1
|
Pereyra-Vergara F, Olivares-Corichi IM, Luna-Arias JP, Méndez-Luna D, García-Sánchez JR. Epicatechin Decreases UCP2 Gene Expression in MDA-MB-231 Breast Cancer Cells by the Presence of a Regulatory Element in the Promoter. Int J Mol Sci 2025; 26:4102. [PMID: 40362341 PMCID: PMC12071687 DOI: 10.3390/ijms26094102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Uncoupling protein 2 (UCP2) plays an important role in normal cells because it mitigates the cytotoxic effect of reactive oxygen species (ROS). However, its overexpression in cancer cells is related to drug resistance and increased cell proliferation due to a decrease in ROS production. In this context, molecules that regulate or block UCP2 have potential as anticancer agents. (-)-Epicatechin, a flavonoid that inhibits cell proliferation, increases ROS, and induces apoptosis in cancerous cells, was evaluated for its effects on UCP2 gene expression. For this purpose, the real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were performed in MDA-MB-231 and MCF-10A cells to determine the effects of (-)-epicatechin on UCP2 expression. Furthermore, the impact of (-)-epicatechin on cell viability was also determined. To analyze the transcriptional regulation of the UCP2 gene by (-)-epicatechin, a 5'-region of the human UCP2 gene (-2093/+297) was amplified, sequenced, cloned, and inserted into a reporter plasmid. To analyze the promoter activity and regulatory motif involved in the effects of (-)-epicatechin, several deletions of the UCP2 promoter were generated and transfected into MDA-MB-231 and MCF-10A cells. An electrophoretic mobility shift assay (EMSA) was carried out to detect the interaction between DNA and proteins involved in the effect of (-)-epicatechin. The increased expression of the UCP2 gene in MDA-MB-231 cells was decreased by (-)-epicatechin, and the opposite effect was observed in MCF-10A cells. The promoter region of the human UCP2 gene (-2093/+297) showed activity, which was decreased by (-)-epicatechin. A sequence of 117 bp located at position -109 b to +8 b has a fragment of 90 bp that is related to the (-)-epicatechin effect. Bioinformatics analysis and EMSA of this sequence revealed the presence of a regulatory site for a protein with zinc fingers. The presence of a response element to (-)-epicatechin in the human UCP2 promoter revealed that the inhibition of this gene in MDA-MB-231 breast cancer cells occurred at the transcriptional level. In this study, we propose the mechanism of action of (-)-epicatechin that could aid in cancer treatment.
Collapse
Affiliation(s)
- Fernando Pereyra-Vergara
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | - Ivonne María Olivares-Corichi
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de México C.P. 07360, Mexico;
| | - David Méndez-Luna
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - José Rubén García-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| |
Collapse
|
2
|
Ul Hassan MH, Shahbaz M, Imran M, Momal U, Naeem H, Mujtaba A, Hussain M, Anwar MJ, Alsagaby SA, Al Abdulmonem W, Yehuala TF, Abdelgawad MA, El‐Ghorab AH, Selim S, Mostafa EM. Isoflavones: Promising Natural Agent for Cancer Prevention and Treatment. Food Sci Nutr 2025; 13:e70091. [PMID: 40078339 PMCID: PMC11896816 DOI: 10.1002/fsn3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Isoflavones are currently being investigated by researchers in order to demonstrate their ability to prevent the proliferation of cancer cells. The current review aimed to demonstrate the potential of isoflavones to eliminate cancerous cells in the stomach, liver, lung, breast, and prostate, as their anticancer properties are due to the ability to block the signaling pathways of the extracellular signal-controlled kinase (MAPK/ERK) and proteasome (PI3K/AKT/mTOR). Isoflavones can inhibit the cell division of various cancer cells. Isoflavones can block the androgen receptor (AR), a protein that is required for the growth and dissemination of prostate cancer. It initiates the caspase cascade and obstructs the production of new proteins to eliminate lung cancer cells. These inhibit colon cancer cells by entering their G2/M cell cycle phase and inducing apoptosis. These are also known to inhibit the production of cyclin-dependent kinase 2 and cyclin B1, two proteins that are related to an enhanced risk of colon cancer. These suppress the breakdown of cyclin B1 and CDK2 to stop the development of cancer. Preclinical evidence consistently supports the efficacy of isoflavones in suppressing tumor growth; however, human clinical trials show variability due to differences in bioavailability, metabolism, and dosage. Despite their promise as alternative or adjunctive cancer therapies, limitations such as low solubility, interindividual metabolic variations, and inconsistent clinical outcomes necessitate further large-scale, controlled trials. Future research should focus on improving bioavailability and exploring synergistic effects with conventional therapies.
Collapse
Affiliation(s)
- Muhammad Hammad Ul Hassan
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ushna Momal
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
- Post Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir Dar CityEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| |
Collapse
|
3
|
Li J, Lv J, Zhang Y, Zhou Z, Geng H, Zhou Y, Yang C, Feng N. Inverted U-shape association between urine equol levels and cancer: a national population-based cross-sectional study. Sci Rep 2025; 15:7114. [PMID: 40016447 PMCID: PMC11868629 DOI: 10.1038/s41598-025-91846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Equol, a naturally occurring phytoestrogen derived from the fermentation of soy and soy-based products by gut bacteria, is recognized for its diverse health benefits. While there is speculation about its association with cancer prevention, the scientific community has yet to reach a consensus due to the variability in research findings. Our study aims to shed light on this topic by examining the correlation between urine equol concentrations and the cancer risk among the American population. The National Health and Nutrition Examination Survey (NHANES) is a national survey of U.S. civilians in which cancer participants are enrolled in a database by a sample questionnaire. This study included 2797 Americans aged 40 years and older in the NHANES database (2005-2010). The relationship between urine equol concentration and cancer was analysed using weighted logistic regression models, stratified analysis, smoothed curve fitting and threshold effect analysis were also performed. Among the 2797 participants in our study, 390 individuals received a cancer diagnosis. Our findings indicate a positive correlation between urine equol levels and the risk of cancer. Notably, individuals in the highest quartile of equol excretion exhibited a significantly elevated risk of cancer, with a 25.4% increase compared to those in the lowest quartile (POR = 1.254, 95% CI: 1.252, 1.256), after fully adjusting for confounders. Similar results were observed in other adjusted models. A non-linear relationship in the shape of an inverted U-shape can be observed by smoothed curve fitting, and the inflection point is 25.5. Urinary equol concentrations below 25.5 ng/ml were positively associated with cancer risk, while equol concentrations above 25.5 ng/ml showed a slight negative trend in cancer risk. However, further prospective studies are needed to provide more robust evidence and confirmed in large clinical trials.
Collapse
Affiliation(s)
- Jufa Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Medical School of Nantong University, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Zhihao Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Haochen Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chun Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Medical School of Nantong University, Nantong, China.
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
4
|
Ayoup MS, Daqa M, Salama Y, Hazzam R, Hawsawi MB, Soliman SM, Al-Maharik N. Efficient Consecutive Synthesis of Fluorinated Isoflavone Analogs, X-Ray Structures, Hirshfeld Analysis, and Anticancer Activity Assessment. Molecules 2025; 30:795. [PMID: 40005107 PMCID: PMC11857983 DOI: 10.3390/molecules30040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The synthesis of 7-O-carboxymethyl-4'-fluoroisoflavone 4 and 7-O-carboxymethyl-4'-fluoro-2-trifluormethylisoflavone 7 involved the cyclization of 2,4-dihydroxy-4'-fluorodeoxybenzoin 1, followed by 7-O-alkylation with methyl bromoacetate and subsequent acid-catalyzed hydrolysis. The structures of the novel compounds were validated using a range of techniques, including XRD crystallography (1H, 19F, 13C)-NMR, and IR. Only interhalogen contacts were detected in 5, while they were completely lacking in 2 and 4, owing to the presence of crystalline ethanol in the crystal structure. The %F…F in 5 was 12.2% based on Hirshfeld calculations. The aromatic π-π stacking interactions were important only in 2 and 4 but not observed in 5. Isoflavones 4, 5, and 7 displayed anticancer activity against MCF-7 cancer cells, with IC50 values of 13.66, 15.43, and 11.73 µM, respectively.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Malak Daqa
- Department of Chemistry, Science College, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine; (M.D.); (R.H.)
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine;
| | - Rand Hazzam
- Department of Chemistry, Science College, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine; (M.D.); (R.H.)
| | - Mohammed B. Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Nawaf Al-Maharik
- Department of Chemistry, Science College, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine; (M.D.); (R.H.)
| |
Collapse
|
5
|
Andretta E, Costa A, Ventura E, Quintiliani M, Damiano S, Giordano A, Morrione A, Ciarcia R. Capsaicin Exerts Antitumor Activity in Mesothelioma Cells. Nutrients 2024; 16:3758. [PMID: 39519591 PMCID: PMC11547426 DOI: 10.3390/nu16213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mesothelioma is an aggressive cancer with limited treatment options. Mesothelioma therapy often involves a multimodal approach including surgery, radiotherapy and chemotherapy. However, the prognosis for patients remains poor. Difficult diagnosis, late symptoms when the tumor is in an advanced stage and the onset of chemotherapy resistance make mesothelioma difficult to treat. For this reason, it is essential to discover new pharmacological approaches. Capsaicin (CAPS) is the active compound of chili peppers. Based on CAPS's anticancer properties on various tumor lines and its chemo-sensitizing action on resistant cells, in this study, we evaluated the effects of CAPS on mesothelioma cells to assess its potential use in mesothelioma therapy. METHODS To evaluate antiproliferative effects of CAPS, we performed MTS assays on various mesothelioma cells, representative of all major mesothelioma subtypes. Transwell migration and wound-healing assays were used to examine the effect of CAPS on mesothelioma cell migration. We also determined the effects of CAPS on oncogenic signaling pathways by assessing the levels of AKT and MAPK activation. RESULTS In this study, we show that CAPS significantly reduces proliferation of both parental and cisplatin-resistant mesothelioma cells. CAPS promotes S-phase cell cycle arrest and inhibits lateral motility and migration of mesothelioma cells. Accordingly, CAPS suppresses AKT and ERK1/2 activation in MSTO-211H and NCI-H2052 cells. Our results support an antitumor effect of CAPS on cisplatin-resistant mesothelioma cells, suggesting that it may reduce resistance to cisplatin. CONCLUSIONS Our results could pave the way for further studies to evaluate the use of CAPS for mesothelioma treatment.
Collapse
Affiliation(s)
- Emanuela Andretta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, 80126 Naples, Italy
| | - Aurora Costa
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | | | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| |
Collapse
|
6
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Lv J, Jin S, Zhang Y, Zhou Y, Li M, Feng N. Equol: a metabolite of gut microbiota with potential antitumor effects. Gut Pathog 2024; 16:35. [PMID: 38972976 PMCID: PMC11229234 DOI: 10.1186/s13099-024-00625-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
An increasing number of studies have shown that the consumption of soybeans and soybeans products is beneficial to human health, and the biological activity of soy products may be attributed to the presence of Soy Isoflavones (SI) in soybeans. In the intestinal tracts of humans and animals, certain specific bacteria can metabolize soy isoflavones into equol. Equol has a similar chemical structure to endogenous estradiol in the human body, which can bind with estrogen receptors and exert weak estrogen effects. Therefore, equol plays an important role in the occurrence and development of a variety of hormone-dependent malignancies such as breast cancer and prostate cancer. Despite the numerous health benefits of equol for humans, only 30-50% of the population can metabolize soy isoflavones into equol, with individual variation in gut microbiota being the main reason. This article provides an overview of the relevant gut microbiota involved in the synthesis of equol and its anti-tumor effects in various types of cancer. It also summarizes the molecular mechanisms underlying its anti-tumor properties, aiming to provide a more reliable theoretical basis for the rational utilization of equol in the field of cancer treatment.
Collapse
Affiliation(s)
- Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Nantong University Medical School, Nantong, China.
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| |
Collapse
|
8
|
Sato T, Yagi A, Yamauchi M, Kumondai M, Sato Y, Kikuchi M, Maekawa M, Yamaguchi H, Abe T, Mano N. The Use of an Antioxidant Enables Accurate Evaluation of the Interaction of Curcumin on Organic Anion-Transporting Polypeptides 4C1 by Preventing Auto-Oxidation. Int J Mol Sci 2024; 25:991. [PMID: 38256064 PMCID: PMC10815578 DOI: 10.3390/ijms25020991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Ayaka Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan;
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan;
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119236. [PMID: 37298188 DOI: 10.3390/ijms24119236] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Flavonoids are polyphenolic phytochemical compounds found in many plants, fruits, vegetables, and leaves. They have a multitude of medicinal applications due to their anti-inflammatory, antioxidative, antiviral, and anticarcinogenic properties. Furthermore, they also have neuroprotective and cardioprotective effects. Their biological properties depend on the chemical structure of flavonoids, their mechanism of action, and their bioavailability. The beneficial effects of flavonoids have been proven for a variety of diseases. In the last few years, it is demonstrated that the effects of flavonoids are mediated by inhibiting the NF-κB (Nuclear Factor-κB) pathway. In this review, we have summarized the effects of some flavonoids on the most common diseases, such as cancer, cardiovascular, and human neurodegenerative diseases. Here, we collected all recent studies describing the protective and prevention role of flavonoids derived from plants by specifically focusing their action on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
10
|
Al-Thamiree Mezban S, Fox SW. Genistein and coumestrol reduce MCF-7 breast cancer cell viability and inhibit markers of preferential metastasis, bone matrix attachment and tumor-induced osteoclastogenesis. Arch Biochem Biophys 2023; 740:109583. [PMID: 36967033 DOI: 10.1016/j.abb.2023.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The propensity of breast cancer to preferentially metastasize to the skeleton is well known. Once established in bone metastatic breast cancers have a poor prognosis due to their ability to promote extensive bone loss which augments tumor burden. Unfortunately, current anti-resorptive therapies for skeletal metastasis are typically prescribed after secondary tumors have formed and are palliative in nature. One group of compounds with the potential to reduce both tumor burden and osteolysis are phytoestrogens (PE), but the mechanisms mediating a beneficial effect are unclear. Therefore, the current study examined the effect of genistein and coumestrol alone or in combination on breast cancer cell number, expression of mediators of preferential skeletal metastasis, bone matrix attachment and tumor-induced osteoclast formation. Results showed that genistein and coumestrol significantly reduced viable cell number in an estrogen receptor dependent manner (p < 0.05), whereas combinations of PE had no effect. In addition, genistein and coumestrol significantly reduced expression of genes driving epithelial to mesenchymal transition (snail), bone attachment (CXCR4 and integrin αV) and osteolysis (PTHrP and TNF-α). In keeping with this genistein and coumestrol significantly suppressed attachment of breast cancer cells to bone matrix and inhibited tumor and RANKL-induced osteoclast formation. Our data suggests that phytoestrogens not only decrease breast cancer cell viability but also antagonize essential tumor bone interactions that establish and drive the progression of skeletal metastasis.
Collapse
|
11
|
Wang X, Chen B, Fang X, Zhong Q, Liao Z, Wang J, Wu X, Ma Y, Li P, Feng X, Wang L. Soy isoflavone-specific biotransformation product S-equol in the colon: physiological functions, transformation mechanisms, and metabolic regulatory pathways. Crit Rev Food Sci Nutr 2022; 64:5462-5490. [PMID: 36503364 DOI: 10.1080/10408398.2022.2154744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest that regular intake of soy isoflavones may reduce the incidence of estrogen-dependent and aging-associated disorders. Equol is a metabolite of soy isoflavone (SI) produced by specific gut microbiota and has many beneficial effects on human health due to its higher biological activity compared to SI. However, only 1/3 to 1/2 of humans are able to produce equol in the body, which means that not many people can fully benefit from SI. This review summarizes the recent advances in equol research, focusing on the chemical properties, physiological functions, conversion mechanisms in vitro and vivo, and metabolic regulatory pathways affecting S-equol production. Advanced experimental designs and possible techniques in future research plan are also fully discussed. Furthermore, this review provides a fundamental basis for researchers in the field to understand individual differences in S-equol production, the efficiency of metabolic conversion of S-equol, and fermentation production of S-equol in vitro.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuejiao Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuhao Ma
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Park MY, Kim Y, Ha SE, Kim HH, Bhosale PB, Abusaliya A, Jeong SH, Kim GS. Function and Application of Flavonoids in the Breast Cancer. Int J Mol Sci 2022; 23:7732. [PMID: 35887080 PMCID: PMC9323071 DOI: 10.3390/ijms23147732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is one of the top causes of death, particularly among women, and it affects many women. Cancer can also be caused by various factors, including acquiring genetic alteration. Doctors use radiation to detect and treat breast cancer. As a result, breast cancer becomes radiation-resistant, necessitating a new strategy for its treatment. The approach discovered by the researchers is a flavonoid, which is being researched to see if it might help treat radiation-resistant breast cancer more safely than an approved medicine already being used in the field. As a result, this study focuses on the role of flavonoids in breast cancer suppression, breast cancer gene anomalies, and the resulting apoptotic mechanism.
Collapse
Affiliation(s)
- Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| | - Yoonjung Kim
- College of Nursing, Konyang University Medical Campus, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea;
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; (M.Y.P.); (S.E.H.); (H.H.K.); (P.B.B.); (A.A.); (S.H.J.)
| |
Collapse
|
13
|
Metabolic Profile, Biotransformation, Docking Studies and Molecular Dynamics Simulations of Bioactive Compounds Secreted by CG3 Strain. Antibiotics (Basel) 2022; 11:antibiotics11050657. [PMID: 35625301 PMCID: PMC9137728 DOI: 10.3390/antibiotics11050657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria isolated from untapped environments and exposed to extreme conditions such as saltpans are a promising source of novel bioactive compounds. These microorganisms can provide new molecules through either the biosynthetic pathway or the biotransformation of organic molecules. In the present study, we performed a chemical metabolic screening of secondary metabolites secreted by the new strain CG3, which was isolated from a saltpan located in the Sahara of Algeria, via high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-ESI-HRMS). The results indicated that this strain produced five new polyene macrolactams, kenalactams A–E, along with two known compounds, mitomycin C and 6″-hydroxy-4,2′,3′,4″ tetramethoxy-p-terphenyl. Furthermore, the CG3 isolate could have excellent properties for converting the aglycone isoflavone glycitein to the compounds 6,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (50) and 6,7-dimethoxy-3-phenylchromen-4-one (54), and the isoflavone genistein can be converted to 5,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (52). Docking studies and molecular dynamics simulations indicated that these three isoflavones, generated via biotransformation, are potent inhibitors of the target protein aromatase (CYP19A1); consequently, they can be used to prevent breast cancer risk in postmenopausal women.
Collapse
|