1
|
Xue L, Gao L, Zhou S, Yan C, Zhang X, Lin W, Li H, Shen Y, Wang X. Single-cell RNA sequencing revealed changes in the tumor microenvironment induced by radiotherapy for cervical cancer and the molecular mechanism of mast cells in immunosuppression. Funct Integr Genomics 2025; 25:63. [PMID: 40082276 DOI: 10.1007/s10142-025-01564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/25/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Radiotherapy (RT) is an important treatment for cervical cancer (CC), effectively controlling tumor growth and improving survival rates. However, radiotherapy-induced cell heterogeneity and its underlying mechanisms remain unclear, which may potentially impact treatment efficacy. This study aims to investigate tumor microenvironment changes following radiotherapy for CC, hoping to provide evidence to improve the therapeutic effects of radiotherapy. For the first time, we applied single-cell RNA sequencing (scRNA-seq) to analyze tissue samples from three CC patients pre- and post-radiotherapy. We obtained gene expression data from 52,506 cells to identify the cellular changes and molecular mechanisms induced by radiotherapy. Radiotherapy significantly alters cellular composition and gene expression within the tumor microenvironment (TME), notably upregulating mast cell expression. Mast cells are involved in multiple cell axes in the CC ecosystem after radiotherapy, and play a pivotal role in tumor immunosuppression and matrix remodeling. scRNA-seq revealed gene expression variations among cell types after radiotherapy, underscoring the importance of specific cell types in modulating the TME post-treatment. This study revealed the molecular mechanism of radiotherapy for CC and the role of mast cells, providing a foundation for optimizing the personalized treatment of CC.
Collapse
Affiliation(s)
- Lujiadai Xue
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Linzhi Gao
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Shimin Zhou
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Chaofan Yan
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Xian Zhang
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China
| | - Wei Lin
- Department of Gynecology, The First Peoples Hospital of Changde City, No 388 People's East Road, Wuling District, Changde City, 415000, China
| | - Hu Li
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| | - Yuan Shen
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| | - Xiaoyu Wang
- Department of Gynecology, Tianhe District, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Guangzhou City, 510000, China.
| |
Collapse
|
2
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
3
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
4
|
Oh SG, Choi JY, Lee JE, Jeon S, Lee BR, Son KH, Lee SB, An BS, Hwang DY, Kim SJ, Ha KT, Lee J, Jeon YH. Visualizing mast cell migration to tumor sites using sodium iodide symporter of nuclear medicine reporter gene. Neoplasia 2023; 43:100925. [PMID: 37562258 PMCID: PMC10423699 DOI: 10.1016/j.neo.2023.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Owing to the close relationship between mast cells and cancer progression, an imaging technique that can be applied in a clinical setting to explore the biological behavior of mast cells in the tumor microenvironment is needed. In this study, we visualized mast cell migration to lung tumor lesions in live mice using sodium iodide symporter (NIS) as a nuclear medicine reporter gene. EXPERIMENTAL DESIGN The murine mast cell line MC-9 was infected with retrovirus including NIS, luciferase (as a surrogate marker for NIS), and Thy1.1 to generate MC-9/NFT cells. Radioiodine uptake was measured in MC-9/NFT cells, and an inhibition assay of radioiodine uptake using KCLO4 was also performed. Cell proliferation and FcεRI expression was examined in MC-9 and MC-9/NFT cells. The effect of mast cell-conditioned media (CM) on the proliferation of Lewis lung cancer (LLC) cells was examined. The migration level of MC-9/NFT cells was confirmed in the presence of serum-free media (SFM) and CM of cancer cells. After intravenous injection of MC-9/NFT cells into mice with an LLC tumor, I-124 PET/CT and biodistribution analysis was performed. RESULTS MC-9/NFT cells exhibited higher radioiodine avidity compared to parental MC-9 cells; this increased radioiodine avidity in MC-9/NFT cells was reduced to basal level by KCLO4. Levels of FcεRI expression and cell proliferation were not different in parental MC-9 cell and MC-9/ NFT cells. The CM of MC-9/NFT cells increased cancer cell proliferation relative to that of the SFM. The migration level of MC-9/NFT cells was higher in the CM than the SFM of LLC cells. PET/CT imaging with I-124 clearly showed infiltration of reporter mast cells in lung tumor at 24 h after transfer, which was consistent with the findings of the biodistribution examination. CONCLUSION These findings suggest that the sodium iodide symporter can serve as a reliable nuclear medicine reporter gene for non-invasively imaging the biological activity of mast cells in mice with lung tumors. Visualizing mast cells in the tumor microenvironment via a nuclear medicine reporter gene would provide valuable insights into their biological functions.
Collapse
Affiliation(s)
- Seul-Gi Oh
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea; Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Young Choi
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea; Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jae-Eon Lee
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea; Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - SoYeon Jeon
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Bo-Ra Lee
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Kwang Hee Son
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Sang Bong Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Seong-Jang Kim
- Pusan National University College of Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Guidolin D, Tamma R, Annese T, Tortorella C, Ingravallo G, Gaudio F, Musto P, Specchia G, Ribatti D. Different patterns of mast cell distribution in B-cell non-Hodgkin lymphomas. Pathol Res Pract 2023; 248:154661. [PMID: 37406375 DOI: 10.1016/j.prp.2023.154661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Tumor growth, progression, and metastatic capability in non-Hodgkin lymphomas (NHLs) are influenced by different component of tumor microenvironment, including inflammatory cells. Among these latter, mast cells play a crucial role. The spatial distribution of mast cells inside the tumor stroma of different types of B-cell NHLs has not yet been investigated. The aim of this study is to analyze the pattern of distribution of mast cells in biopsy samples obtained from three different types of B-cell NHLs by utilizing an image analysis system and a mathematical model to allow a quantitative estimation to characterize their spatial distribution. As concerns the spatial distributions exhibited by mast cells in diffuse large B cell lymphoma (DLBCL), some clustering was detected in both activated B-like (ABC) and germinal center B-like (GBC) groups. In follicular lymphoma (FL), mast cell spatial distribution tends to uniformly fill the tissue space as far as the grade of the pathology increases. Finally, in marginal lymphoma tissue (MALT) lymphoma, mast cells maintain a significantly clustered spatial distribution, suggesting a lower tendency of the cells to fill the tissue space in this pathological condition. Overall, the data of this study confirm that the analysis of the spatial distribution of the tumor cells is of particular significance for the knowledge of the biological processes occurring in tumor stroma and for the development of parameters to characterize the morphologic organization of the cellular patterns in different types of tumors.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Medicine and Surgery, University LUM "G. Degennaro", Casamassima, Ba, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, Bari, Italy
| | - Francesco Gaudio
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Pellegrino Musto
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
6
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
7
|
Li J, Mo Y, Wei Q, Chen J, Xu G. High Infiltration of CD203c + Mast Cells Reflects Immunosuppression and Hinders Prognostic Benefit in Stage II-III Colorectal Cancer. J Inflamm Res 2023; 16:723-735. [PMID: 36852299 PMCID: PMC9961162 DOI: 10.2147/jir.s400233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Background Activated mast cells (AMCs) have been fully researched in inflammation and allergic reactions. However, the protumoral role of AMCs and their biomarker CD203c has not yet been investigated in colorectal cancer (CRC). Methods We retrospectively collected 449 postoperative patients with stage II-III CRC at two different hospitals as the training (n=310) and validation (n=139) cohorts. These findings were further validated in the independent cohort (Integration of GSE39582 and GSE17536, n=489). The AMC density was assessed using CD203c staining or the CIBERSORT method. The main analysis was recurrence-free survival (RFS) and overall survival (OS). Results As an independent factor, high AMC infiltration was associated with worse RFS/OS in the training (hazard ratio [HR]=3.437/3.014, all p<0.001) and validation (HR=3.537/2.382, all p<0.001) cohorts. We developed and validated an AMC-based nomogram for better stratification for postoperative recurrence in these two cohorts. The role of AMC density was further validated in the independent cohort. High AMC infiltration was associated with decreased RFS/OS after adjuvant chemotherapy (all p<0.05). Approximately 74.2% of intramural CD203c+ AMCs expressed a high level of PD-L1. Multiple immunosuppressive pathways were enriched in high AMC infiltration tumors, including upregulation of the TNF-α/NF-κB and angiogenesis pathways and downregulation of the IFN-γ and IFN-α responses. AMC infiltration was reversely associated with CD8+ T-cell infiltration (all p<0.05). Conclusion High AMC infiltration is associated with worse survival outcomes in stages II-III CRC. AMC density may serve as a potential biomarker for survival benefit in patients receiving adjuvant chemotherapy. This AMC-based nomogram could provide better recurrence stratification. Immunosuppression in tumors with high AMC infiltration might contribute to promoting tumor progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Yuzhen Mo
- Department of Radiation Oncology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Qingqing Wei
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Jian Chen
- Department of Medical Oncology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| | - Guozeng Xu
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China,Correspondence: Guozeng Xu; Jian Chen, Email ;
| |
Collapse
|
8
|
Hemmerlein B, Reinhardt L, Wiechens B, Khromov T, Schliephake H, Brockmeyer P. Is CCL2 an Important Mediator of Mast Cell-Tumor Cell Interactions in Oral Squamous Cell Carcinoma? Int J Mol Sci 2023; 24:ijms24043641. [PMID: 36835050 PMCID: PMC9963724 DOI: 10.3390/ijms24043641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we aimed to evaluate the influence of interactions between mast cells (MCs) and oral squamous cell carcinoma (OSCC) tumor cells on tumor proliferation and invasion rates and identify soluble factors mediating this crosstalk. To this end, MC/OSCC interactions were characterized using the human MC cell line LUVA and the human OSCC cell line PCI-13. The influence of an MC-conditioned (MCM) medium and MC/OSCC co-cultures on the proliferative and invasive properties of the tumor cells was investigated, and the most interesting soluble factors were identified by multiplex ELISA analysis. LUVA/PCI-13 co-cultures increased tumor cell proliferation significantly (p = 0.0164). MCM reduced PCI-13 cell invasion significantly (p = 0.0010). CC chemokine ligand 2 (CCL2) secretion could be detected in PCI-13 monocultures and be significantly (p = 0.0161) increased by LUVA/PCI-13 co-cultures. In summary, the MC/OSCC interaction influences tumor cell characteristics, and CCL2 could be identified as a possible mediator.
Collapse
Affiliation(s)
| | - Luisa Reinhardt
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Bernhard Wiechens
- Department of Orthodontics, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tatjana Khromov
- Institute for Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
9
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
10
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
11
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Chen Z, Bian C, Huang J, Li X, Chen L, Xie X, Xia Y, Yin R, Wang J. Tumor-derived exosomal HOTAIRM1 regulates SPON2 in CAFs to promote progression of lung adenocarcinoma. Discov Oncol 2022; 13:92. [PMID: 36153414 PMCID: PMC9509512 DOI: 10.1007/s12672-022-00553-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE SPON2 is one of the extracellular matrix proteins, which is closely related to the progression of a variety of tumors including non-small cell lung cancer (NSCLC), but its upstream regulation mechanism remains unclear. Our research aims to find the specific regulatory pathway of SPON2 by exploring the potential crosstalk between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME) of NSCLC. METHODS We analyzed T1 lung adenocarcinoma samples from TCGA and screened extracellular matrix proteins that indicate poor prognosis. Expression level of SPON2 was verified by qPCR in clinical samples. The exosomes of NSCLC cell supernatant were extracted and identified by nanoparticle tracking analysis (NTA) and transmission electron microscope, western blots. The exosomes and CAFs were co-cultured, and cell migration and Matrigel invasion assay were used to evaluate the effect of CAFs on the migration and invasion of NSCLC cells. The interaction between LncRNA and miRNA was verified by Targetscan prediction, luciferase reporter assay, and RNA binding protein immunoprecipitation (RIP). RESULTS We found that the expression of SPON2 was up-regulated in clinical T1a stage NSCLC patients. The expression of lnc HOTAIRM1 (HOTAIRM1) in exosomes secreted by NSCLC tissues increased. After exosomal HOTAIRM1 entered CAFs, HOTAIRM1 can adsorb miR-328-5p to up-regulate the expression of SPON2 in CAFs. Up-regulation of SPON2 in CAFs could promote the migration and invasion of NSCLC cells. CONCLUSION Tumor-derived exosomal HOTAIRM1 can transfer into CAFs and competitively adsorb miR-328-5p, and regulate the SPON2 expression of CAFs cells, ultimately promote the progression of NSCLC. The discovery of this regulatory pathway can provide a new potential therapeutic target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Zhipeng Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chengyu Bian
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jingjing Huang
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xueying Xie
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yang Xia
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China.
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
14
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Cao L, Cao Z, Liu H, Liang N, Bing Z, Tian C, Li S. Detection of Potential Mutated Genes Associated with Common Immunotherapy Biomarkers in Non-Small-Cell Lung Cancer Patients. Curr Oncol 2022; 29:5715-5730. [PMID: 36005189 PMCID: PMC9406727 DOI: 10.3390/curroncol29080451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microsatellite instability (MSI), high tumor mutation burden (TMB-H) and programmed cell death 1 ligand 1 (PD-L1) expression are hot biomarkers related to the improvement of immunotherapy response. Two cohorts of non-small-cell lung cancer (NSCLC) were collected and sequenced via targeted next-generation sequencing. Drug analysis was then performed on the shared genes using three different databases: Drugbank, DEPO and DRUGSURV. A total of 27 common genes were mutated in at least two groups of TMB-H-, MSI- and PD-L1-positive groups. AKT1, SMAD4, SCRIB and AXIN2 were severally involved in PI3K-activated, transforming growth factor beta (TGF-β)-activated, Hippo-repressed and Wnt-repressed pathways. This study provides an understanding of the mutated genes related to the immunotherapy biomarkers of NSCLC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhili Cao
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin 300381, China
| | - Shanqing Li
- Department of Thoracic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
- Correspondence: ; Tel./Fax: +86-010-6915-2630
| |
Collapse
|
16
|
IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget 2022; 13:785-799. [PMID: 35677533 PMCID: PMC9159270 DOI: 10.18632/oncotarget.28238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/01/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130F/F mouse model of GC. Expression of IL-33 (and it’s cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130F/F/Il33−/− mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.
Collapse
|
17
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
18
|
Abstract
In the past decade, substantial advances have been made in understanding the biology of tumour-associated macrophages (TAMs), and their clinical relevance is emerging. A particular aspect that is becoming increasingly clear is that the interaction of TAMs with cancer cells and stromal cells in the tumour microenvironment enables and sustains most of the hallmarks of cancer. Therefore, manipulation of TAMs could enable improved disease control in a substantial fraction of patients across a large number of cancer types. In this Review, we examine the diversity of TAMs in various cancer indications and how this heterogeneity is being revisited with the advent of single-cell technologies, and then explore the current knowledge on the functional roles of different TAM states and the prognostic and predictive value of TAM-related signatures. We also review agents targeting TAMs that are currently being or will soon be tested in clinical trials, and how manipulations of TAMs can improve existing anticancer treatments. Finally, we discuss how TAM-targeting approaches could be further integrated into routine clinical practice, considering a precision oncology approach and viewing TAMs as a dynamic population that can evolve under treatment pressure.
Collapse
|
19
|
Ma Y, Vemula R, Zhang Q, Wu B, O'Doherty GA. Achmatowicz approach to the asymmetric synthesis of both (+)- and (−)-monanchorin. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Han J, Yang Y, Li X, Wu J, Sheng Y, Qiu J, Wang Q, Li J, He Y, Cheng L, Zhang Y. Pan-cancer analysis reveals sex-specific signatures in the tumor microenvironment. Mol Oncol 2022; 16:2153-2173. [PMID: 35229456 PMCID: PMC9168759 DOI: 10.1002/1878-0261.13203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
The processes of cancer initiation, progression, and response to therapy are affected by the sex of cancer patients. Immunotherapy responses largely depend on the tumor microenvironment (TME), but how sex may shape some TME features, remains unknown. Here, we analyzed immune infiltration signatures across 19 cancer types from 1771 male and 1137 female patients in The Cancer Genome Atlas to evaluate how sex may affect the tumor mutational burden (TMB), immune scores, stromal scores, tumor purity, immune cells, immune checkpoint genes, and functional pathways in the TME. Pan‐cancer analyses showed higher TMB and tumor purity scores, as well as lower immune and stromal scores in male patients as compared to female patients. Lung adenocarcinoma, lung squamous carcinoma, kidney papillary carcinoma, and head and neck squamous carcinoma showed the most significant sex biases in terms of infiltrating immune cells, immune checkpoint gene expression, and functional pathways. We further focused on lung adenocarcinoma samples in order to identify and validate sex‐specific immune cell biomarkers with prognostic potential. Overall, sex may affect the tumor microenvironment, and sex‐specific TME biomarkers may help tailor cancer immunotherapy in certain cancer types.
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
21
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
22
|
Cho W, Mittal SK, Elbasiony E, Chauhan SK. Ocular surface mast cells promote inflammatory lymphangiogenesis. Microvasc Res 2022; 141:104320. [PMID: 35031275 PMCID: PMC8923954 DOI: 10.1016/j.mvr.2022.104320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Abstract
Mast cells, sentinel immune cells, are most abundantly expressed in vascularized tissues that interface the external environment, such as the skin and ocular surface. Our previous reports have shown mast cells reside closely with vascular endothelial cells and mediate the pathogenic angiogenic response. However, the contribution of mast cells and their underlying mechanisms on lymphangiogenesis have not been fully deciphered. Using a murine model of inflammatory corneal angiogenesis, we observed adjacent migration of activated mast cells with new lymph vessel growth. Our in vitro co-culture assays demonstrate that mast cells express high levels of of VEGF-D and directly promote lymphatic endothelial cell tube formation and proliferation. Moreover, our loss-of-function approaches, using mast cell knockout mice and cromolyn-mediated mast cell inhibition, showed mast cell deficiency suppresses the induction of inflammatory lymphangiogenesis and VEGF-D expression at the ocular surface following corneal tissue insult. Our findings suggest blockade of mast cells as a potential therapeutic strategy to inhibit pathological lymphangiogenesis.
Collapse
Affiliation(s)
- WonKyung Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Palano MT, Gallazzi M, Cucchiara M, Dehò F, Capogrosso P, Bruno A, Mortara L. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:694-718. [PMID: 36338516 PMCID: PMC9630328 DOI: 10.37349/etat.2022.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Dehò
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Paolo Capogrosso
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Correspondence: Antonino Bruno,
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Lorenzo Mortara, . Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
24
|
Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, Khateb AM, Eldakhakhny BM, Fahmy UA, Abdulaal WH, Fresta CG, Caruso G. Updates on Molecular and Biochemical Development and Progression of Prostate Cancer. J Clin Med 2021; 10:5127. [PMID: 34768647 PMCID: PMC8585085 DOI: 10.3390/jcm10215127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment.
Collapse
Affiliation(s)
- Omar Fahmy
- Department of Urology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aiah M. Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42224, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21555, Saudi Arabia
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
25
|
Shui Y, Hu X, Hirano H, Kusano K, Tsukamoto H, Li M, Hasumi K, Guo WZ, Li XK. β-glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int Immunopharmacol 2021; 101:108265. [PMID: 34715491 DOI: 10.1016/j.intimp.2021.108265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) are recognized as the most potent antigen-presenting cells, capable of priming both naïve and memory T cells. Thus, tumor-resident DCs (tumor-associated DCs: TADCs) play a crucial role in the immune response against tumors. However, TADCs are also well known as a "double-edged sword" because an immunosuppressive environment, such as a tumor microenvironment, maintains the immature and tolerogenic properties of TADCs, resulting in the deterioration of the tumor. Therefore, it is essential to maintain and enhance the anti-tumoral activity of TADCs to aid tumor elimination. This study demonstrated the potential for tumor growth inhibition of Aureobasidium pullulan-derived β-glucan (AP-BG). Administration of AP-BG dramatically limited the development of different types of tumor cell lines transplanted into mice. Examination of the tumor-infiltrating leukocytes revealed that AP-BG caused high expression of co-stimulatory molecules on TADCs and enhanced the production of cytolytic granules as well as pro-inflammatory cytokines by the tumor-resident T cells. Furthermore, the syngeneic mixed lymphoid reaction assay and popliteal lymph node assay showed the significant ability of AP-BG to improve DCs' antigen-specific priming of T cells in vitro and in vivo. Taken together, β-glucan might be an immune-potentiating adjuvant for cancer treatment. This highly widely-used reagent will initiate a new way to activate DC-targeted cancer immune therapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Hasumi International Research Foundation, Tokyo, Japan
| | | | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mengquan Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
26
|
Evaluation of Mast Cells in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma. Int J Dent 2021; 2021:5609563. [PMID: 34490052 PMCID: PMC8418547 DOI: 10.1155/2021/5609563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs) are epithelial-derived pathologies which share inflammation as a common initial pathogenic-inducing state. Mast cell is a key immune modulating cell which is primarily involved in initiation and propagation of inflammation. The role of mast cell in OPMDs and OSCC has been an established fact; however, its definitive pathogenic correlation is still under study. The objective of the study was to evaluate the number of mast cell in OPMDs and OSCC using special stain correlating its probable role as a promoter or retarder of OSCC. Materials and Methods Forty-five archival histopathologically confirmed cases each of OPMD and OSCC were studied for mast cells using toluidine blue and Alcian blue-safranin stain and compared with 10 normal oral mucosal tissues. Comparisons between the mast cells count was also performed between the two special stains. Results Among 100 cases, 67% were males and 33% were females. The mean age was 41.68 ± 13.39; 55.06 ± 12.55; and 18.4 ± 2.54 years for OPMDs, OSCC, and normal, respectively. A statistically significant increase in mast cells among OPMDs (9.88 ± 7.9) and OSCC (6.711 ± 3.94) was observed compared to normal oral mucosa. The mast cell count reduced among OSCC in comparison to OPMDs which was significant as well. The mean mast cell count for Alcian blue-safranin stain was higher than toluidine blue stain. Conclusion There is a decrease in mean mast cell count from OPMDs to OSCC which is suggestive of protective role of mast cell. Proper quantification of mast cells using specific stains can guide to define prognosis in oral potentially malignant disorders and oral cancer.
Collapse
|
27
|
Extracellular Vesicles as Emerging Players in Intercellular Communication: Relevance in Mast Cell-Mediated Pathophysiology. Int J Mol Sci 2021; 22:ijms22179176. [PMID: 34502083 PMCID: PMC8431297 DOI: 10.3390/ijms22179176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mast cells are major effector cells in eliciting allergic responses. They also play a significant role in establishing innate and adaptive immune responses, as well as in modulating tumor growth. Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation, mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor progression. Mast cells are also affected by EVs derived from other cells in the immune system or in the tumor microenvironment, which may activate mast cells to release different mediators. In this review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs and their role in allergic responses, inflammation, and tumor progression. Understanding the release, composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to developing novel therapeutic approaches.
Collapse
|
28
|
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021; 13:nu13082674. [PMID: 34444834 PMCID: PMC8401094 DOI: 10.3390/nu13082674] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression and recently several investigators have evaluated the therapeutic effectiveness of targeting the microbiota. This gut microbiota-related approach is especially attractive in the treatment of gastrointestinal cancers. Probiotics supplementation is a microbiota-targeted strategy that appears to improve treatment efficacy; Lactobacillus spp. and Bifidobacterium spp. are among the most commonly used probiotic agents. These bacteria seem to exert immunomodulatory effects, impacting on the immune system both locally and systemically. The gut microbiota are able to affect the efficiency of immunotherapy, mainly acting as inhibitors at immune checkpoints. The effects of immunotherapy may be modulated using traditional probiotic strains and/or next generation probiotics, such as Akkermansia municiphila. It is possible that probiotics might enhance the efficiency of immunotherapy based on PD-1/PD-L1 and CTLA-4 but more data are needed to confirm this speculation. Indeed, although there is experimental evidence for the efficacy of several strains, the health-promoting effects of numerous probiotics have not been demonstrated in human patients and furthermore the potential risks of these products, particularly in oncologic patients, are rarely mentioned.
Collapse
Affiliation(s)
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| |
Collapse
|
29
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1199] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
30
|
Yao J, Xi W, Chen X, Xiong Y, Zhu Y, Wang H, Hu X, Guo J. Mast cell density in metastatic renal cell carcinoma: Association with prognosis and tumour-infiltrating lymphocytes. Scand J Immunol 2021; 93:e13006. [PMID: 33275792 DOI: 10.1111/sji.13006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/06/2023]
Abstract
Tumour-infiltrating mast cells (TIMs) have been reported to play functional roles in the tumour microenvironment. However, controversial evidences exist regarding their impact in different cancers. In order to study their role in metastatic renal cell carcinoma (mRCC), we have investigated the prognostic value of TIMs and their association with tumour-infiltrating lymphocytes (TILs) in patients with mRCC treated with sunitinib or sorafenib. Baseline clinical characteristics and follow-up data were collected from 231 patients with mRCC; TIMs (mast cells density positive to tryptase), along with CD8+ and CD4+ TILs, were evaluated by immunohistochemistry using a tissue microarray. The log-rank test and univariate and multivariate COX regression models were used for survival analyses. Our results revealed that patients with high mast cell density had significantly better overall and progression-free survival (OS, P = .008, and PFS, P = .016, respectively) than those with low mast cell density. Additionally, multivariate COX regression analyses identified TIMs as an independent prognostic factor for OS (HR = 0.624, 95% CI: 0.420-0.927, P = .020) and PFS (HR = 0.658, 95% CI: 0.466-0.930, P = .019). Further, combining TIMs with the International mRCC Database Consortium (IMDC) risk model achieved statistically significant and better predictive ability for one- and two-year OS (P = .002 and P = .004, respectively). Moreover, the cases with high mast cell density were associated with a high density of CD8+ and CD4+ TILs (P = .008 and P = .001, respectively). Thus, better OS in patients with mRCC exhibiting a high mast cell density population may be attributed to the co-existence of CD8+ and CD4+ TILs, which have anti-tumour effects on activation status.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai ZhongShan Hospital, Fudan University, Shanghai, China
| | - Hang Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai ZhongShan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai ZhongShan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai ZhongShan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Shin MK, Jeon YD, Hong SH, Kang SH, Kee JY, Jin JS. In Vivo and In Vitro Effects of Tracheloside on Colorectal Cancer Cell Proliferation and Metastasis. Antioxidants (Basel) 2021; 10:antiox10040513. [PMID: 33806109 PMCID: PMC8064450 DOI: 10.3390/antiox10040513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022] Open
Abstract
Recent research suggests a relationship between cancer progression and oxidative mechanisms. Among the phenolic compounds such as tracheloside (TCS) are a major bioactive compound that can combat oxidant stress-related chronic diseases and that also displays anti-tumor activity. Although TCS can inhibit mammalian carcinoma, its effects on colorectal cancer (CRC) have not been clarified. The purpose of this study was to investigate the effects of TCS on the proliferation of CRC cells, the metastasis of CT26 cells, and the molecular mechanisms related to TCS in vitro and in vivo. A cell viability assay showed that TCS inhibited the proliferation of CRC cells. TCS-treated CT26 cells were associated with the upregulation of p16 as well as the downregulation of cyclin D1 and CDK4 in cell cycle arrest. In addition, TCS induced apoptosis of CT26 cells through mitochondria-mediated apoptosis and regulation of the Bcl-2 family. Expression of epithelial–mesenchymal transition (EMT) markers was regulated by TCS treatment in CT26 cells. TCS significantly inhibited the lung metastasis of CT26 cells in a mouse model. These results suggest that TCS, by inducing cell cycle arrest and apoptosis through its anti-oxidant properties, is a novel therapeutic agent that inhibits metastatic phenotypes of murine CRC cells.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea; (M.-K.S.); (S.-H.K.)
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yong-Deok Jeon
- Department of Oriental Medicine Resources, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-Gun 55338, Korea;
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea;
| | - Sa-Haeng Kang
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea; (M.-K.S.); (S.-H.K.)
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea;
- Correspondence: (J.-Y.K.); (J.-S.J.)
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea; (M.-K.S.); (S.-H.K.)
- Advanced Institute of Environment and Bioscience, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea
- Correspondence: (J.-Y.K.); (J.-S.J.)
| |
Collapse
|
32
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020; 133:133/24/jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tissue microenvironment supports normal tissue function and regulates the behaviour of parenchymal cells. Tumour cell behaviour, on the other hand, diverges significantly from that of their normal counterparts, rendering the microenvironment hostile to tumour cells. To overcome this problem, tumours can co-opt and remodel the microenvironment to facilitate their growth and spread. This involves modifying both the biochemistry and the biophysics of the normal microenvironment to produce a tumour microenvironment. In this Cell Science at a Glance article and accompanying poster, we outline the key processes by which epithelial tumours influence the establishment of the tumour microenvironment. As the microenvironment is populated by genetically normal cells, we discuss how controlling the microenvironment is both a significant challenge and a key vulnerability for tumours. Finally, we review how new insights into tumour-microenvironment interactions has led to the current consensus on how these processes may be targeted as novel anti-cancer therapies.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
34
|
Liu X, Huang Z, He X, Zheng X, Jia Q, Tan J, Fan Y, Lou C, Meng Z. Blood prognostic predictors of treatment response for patients with papillary thyroid cancer. Biosci Rep 2020; 40:BSR20202544. [PMID: 33015713 PMCID: PMC7578621 DOI: 10.1042/bsr20202544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is a very common malignant disease with high morbidity. We needed some pretreatment indicators to help us predict prognosis and guide treatment. We conducted a study about some pretreatment prognostic indicators. METHODS This clinical study recruited 705 postoperative PTC patients (211 males, 494 females). Clinical data before radioactive iodine (RAI) treatment were collected. Patients' response to therapy were classified into two categories: 'Good Prognosis Group' (GPG) and 'Poor Prognosis Group' (PPG), according to '2015 American Thyroid Association Guidelines'. Differences of indicators between different prognosis groups were compared. Odds ratios (ORs) were calculated by univariate/multiple binary logistic regression models. Difference of body mass index (BMI) changes before and after RAI treatment between different prognosis groups was also compared. RESULTS A total of 546 (77.45%) belonged to GPG, and 159 (22.55%) belonged to PPG. Platelet (PLT), neutrophil (NEUT), PLT subgroups, and combination of red blood cell distribution width (RDW) and BMI (COR-BMI) were different between two prognosis groups. The significance of the difference between the two groups of BMI disappeared after the Bonferroni correction. PLT and PLT subgroups had detrimental effects on the risk of PPG; T stage had a positive effect on the risk of PPG. PLT subgroup showed a detrimental effect on the risk of PPG when we included additional covariates. CONCLUSIONS We found that lower pretreatment PLT levels may indicate a poor prognosis for PTC. The relationship between platelet-derived growth factor (PDGF) and radiation sensitivity may be the key to this association.
Collapse
Affiliation(s)
- Xiangxiang Liu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang Universtity, Hangzhou, Zhejiang, P.R. China
| | - Zhongke Huang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang Universtity, Hangzhou, Zhejiang, P.R. China
| | - Xianghui He
- Department of General Surgery, Thyroid Surgery Division, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Cen Lou
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang Universtity, Hangzhou, Zhejiang, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
35
|
Zhao YB, Yang SH, Shen J, Deng K, Li Q, Wang Y, Cui W, Ye H. Interaction between regulatory T cells and mast cells via IL-9 and TGF-β production. Oncol Lett 2020; 20:360. [PMID: 33133260 PMCID: PMC7590434 DOI: 10.3892/ol.2020.12224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the immunosuppression of cancer cells has attracted much attention in recent years. The present study sought to provide a new strategy for tumor immunotherapy targeting mast cells by studying the mechanisms underlying mast cell function in cancer immunosuppression. Between January 2015 and December 2017, the tumor tissues of 40 patients with gastric cancer (GC) were collected and grouped in Lihuili Hospital of Ningbo City, China. Pathological sections were prepared and an immunofluorescence assay was performed to analyze the expression of forkhead Box Protein P3 (FOXP3), tryptase, TGFβ1, TGF-βR, IL-9, IL-9R and Oxford 40 ligand (OX40L). Then, the correlations between FOXP3 and tryptase, TGFβ1 and tryptase expression, and the expression of OX40L in patients with GC with different stages were analyzed. The results revealed that high levels of mast cells were present in patients GC, and tryptase and FOXP3 expressions were positively correlated. Mast cells regulate T regulatory (reg) cells in the gastric tumor microenvironment by secreting TGFβ1. Tregs, in turn, promote the survival of mast cells in the tumor microenvironment by producing IL-9. Furthermore, OX40L expression in mast cells was significantly associated with Tumor-Node-Metastasis staging of GC. Overall, the present study reported a positive feedback system that functions through TGFβ1 and IL-9 to allow cross-talk between Tregs and mast cells. Moreover, OX40L may be a potential target for the diagnosis and treatment of GC. These results may provide a new strategy for tumor immunotherapy targeting mast cells.
Collapse
Affiliation(s)
- Yi-Bin Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shao-Hui Yang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jie Shen
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Ke Deng
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Qi Li
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yu Wang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Wei Cui
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
36
|
Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, Chen Z, Huang Y, Jiang W, Lin Z, Xi J, Wang S, Yang Y, Zhan C, Wang Q, Tan L. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov 2020; 6:69. [PMID: 33083004 PMCID: PMC7536439 DOI: 10.1038/s41421-020-00200-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an early type of lung adenocarcinoma, ground glass nodule (GGN) has been detected increasingly and now accounts for most lung cancer outpatients. GGN has a satisfactory prognosis and its characteristics are quite different from solid adenocarcinoma (SADC). We compared the GGN adenocarcinoma (GGN-ADC) with SADC using the single-cell RNA sequencing (scRNA-seq) to fully understand GGNs. The tumor samples of five patients with lung GGN-ADCs and five with SADCs underwent surgery were digested to a single-cell suspension and analyzed using 10× Genomic scRNA-seq techniques. We obtained 60,459 cells and then classified them as eight cell types, including cancer cells, endothelial cells, fibroblasts, T cells, B cells, Nature killer cells, mast cells, and myeloid cells. We provided a comprehensive description of the cancer cells and stromal cells. We found that the signaling pathways related to cell proliferation were downregulated in GGN-ADC cancer cells, and stromal cells had different effects in GGN-ADC and SADC based on the analyses of scRNA-seq results. In GGN-ADC, the signaling pathways of angiogenesis were downregulated, fibroblasts expressed low levels of some collagens, and immune cells were more activated. Furthermore, we used flow cytometry to isolate the cancer cells and T cells in 12 GGN-ADC samples and in an equal number of SADC samples, including CD4+ T and CD8+ T cells, and validated the expression of key molecules by quantitative real-time polymerase chain reaction analyses. Through comprehensive analyses of cell phenotypes in GGNs, we provide deep insights into lung carcinogenesis that will be beneficial in lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yong Yang
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
- Department of Thoracic Surgery, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, Jiangsu 215001 China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
37
|
Activation of ocular surface mast cells promotes corneal neovascularization. Ocul Surf 2020; 18:857-864. [PMID: 32916251 DOI: 10.1016/j.jtos.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Mast cells, historically known for their effector function in the induction of allergic diseases, reside in all vascularized tissues of the body in particular proximity to blood and lymphatic vessels. As neighboring sentinel cells to blood vessels, mast cells have been associated with angiogenesis. Here we assess the direct contribution of mast cells to neovascularization at the ocular surface. METHODS Corneal neovascularization was induced by placing a single figure-of-eight intrastromal suture 1 mm from the limbus in mast cell-deficient (cKitW-sh), C57BL/6, and Balb/c mice. Corneas were harvested at 6 h post-suture to quantify cKit+FcεR1+ mast cells using flow cytometry and tear wash was collected within 6 h to measure β-hexosaminidase and tryptase. Neovascularization was assessed using slit-lamp biomicroscope and immunohistochemistry analysis of corneas harvested on day 4 post-suture. To investigate the effects of mast cells on blood vessel growth, mast cells were co-cultured with vascular endothelial cells (VECs), and tube formation and proliferation of VECs were measured. 2% cromolyn was administered locally to inhibit mast cell activation in vivo. RESULTS Placement of corneal suture activates ocular surface mast cells, which infiltrate into the cornea adjacent to new vessels. Mast cell-deficient mice develop significantly fewer new vessels following suture placement. Mast cells directly promote VEC proliferation and tube formation, partly through secreting high levels of VEGF-A. Pharmacological inhibition of mast cell activation results in significantly less corneal neovascularization. CONCLUSION Our data demonstrate that ocular surface mast cells are critical to corneal neovascularization, suggesting mast cells as a potential therapeutic target in the treatment of corneal neovascularization.
Collapse
|
38
|
|
39
|
Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett 2020; 484:65-71. [PMID: 32387442 DOI: 10.1016/j.canlet.2020.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
Metabolic reprogramming is a characteristic feature of both cancer cells and their neighbouring cells in the tumor microenvironment (TME). The latter include stroma fibroblasts and adipocytes, that respectively differentiate to become cancer associated fibroblasts (CAFs) and cancer associated adipocytes (CAAs), and infiltrated immune cells, that collaborate with the stromal cells to provide the tumor a pro-tumorigenic niche. Here we discuss the association between the reprogramming of glucose metabolism in the TME and oncogenic signaling and its reflection in the non-canonical functions of metabolic enzymes. We also discuss the non-canonical actions of oncometabolites and the contribution to oncogenesis of external metabolites that accumulate in the TME as result of crosstalk between the tumor and the TME. Special emphasis is given in this regard to lysophosphatidic acid (LPA) and adenosine, two powerful metabolites, the concentrations of which rise in the TME due to altered metabolism of the tumor and its surrounding cells, allowing their action as external signals.
Collapse
Affiliation(s)
- Lihie Eisenberg
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
40
|
The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/itx.0000000000000032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Kim KH, Sim NS, Chang JS, Kim YB. Tumor immune microenvironment in cancer patients with leukocytosis. Cancer Immunol Immunother 2020; 69:1265-1277. [PMID: 32170377 DOI: 10.1007/s00262-020-02545-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Tumor-related leukocytosis (TRL) is correlated with poor survival in various types of cancers, but the microenvironment of TRL-associated human tumors has not been fully elucidated. Here, we aimed to characterize the immune microenvironment of cancer patients with TRL. The transcriptional signatures of tumor tissues obtained from cervical cancer patients with (TRLpos) and without TRL (TRLneg) were compared. As a surrogate for TRL diagnosis, a leukocytosis signature (LS) score was derived using genes differentially expressed between TRLpos and TRLneg tumors. The immunological profiles of patients in the TCGA database with high (LShigh) or low LS scores were compared. TRLpos tumors were transcriptionally distinct from TRLneg tumors, exhibiting up-regulation of radioresistance and down-regulation of adaptive immune response-related genes. In the TCGA cervical cancer cohort (n = 303), patients with high LS had inferior survival rates compared to those with low LS (P = 0.023). LShigh tumors were enriched in radioresistance, wound healing, and myeloid-derived suppressor cell (MDSC) signatures and had a higher infiltration of M2 macrophages and a lower infiltration of M1 macrophages and lymphocytes. LShigh tumors also expressed higher levels of CXCR2 chemokines, CSF2, and CSF3. In the pan-cancer cohort (n = 9984), LShigh tumors also exhibited poor survival, signatures of a suppressive immune microenvironment, and higher expression of CXCR2 chemokines. Our data provide evidence for a suppressive immune microenvironment in patients with TRL and suggest promising targets, such as the CXCR2 axis, for its therapeutic intervention.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Wang M, Li Z, Peng Y, Fang J, Fang T, Wu J, Zhou J. Identification of immune cells and mRNA associated with prognosis of gastric cancer. BMC Cancer 2020; 20:206. [PMID: 32164594 PMCID: PMC7068972 DOI: 10.1186/s12885-020-6702-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background The clinical success demonstrates the enormous potential of immunotherapy in cancer treatment. Methods This article presented research linking gastric cancer to immune cells, based on RNA-seq data of Stomach adenocarcinoma (STAD) and gene expression profile of GSE84437, 24 kinds of tumor-infiltrating immune cells were quantified by single-sample gene set enrichment analysis. Results Th2 cells, T helper cells, and Mast cells were identified as prognostic immune cells in both TCGA and GEO groups. Then SUPV3L1 and SLC22A17 were identified as hub genes which may affect immune cell infiltration by correlation analysis. Survival analysis further proved that hub genes and prognostic immune cells are associated with the prognosis of gastric cancer. In gastrointestinal tumors, hub genes and prognostic immune cells also found differences in non-tumor and tumor tissues. Conclusions We found that three immune cells infiltration are associated with the prognosis of gastric cancer and further identify two hub genes. These two key genes may affect immune cell infiltration, result in the different prognosis of patients.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zedong Li
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Peng
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jianyu Fang
- Department of Nursing, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Fang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiajia Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
43
|
Ariyarathna H, Thomson N, Aberdein D, Munday JS. Low Stromal Mast Cell Density in Canine Mammary Gland Tumours Predicts a Poor Prognosis. J Comp Pathol 2020; 175:29-38. [PMID: 32138840 DOI: 10.1016/j.jcpa.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
Tumour histological classification and grade are frequently used to predict the prognosis of canine mammary gland tumours. While these techniques provide some information about tumour behaviour, it is currently difficult to predict which tumours will metastasize. Mast cell density has been shown to predict metastasis in human breast cancer. The present study investigated whether the average mast cell density in 10 high-power (×400) microscopical fields (10 HPFs), evaluated by toluidine blue staining, similarly predicted the behaviour of canine mammary gland tumours. Mast cell density was evaluated in 53 canine mammary neoplasms for which the clinical outcome was known. Stromal mast cell density in malignant tumours that had subsequently developed radiographical evidence of metastasis (n = 21) was significantly lower (P <0.001) than in malignant tumours that did not show evidence of metastases (n = 20) or in benign tumours (n = 12). The density of stromal mast cells that best predicted the disease outcome was ≤10/10 HPFs. Eighty-one percent of malignant tumours with ≤10 stromal mast cells/10 HPFs subsequently metastasized, while only 9.5% of malignant tumours with >10 stromal mast cells/10 HPFs developed metastases. There was a positive correlation between stromal mast cell density and survival time (rs = 0.50, P <0.001). These findings suggest that assessing stromal mast cell density using toluidine blue staining may represent an easy to perform and cost-effective histopathological measure that, in conjunction with classification and grading, could better predict the behaviour of canine mammary neoplasms.
Collapse
Affiliation(s)
- H Ariyarathna
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - N Thomson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - D Aberdein
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
44
|
Hempel Sullivan H, Heaphy CM, Kulac I, Cuka N, Lu J, Barber JR, De Marzo AM, Lotan TL, Joshu CE, Sfanos KS. High Extratumoral Mast Cell Counts Are Associated with a Higher Risk of Adverse Prostate Cancer Outcomes. Cancer Epidemiol Biomarkers Prev 2020; 29:668-675. [PMID: 31932412 DOI: 10.1158/1055-9965.epi-19-0962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Given our previous findings that low intratumoral and high extratumoral mast cell numbers are associated with higher risk of biochemical recurrence after radical prostatectomy, we now assessed this relationship with race and the development of metastases. METHODS We stained for mast cell tryptase via IHC and fluorescent immunolabeling in 885 men across multiple tissue microarray sets designed to assess biomarkers in association with race and prostate cancer outcomes (median follow-up, 7.0 years). RESULTS Intratumoral and extratumoral mast cell counts were significantly lower in tissues from African-American compared with European-American men, but not within strata of cancer grade. There was no association between mast cell counts and ERG positivity, PTEN loss, or TP53 missense mutation. Higher minimum extratumoral mast cells were associated with an increased risk of biochemical recurrence [comparing highest with lowest tertiles: HR, 1.61; 95% confidence interval (CI), 1.12-2.29; P trend = 0.01]; this pattern was similar among European-American and African-American men and by grade of disease. There was no significant association between minimum intratumoral mast cell count and biochemical recurrence, overall or within strata of race and grade. Finally, high minimum number of extratumoral mast cells was associated with prostate cancer metastases (comparing highest with lowest tertiles: HR, 2.12; 95% CI, 1.24-3.63; P trend = 0.01). CONCLUSIONS High extratumoral mast cell numbers are associated with biochemical recurrence and the development of metastases after radical prostatectomy. IMPACT Higher numbers of benign tissue mast cells are associated with a higher risk of adverse outcomes after radical prostatectomy, including metastatic prostate cancer.
Collapse
Affiliation(s)
- Heidi Hempel Sullivan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ibrahim Kulac
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathan Cuka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Salamon P, Mekori YA, Shefler I. Lung cancer-derived extracellular vesicles: a possible mediator of mast cell activation in the tumor microenvironment. Cancer Immunol Immunother 2020; 69:373-381. [PMID: 31897659 DOI: 10.1007/s00262-019-02459-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Activated mast cells are often found in the tumor microenvironment. They have both pro- and anti-tumorigenic roles, depending on the tumor type. Several lines of evidence suggest that the tumor microenvironment contains multiple soluble factors that can drive mast cell recruitment and activation. However, it is not yet clear how mast cells are activated by tumor cells. In this study, we explored whether tumor-derived microvesicles (TMV) from non-small cell lung cancer (NSCLC) cells interact with human mast cells, activate them to release cytokines, and affect their migratory ability. PKH67-labelled TMV isolated from NSCLC cell lines were found to be internalized by mast cells. This internalization was first noticed after 4 h and peaked within 24 h of co-incubation. Furthermore, internalization of TMV derived from NSCLC cell lines or from surgical lung tissue specimens resulted in ERK phosphorylation, enhanced mast cell migratory ability and increased release of cytokines and chemokines, such as TNF-α and MCP-1. Our data are thus, consistent with the conclusion that TMV have the potential to influence mast cell activity and thereby, affect tumorigenesis.
Collapse
Affiliation(s)
- Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel
| | - Yoseph A Mekori
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.,Tel Hai College, Tel Hai, Israel
| | - Irit Shefler
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.
| |
Collapse
|
46
|
Abstract
Mast cells are tissue-resident, innate immune cells that play a key role in the inflammatory response and tissue homeostasis. Mast cells accumulate in the tumor stroma of different human cancer types, and increased mast cell density has been associated to either good or poor prognosis, depending on the tumor type and stage. Mast cells play a multifaceted role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. Moreover, tumor-associated mast cells have the potential to shape the tumor microenvironment by establishing crosstalk with other tumor-infiltrating cells. This chapter reviews the current understanding of the role of mast cells in the tumor microenvironment. These cells have received much less attention than other tumor-associated immune cells but are now recognized as critical components of the tumor microenvironment and could hold promise as a potential target to improve cancer immunotherapy.
Collapse
|
47
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Saadalla A, Lima MM, Tsai F, Osman A, Singh MP, Linden DR, Dennis KL, Haeryfar SMM, Gurish MF, Gounari F, Khazaie K. Cell Intrinsic Deregulated ß-Catenin Signaling Promotes Expansion of Bone Marrow Derived Connective Tissue Type Mast Cells, Systemic Inflammation, and Colon Cancer. Front Immunol 2019; 10:2777. [PMID: 31849960 PMCID: PMC6902090 DOI: 10.3389/fimmu.2019.02777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
Mast cells constitutively express ß-catenin and expand in solid tumors such as colon and skin cancer. However, the role of ß-catenin signaling in mast cells and the cause or effect of mast cell expansion and tumor growth has yet to be established. In earlier studies we used mast cell depletion and protease staining approaches, to provide evidence for a causative role of mast cells in small bowel polyposis, and related specific phenotypes and distributions of tumor infiltrating mast cells to stages of tumor growth. Here we report that, stabilization of ß-catenin expands mast cells to promote high incidence of colon polyposis and infrequent small bowel polyps and skin cancer. Expression of a dominant acting ß-catenin in mast cells (5CreCAT) stimulated maturation and expression of granule stored proteases. Both mucosal and connective tissue type mast cells accumulated in colonic small bowel polyps independent of gender, and mice developed chronic systemic inflammation with splenomegaly. Reconstitution of polyposis-prone mice with bone marrow from 5CreCAT mice resulted in focal expansion of connective tissue like mast cells, which are normally rare in benign polyps and characteristically expand during adenoma-to-carcinoma transition. Our findings highlight a hitherto unknown contribution of ß-catenin signaling in mast cells to their maturation and to increased risk of colon cancer.
Collapse
Affiliation(s)
| | | | - Funien Tsai
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Kristen L. Dennis
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Michael F. Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Fotini Gounari
- Section of Rheumatology, Department of Medicine, Knapp Center for Lupus Research, University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
49
|
Correlation of serum tryptase levels with total number of nevi, Breslow thickness, ulceration, and mitotic index in melanoma patients: evaluation of a promising prognostic marker. Melanoma Res 2019; 29:621-625. [DOI: 10.1097/cmr.0000000000000561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, Saadalla A, Osman A, Hamaker BR, Keshavarzian A, Khazaie K. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:219-237. [PMID: 31689559 PMCID: PMC6957855 DOI: 10.1016/j.jcmgh.2019.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis. METHODS The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A. RESULTS Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid-producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol-induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas. CONCLUSIONS Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Garth Swanson
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois; Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Brandon Shetuni
- Northwestern Medicine, Central DuPage Hospital, Winfield, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | | | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Department of Physiology, Rush University Medical Center, Chicago, Illinois; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|