancer Prev Res (Phila) 2018; 10:494-506. [PMID: 28864539 DOI: 10.1158/1940-6207.capr-16-0322] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Obesity and its associated metabolic dysregulation are established risk factors for many cancers. However, the biologic mechanisms underlying this relationship remain incompletely understood. Given the rising rates of both obesity and cancer worldwide, and the challenges for many people to lose excess adipose tissue, a systematic approach to identify potential molecular and metabolic targets is needed to develop effective mechanism-based strategies for the prevention and control of obesity-driven cancer. Epidemiologic, clinical, and preclinical data suggest that within the growth-promoting, proinflammatory microenvironment accompanying obesity, crosstalk between adipose tissue (comprised of adipocytes, macrophages and other cells) and cancer-prone cells may occur via obesity-associated hormones, cytokines, and other mediators that have been linked to increased cancer risk and/or progression. We report here a systematic review on the direct "crosstalk" between adipose tissue and carcinomas in humans. We identified 4,641 articles with n = 20 human clinical studies, which are summarized as: (i) breast (n = 7); (ii) colorectal (n = 4); (iii) esophageal (n = 2); (iv) esophageal/colorectal (n = 1); (v) endometrial (n = 1); (vi) prostate (n = 4); and (vii) ear-nose-throat (ENT) cancer (n = 1). Findings from these clinical studies reinforce preclinical data and suggest organ-dependent crosstalk between adipose tissue and carcinomas via VEGF, IL6, TNFα, and other mechanisms. Moreover, visceral white adipose tissue plays a more central role, as it is more bioenergetically active and is associated with a more procancer secretome than subcutaneous adipose tissue. Efforts to eavesdrop and ultimately interfere with this cancer-enhancing crosstalk may lead to new targets and strategies for decreasing the burden of obesity-related cancers. Cancer Prev Res; 10(9); 494-506. ©2017 AACR.
Collapse
Affiliation(s)
- Caroline Himbert
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Mahmoud Delphan
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah.,Exercise Immunology, Physical Education and Sport Sciences Department, Tarbiat Modares University, Tehran, Iran
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah. .,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Freitas-Alves DR, Vieira-Monteiro HDA, Piranda DN, Sobral-Leite M, da Silva TSL, Bergmann A, Valença SS, Perini JA, Vianna-Jorge R. PTGS2 polymorphism rs689466 favors breast cancer recurrence in obese patients. Endocr Relat Cancer 2018; 25:351-365. [PMID: 29321183 DOI: 10.1530/erc-17-0374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer is the leading cancer among women, and its increasing incidence is a challenge worldwide. Estrogen exposure is the main risk factor, but obesity among postmenopausal women has been shown to favor disease onset and progression. The link between obesity and mammary carcinogenesis involves elevated estrogen production and proinflammatory stimuli within the adipose tissue, with activation of the cyclooxygenase-2 pathway. Here, we evaluate the impact of the four most common cyclooxygenase-2 gene polymorphisms (rs689465, rs689466, rs20417 and rs20417), in combination with obesity, on the risk of breast cancer progression in a cohort of Brazilian breast cancer patients (N = 1038). Disease-free survival was evaluated using Kaplan-Meier curves, with multivariate Cox proportional hazards regression models for calculation of adjusted hazard ratios (HRadj). Obesity did not affect disease progression, whereas rs689466 variant genotypes increased the recurrence risk among obese patients (HRadj = 2.5; 95% CI = 1.4-4.3), either for luminal (HRadj = 2.2; 95% CI = 1.1-4.2) or HER2-like and triple-negative tumors (HRadj = 3.2; 95% CI = 1.2-8.5). Likewise, the haplotype *4, which contains variant rs689466, was associated with shorter disease-free survival among obese patients (HRadj = 3.3; 95% CI = 1.8-6.0), either in luminal (HRadj = 3.5; 95% CI = 1.6-7.3) or HER2-like and triple-negative (HRadj = 3.1; 95% CI = 1.1-8.9) tumors. Such deleterious impact of variant rs689466 on disease-free survival of obese breast cancer patients was restricted to postmenopausal women. In conclusion, cyclooxygenase-2 genotyping may add to the prognostic evaluation of obese breast cancer patients.
Collapse
Affiliation(s)
- Daniely Regina Freitas-Alves
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Hayra de Andrade Vieira-Monteiro
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diogo Nascimento Piranda
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Sobral-Leite
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Division of Molecular PathologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Taiana Sousa Lopes da Silva
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Biologia Molecular e CelularInstituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Anke Bergmann
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samuel Santos Valença
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jamila Alessandra Perini
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Pesquisa de Ciências FarmacêuticasUnidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rosane Vianna-Jorge
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
28
|
Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 2018; 118:471-479. [PMID: 29360814 PMCID: PMC5830593 DOI: 10.1038/bjc.2017.435] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: The diversity and composition of the gut microbiota may affect breast cancer risk by modulating systemic levels of oestrogens and inflammation. The current investigation tested this hypothesis in postmenopausal women by identifying breast cancer associations with an inflammation marker, oestrogen levels, and faecal microbes that were or were not coated with mucosal immunoglobulin A (IgA). Methods: In this population-based study, we compared 48 postmenopausal breast cancer cases (75% stage 0–1, 88% oestrogen-receptor positive) to 48 contemporaneous, postmenopausal, normal-mammogram, age-matched controls. Microbiota metrics employed 16S rRNA gene amplicon sequencing from IgA-coated and -noncoated faecal microbes. High-performance liquid chromatography/mass spectrometry (HPLC/MS) and radioimmunoassay were used to quantify urine prostaglandin E metabolite (PGE-M), a possible marker of inflammation; urine oestrogens and oestrogen metabolites were quantified by HPLC/MS-MS. Results: Women with pre-treatment breast cancer had non-significantly elevated oestrogen levels; controls’ (but not cases’) oestrogens were directly correlated with their IgA-negative microbiota alpha diversity (P=0.012). Prostaglandin E metabolite levels were not associated with case status, oestrogen levels, or alpha diversity. Adjusted for oestrogens and other variables, cases had significantly reduced alpha diversity and altered composition of both their IgA-positive and IgA-negative faecal microbiota. Cases’ faecal microbial IgA-positive imputed Immune System Diseases metabolic pathway genes were increased; also, cases’ IgA-positive and IgA-negative imputed Genetic Information Processing pathway genes were decreased (P⩽0.01). Conclusions: Compared to controls, breast cancer cases had significant oestrogen-independent associations with the IgA-positive and IgA-negative gut microbiota. These suggest that the gut microbiota may influence breast cancer risk by altered metabolism, oestrogen recycling, and immune pressure.
Collapse
|
29
|
Associations of obesity and physical activity with serum and intratumoral sex steroid hormone levels among postmenopausal women with breast cancer: analysis of paired serum and tumor tissue samples. Breast Cancer Res Treat 2017; 162:115-125. [PMID: 28044214 DOI: 10.1007/s10549-016-4094-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE It has been hypothesized that intratumoral estrogens may play important roles in the growth of breast cancer. However, few studies have investigated such intratumoral hormones, or their association with risk factors of breast cancer. METHODS In this cross-sectional study, hormone levels in paired serum and tumor tissue samples from 146 postmenopausal women with breast cancer were measured by liquid chromatography-tandem mass spectrometry and compared between estrogen/progesterone (ER/PgR) subtypes. The associations of risk factors including body mass index (BMI) and other lifestyle factors with these hormone levels were investigated using analysis of covariance. RESULTS The level of estradiol (E2) in tumor tissue was extremely high in women with ER+ (geometric mean 95.6 pg/g) relative to women with ER-/PgR- (8.9 pg/g), whereas serum E2 level did not differ much between the two groups (3.1 and 2.8 pg/ml, respectively). Serum levels of precursors for E2, including testosterone (T) and androstenedione (Adione), and tissue Adione level, were high among women with ER+. After adjustment for confounding variables, BMI was found to be positively associated with tissue levels of E2, estrone (E1), T, and Adione among women with ER+ (P trend < 0.0001 for E2; 0.0016 for E1; 0.0002 for T; and 0.03 for Adione). CONCLUSION The data suggest that tissue E2 is related to the growth of receptor-positive breast cancer and that risk factors such as BMI affect tissue levels of E2 and its precursors. Understanding of hormonal environments within tumor tissue may be important for elucidating hormonal etiology of breast cancer and improving the prognosis of patients.
Collapse
|
30
|
Engin A. Obesity-associated Breast Cancer: Analysis of risk factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:571-606. [PMID: 28585217 DOI: 10.1007/978-3-319-48382-5_25] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Furthermore, obese women are at higher risk of all-cause and breast cancer specific mortality when compared to non-obese women with breast cancer. In this context, increased levels of estrogens due to excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, hyperactivation of insulin-like growth factors (IGFs) pathways, adipocyte-derived adipokines, hypercholesterolemia and excessive oxidative stress contribute to the development of breast cancer in obese women. While higher breast cancer risk with hormone replacement therapy is particularly evident among lean women, in postmenopausal women who are not taking exogenous hormones, general obesity is a significant predictor for breast cancer. Moreover, increased plasma cholesterol leads to accelerated tumor formation and exacerbates their aggressiveness. In contrast to postmenopausal women, premenopausal women with high BMI are inversely associated with breast cancer risk. Nevertheless, life-style of women for breast cancer risk is regulated by avoiding the overweight and a high-fat diet. Estrogen-plus-progestin hormone therapy users for more than 5 years have elevated risks of both invasive ductal and lobular breast cancer. Additionally, these cases are more commonly node-positive and have a higher cancer-related mortality. Collectively, in this chapter, the impacts of obesity-related estrogen, cholesterol, saturated fatty acid, leptin and adiponectin concentrations, aromatase activity, leptin and insulin resistance on breast cancer patients are evaluated. Obesity-related prognostic factors of breast cancer also are discussed at molecular basis.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
31
|
Nian X, Nagai Y, Jeffers C, N. Maxwell K, Zhang H. Dietary influence on estrogens and cytokines in breast cancer. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Bougaret L, Delort L, Billard H, Lequeux C, Goncalves-Mendes N, Mojallal A, Damour O, Vasson MP, Caldefie-Chezet F. Supernatants of Adipocytes From Obese Versus Normal Weight Women and Breast Cancer Cells: In Vitro Impact on Angiogenesis. J Cell Physiol 2016; 232:1808-1816. [PMID: 27886379 DOI: 10.1002/jcp.25701] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Breast cancer is correlated with a higher risk of metastasis in obese postmenopausal women. Adipokines, whose plasma concentrations are modulated in obese subjects and adipocytes surround mammary cells, suggesting that adipocyte secretome affect mammary tumorogenesis. We hypothesize that mature adipocyte secretions from obese women conditioned or not by breast neoplasic cells, increase changes on the angiogenesis stages. Supernatants of human mature adipocytes, differentiated from stem cells of either adipose tissue of normal weight (MA20) or obese (MA30) women or obtained from co-cultures between MA20 and MA30 and breast cancer cell line MCF-7, were collected. The impact of these supernatants was investigated on proliferation, migration, and tube formation by endothelial cells (HUVEC). MA20 and MA30 showed a preservation of their "metabolic memory" (increase of Leptin, ObR, VEGF, CYP19A1, and a decrease of Adiponectin expression in MA30 compared to MA20). Supernatants from obese-adipocytes increased HUVEC proliferation, migration, and sprouting like with supernatants obtained from co-cultures of MA/MCF-7 regardless the women's BMI. Additional analyses such as the use of neutralizing antibodies, analysis of supernatants (Milliplex®) and variations in gene expression (qRT-PCR), strongly suggest an implication of IL-6, or a synergistic action among adipokines, probably associated with that of VEGF or IL-6. As a conclusion, supernatants from co-cultures of MA30 and MCF-7 cells increase proliferation, migration, and sprouting of HUVEC cells. These results provide insights into the interaction between adipocytes and epithelial cancer cells, particularly in case of obesity. The identification of synergistic action of adipokines would therefore be a great interest in developing preventive strategies. J. Cell. Physiol. 232: 1808-1816, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauriane Bougaret
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France
| | - Laetitia Delort
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France
| | - Hermine Billard
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Nicolas Goncalves-Mendes
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France
| | - Ali Mojallal
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Hôpital Edouard-Herriot, Lyon, France
| | | | - Marie-Paule Vasson
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France.,Centre Anti-Cancéreux Jean-Perrin, Clermont-Ferrand, France.,Cancéropôle Lyon Auvergne Rhône-Alpes (CLARA), Lyon, France
| | - Florence Caldefie-Chezet
- UMR1019-INRA-UdA, Unité de Nutrition Humaine, Equipe ECREIN, UFR Pharmacie, Université d'Auvergne, Clermont-Ferrand, France.,Cancéropôle Lyon Auvergne Rhône-Alpes (CLARA), Lyon, France
| |
Collapse
|
33
|
Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer. Mediators Inflamm 2016; 2016:4549676. [PMID: 26884646 PMCID: PMC4739263 DOI: 10.1155/2016/4549676] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Macrophages are critical mediators of inflammation and important regulators of developmental processes. As a key phagocytic cell type, macrophages evolved as part of the innate immune system to engulf and process cell debris and pathogens. Macrophages produce factors that act directly on their microenvironment and also bridge innate immune responses to the adaptive immune system. Resident macrophages are important for acting as sensors for tissue damage and maintaining tissue homeostasis. It is now well-established that macrophages are an integral component of the breast tumor microenvironment, where they contribute to tumor growth and progression, likely through many of the mechanisms that are utilized during normal wound healing responses. Because macrophages contribute to normal mammary gland development and breast cancer growth and progression, this review will discuss both resident mammary gland macrophages and tumor-associated macrophages with an emphasis on describing how macrophages interact with their surrounding environment during normal development and in the context of cancer.
Collapse
|
34
|
Wang X, Simpson ER, Brown KA. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer. J Steroid Biochem Mol Biol 2015. [PMID: 26209254 DOI: 10.1016/j.jsbmb.2015.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of breast cancer cases has increased in the last a few decades and this is believed to be associated with the increased prevalence of obesity worldwide. The risk of breast cancer increases with age beyond menopause and the relationship between obesity and the risk of breast cancer in postmenopausal women is well established. The majority of postmenopausal breast cancers are estrogen receptor (ER) positive and estrogens produced in the adipose tissue promotes tumor formation. Obesity results in the secretion of inflammatory factors that stimulate the expression of the aromatase enzyme, which converts androgens into estrogens in the adipose tissue. Evidence demonstrating a link between obesity and breast cancer has led to the investigation of metabolic pathways as novel regulators of estrogen production, including pathways that can be targeted to inhibit aromatase specifically within the breast. This review aims to present some of the key findings in this regard.
Collapse
Affiliation(s)
- Xuyi Wang
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Evan R Simpson
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
35
|
Bowers LW, deGraffenried LA. Targeting the COX-2 Pathway to Improve Therapeutic Response in the Obese Breast Cancer Patient Population. ACTA ACUST UNITED AC 2015; 1:336-345. [PMID: 26442202 DOI: 10.1007/s40495-015-0041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple studies have demonstrated that obesity is associated with a worse outcome for all breast cancer subtypes and that obese breast cancer patients do not respond as well as normal weight patients to aromatase inhibitor treatment and chemotherapy. While a number of mechanisms have been proposed to explain this link, recent studies have provided evidence that elevated local cyclooxygenase-2 (COX-2) expression and the resulting increase in prostaglandin E2 (PGE2) production may play an important role. COX-2 upregulation in breast tumors is associated with a poor prognosis, a connection generally attributed to PGE2's direct effects on apoptosis and invasion as well as its stimulation of pre-adipocyte aromatase expression and subsequent estrogen production. Research in this area has provided a strong foundation for the hypothesis that COX-2 signaling is involved in the obesity-breast cancer link, and further study regarding the role of COX-2 in this link is warranted.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| | - Linda A deGraffenried
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| |
Collapse
|