1
|
Wang W, Ma L, Zhao Y, Liu M, Ye W, Li X. Research progress on the role of the Wnt signaling pathway in pituitary adenoma. Front Endocrinol (Lausanne) 2023; 14:1216817. [PMID: 37780610 PMCID: PMC10538627 DOI: 10.3389/fendo.2023.1216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Pituitary adenoma (PA) is the third most common central nervous system tumor originating from the anterior pituitary, but its pathogenesis remains unclear. The Wnt signaling pathway is a conserved pathway involved in cell proliferation, Self-renewal of stem cells, and cell differentiation. It is related to the occurrence of various tumors, including PA. This article reviews the latest developments in Wnt pathway inhibitors and pathway-targeted drugs. It discusses the possibility of combining Wnt pathway inhibitors with immunotherapy to provide a theoretical basis for the combined treatment of PA.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Pu Y, Lei M, Chen Y, Huang Y, Zhang L, Chen J, Zhang Y, Shao X, Liu L, Chen J. Hey1 promotes migration and invasion of melanoma cells via GRB2/PI3K/AKT signaling cascade. J Cancer 2021; 12:6979-6988. [PMID: 34729100 PMCID: PMC8558658 DOI: 10.7150/jca.60974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/18/2021] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that Notch signaling regulates multiple intracellular biological processes in malignant melanoma. Whereas how Notch signaling is transduced to influence melanoma cell behaviors remains largely elusive. Here we show that the Notch signaling downstream target Hey1 promotes migration and invasion of melanoma cells via the GRB2/PI3K/AKT pathway. First, bioinformatics tools, immunohistochemistry, and Western blotting analysis showed that the expression of Hey1 is increased in melanoma. Then, both in vivo and in vitro experiments showed that Hey1 promotes the malignant behaviour of the melanoma cells. High-throughput RNA-sequencing analysis revealed that inhibition of Hey1 results in decreased GRB2 expression in melanoma cells. Last, functional experiments confirmed that Hey1 positively regulates GRB2/PI3K/AKT pathway to influence migration and invasion of melanoma cells. In summary, our results suggest that Hey1 promotes the invasion and metastasis of melanoma cells by regulating GRB2/PI3K/AKT pathway. Our study provides potential therapeutics in tumor biology.
Collapse
Affiliation(s)
- Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Wang X, Dai C, Yin Y, Wu L, Jin W, Fu Y, Chen Z, Hao K, Lu B. Blocking the JAK2/STAT3 and ERK pathways suppresses the proliferation of gastrointestinal cancers by inducing apoptosis. J Zhejiang Univ Sci B 2021; 22:492-503. [PMID: 34128372 DOI: 10.1631/jzus.b2000842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dysregulated crosstalk between different signaling pathways contributes to tumor development, including resistance to cancer therapy. In the present study, we found that the mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor trametinib failed to suppress the proliferation of PANC-1 and MGC803 cells by activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, while the JAK2 inhibitor fedratinib failed to inhibit the growth of the PANC-1 cells upon stimulation of extracellular signal-regulated kinase (ERK) signaling. In particular, the most prominent enhancement of the anti-proliferative effect resulted from the concurrent blockage of the JAK2/STAT3 and ERK signaling pathways. Furthermore, the combination of the two inhibitors resulted in a reduced tumor burden in mice. Our evidence suggests novel crosstalk between JAK2/STAT3 and ERK signaling in gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC) cells and provides a therapeutic strategy to overcome potential resistance in gastrointestinal cancer.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Bin Lu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
4
|
Xin S, Wu Y, Huang Z, Huang Y, Jia B, Zhao J. Engineering Cell Membrane-Based Nanovesicles for Melanoma Tumor Treatment. J Biomed Nanotechnol 2021; 17:838-845. [PMID: 34082870 DOI: 10.1166/jbn.2021.3072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Malignant melanoma has a poor prognosis because of its strong ability to invade tissues and metastasize. Immune checkpoint blockades significantly improve the clinical response in the development of melanoma. However, there are some obstacles to overcome, such as cost and limited application. Therefore, prospective approaches remain to be exploited. We designed cellular nanovesicles (NVs) expressing PD-1 to reactivate T cells by disrupting the PD-1/PD-L1 immunoinhibitory pathway. Furthermore, siNF90 was wrapped into PD-1 NVs to inhibit the proliferation of tumor cells. Such a dual target effect is helpful for the treatment of melanoma. In addition, our results showed that treatment with PD-1 @siNF90 NVs inhibited the growth of melanoma tumors and extended the survival time of mice, exhibiting a better effect than PD-1 NVs alone. The data also verified that the percentage of CD8+ T cells in tumors was highest after PD-1 @siNF90 NVs treatment. To sum up, PD-1 @siNF90 NVs could serve as safe and effective blockers in the treatment of melanoma.
Collapse
Affiliation(s)
- Shengchang Xin
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University Nanjing 210093, Jiangsu, PR China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, PR China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, PR China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, PR China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, PR China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University Nanjing 210093, Jiangsu, PR China
| |
Collapse
|
5
|
Harbers FN, Thier B, Stupia S, Zhu S, Schwamborn M, Peller V, Chauvistré H, Crivello P, Fleischhauer K, Roesch A, Sucker A, Schadendorf D, Chen Y, Paschen A, Zhao F. Melanoma Differentiation Trajectories Determine Sensitivity Toward Pre-Existing CD8 + Tumor-Infiltrating Lymphocytes. J Invest Dermatol 2021; 141:2480-2489. [PMID: 33798535 DOI: 10.1016/j.jid.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
The highly plastic nature of melanoma enables its transition among diverse cell states to survive hostile conditions. However, the interplay between specific tumor cell states and intratumoral T cells remains poorly defined. With MAPK inhibitor‒treated BRAFV600-mutant tumors as models, we linked human melanoma state transition to CD8+ T cell responses. Repeatedly, we observed that isogenic melanoma cells could evolve along distinct differentiation trajectories on single BRAF inhibitor (BRAFi) treatment or dual BRAFi/MEKi treatment, resulting in BRAFi‒induced hyperdifferentiated and BRAFi/MEKi‒induced dedifferentiated resistant subtypes. Taking advantage of patient-derived autologous CD8+ tumor-infiltrating lymphocytes (TILs), we demonstrate that progressive melanoma cell state transition profoundly affects TIL function. Tumor cells along the hyperdifferentiation trajectory continuously gained sensitivity toward tumor-reactive CD8+ TILs, whereas those in the dedifferentiation trajectory acquired T cell resistance in part owing to the loss of differentiation antigens. Overall, our data reveal the tight connection of MAPKi‒induced temporary (drug-tolerant transition state) and stable (resistant state) phenotype alterations with T cell function and further broaden the current knowledge on melanoma plasticity in terms of sculpting local antitumor immune responses, with implications for guiding the optimal combination of targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Franziska Noelle Harbers
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Simone Stupia
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Si Zhu
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Marion Schwamborn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Vicky Peller
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Heike Chauvistré
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | | | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.
| |
Collapse
|
6
|
Meierjohann S. Effect of stress-induced polyploidy on melanoma reprogramming and therapy resistance. Semin Cancer Biol 2021; 81:232-240. [PMID: 33610722 DOI: 10.1016/j.semcancer.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Melanomas and their precursors, the melanocytes, are frequently exposed to UV due to their anatomic location, leading to DNA damage and reactive oxygen stress related harm. Such damage can result in multinucleation or polyploidy, in particularly in presence of mitotic or cell division failure. As a consequence, the cell encounters either of two fates: mitotic catastrophe, resulting in cell death, or survival and recovery, the latter occurring less frequently. However, when cells manage to recover in an polyploid state, they have often acquired new features, which allow them to tolerate and adapt to oncogene- or therapy induced stress. This review focuses on polyploidy inducers in melanoma and their effects on transcriptional reprogramming and phenotypic adaptation as well as the relevance of polyploid melanoma cells for therapy resistance.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Institute of Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Liu L, Yue Q, Ma J, Liu Y, Zhao T, Guo W, Zhu G, Guo S, Wang S, Gao T, Li C, Shi Q. POU4F1 promotes the resistance of melanoma to BRAF inhibitors through MEK/ERK pathway activation and MITF up-regulation. Cell Death Dis 2020; 11:451. [PMID: 32532957 PMCID: PMC7293281 DOI: 10.1038/s41419-020-2662-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/23/2022]
Abstract
BRAF inhibitors (BRAFi) have shown remarkable clinical efficacy in the treatment of melanoma with BRAF mutation. Nevertheless, most patients end up with the development of BRAFi resistance, which strongly limits the clinical application of these agents. POU4F1 is a stem cell-associated transcriptional factor that is highly expressed in melanoma cells and contributes to BRAF-activated malignant transformation. However, whether POU4F1 contributes to the resistance of melanoma to BRAFi remains poorly understood. Here, we report that over-expressed POU4F1 contributed to the acquired resistance of melanoma cells to Vemurafenib. Furthermore, POU4F1 promoted the activation of ERK signaling pathway via transcriptional regulation on MEK expression. In addition, POU4F1 could increase the expression of MITF to retain the resistance of melanoma cells to BRAFi. Collectively, our findings reveal that POU4F1 re-activates the MAPK pathway by transcriptional regulation on MEK expression and promotes MITF expression, which ultimately results in the resistance to BRAFi in melanoma. Our study supports that POU4F1 is a potential combined therapeutic target with BRAFi therapy for melanoma.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Qiao Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019; 862:172621. [PMID: 31446019 DOI: 10.1016/j.ejphar.2019.172621] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Melanoma onset and progression are associated with a high variety of activating mutations in the MAPK-pathway, most frequently involving BRAF (35-45%) and NRAS (15-25%) genes, but also c-KIT and PTEN. Targeted therapies with BRAF and MEK inhibitors showed promising results over the past years, but it is known that most responses are temporary, and almost all of patients develop a tumor relapse within one year. Different drug-resistance mechanisms underlie the progression of disease and activation of both MAPK and PI3K/AKT/mTOR pathways. Therefore, in this article we reviewed the main studies about clinical effects of several target inhibitors, describing properly the most prominent mechanisms of both intrinsic and acquired resistance. Furthermore, suggestive strategies for overcoming drug resistance and the most recent alternative combination therapies to optimize the use of MAPK pathway inhibitors were also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy.
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Oncology Unit, IDI-IRCCS of Rome, Italy
| |
Collapse
|
9
|
Sammons RM, Ghose R, Tsai KY, Dalby KN. Targeting ERK beyond the boundaries of the kinase active site in melanoma. Mol Carcinog 2019; 58:1551-1570. [PMID: 31190430 DOI: 10.1002/mc.23047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) constitute a point of convergence for complex signaling events that regulate essential cellular processes, including proliferation and survival. As such, dysregulation of the ERK signaling pathway is prevalent in many cancers. In the case of BRAF-V600E mutant melanoma, ERK inhibition has emerged as a viable clinical approach to abrogate signaling through the ERK pathway, even in cases where MEK and Raf inhibitor treatments fail to induce tumor regression due to resistance mechanisms. Several ERK inhibitors that target the active site of ERK have reached clinical trials, however, many critical ERK interactions occur at other potentially druggable sites on the protein. Here we discuss the role of ERK signaling in cell fate, in driving melanoma, and in resistance mechanisms to current BRAF-V600E melanoma treatments. We explore targeting ERK via a distinct site of protein-protein interaction, known as the D-recruitment site (DRS), as an alternative or supplementary mode of ERK pathway inhibition in BRAF-V600E melanoma. Targeting the DRS with inhibitors in melanoma has the potential to not only disrupt the catalytic apparatus of ERK but also its noncatalytic functions, which have significant impacts on spatiotemporal signaling dynamics and cell fate.
Collapse
Affiliation(s)
- Rachel M Sammons
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1. Oncogenesis 2018; 7:71. [PMID: 30237393 PMCID: PMC6147791 DOI: 10.1038/s41389-018-0082-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.
Collapse
|
11
|
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta Gen Subj 2017; 1862:600-614. [PMID: 29196192 DOI: 10.1016/j.bbagen.2017.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
Collapse
|
12
|
Chan XY, Singh A, Osman N, Piva TJ. Role Played by Signalling Pathways in Overcoming BRAF Inhibitor Resistance in Melanoma. Int J Mol Sci 2017; 18:ijms18071527. [PMID: 28708099 PMCID: PMC5536016 DOI: 10.3390/ijms18071527] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the BRAFV600E mutation led to the development of vemurafenib (PLX4032), a selective BRAF inhibitor specific to the kinase, for the treatment of metastatic melanomas. However, initial success of the drug was dampened by the development of acquired resistance. Melanoma was shown to relapse in patients following treatment with vemurafenib which eventually led to patients' deaths. It has been proposed that mechanisms of resistance can be due to (1) reactivation of the mitogen-activated protein kinase (MAPK) signalling pathway via secondary mutations, amplification or activation of target kinase(s), (2) the bypass of oncogenic pathway via activation of alternative signalling pathways, (3) other uncharacterized mechanisms. Studies showed that receptor tyrosine kinases (RTK) such as PDGFRβ, IGF1R, EGFR and c-Met were overexpressed in melanoma cells. Along with increased secretion of growth factors such as HGF and TGF-α, this will trigger intracellular signalling cascades. This review discusses the role MAPK and Phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K-AKT-mTOR) pathways play in the mechanism of resistance of melanomas.
Collapse
Affiliation(s)
- Xian Yang Chan
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Alamdeep Singh
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Narin Osman
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
- Department of Immunology, Monash University, Melbourne 3004, Victoria, Australia.
- Department of Pharmacy, University of Queensland, Woolloongabba 4102, Queensland, Australia.
| | - Terrence J Piva
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| |
Collapse
|
13
|
|