1
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
2
|
Kristiansen SB, Pælestik KB, Johnsen J, Jespersen NR, Pryds K, Hjortbak MV, Jensen RV, Bøtker HE. Impact of hyperglycemia on myocardial ischemia-reperfusion susceptibility and ischemic preconditioning in hearts from rats with type 2 diabetes. Cardiovasc Diabetol 2019; 18:66. [PMID: 31151453 PMCID: PMC6543682 DOI: 10.1186/s12933-019-0872-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background The mechanisms underlying increased mortality in patients with diabetes and admission hyperglycemia after an acute coronary syndrome may involve reduced capacity for cardioprotection. We investigated the impact of hyperglycemia on exogenously activated cardioprotection by ischemic preconditioning (IPC) in hearts from rats with type 2 diabetes mellitus (T2DM) that were endogenously cardioprotected by an inherent mechanism, and the involvement of myocardial glucose uptake (MGU) and myocardial O-linked β-N-acetylglucosamine (O-GlcNAc). Methods and results In isolated, perfused rat hearts subjected to ischemia–reperfusion, infarct size (IS) was overall larger during hyper- ([Glucose] = 22 mmol/L]) than normoglycemia ([Glucose] = 11 mmol/L]) (p < 0.001). IS was smaller in 12-week old Zucker diabetic fatty rats with recent onset T2DM (fa/fa) than in rats without T2DM (fa/+) (n = 8 in each group) both during hyperglycemia (p < 0.05) and normoglycemia (p < 0.05). IPC (2 × 5 min cycles) reduced IS during normo- (p < 0.01 for both groups) but not during hyperglycemia independently of the presence of T2DM. During hyperglycemia, an intensified IPC stimulus (4 × 5 min cycles) reduced IS only in hearts from animals with T2DM (p < 0.05). IPC increased MGU and O-GlcNAc levels during reperfusion in animals with and without T2DM at normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01 for both groups) but not during hyperglycemia. Intensified IPC at hyperglycemia increased MGU (p < 0.05) and O-GlcNAc levels (p < 0.05) only in hearts from animals with T2DM. Conclusion While the effect of IPC is reduced during hyperglycemia in rats without T2DM, endogenous cardioprotection in animals with T2DM is not influenced by hyperglycemia and the capacity for exogenous cardioprotection by IPC is preserved. MGU and O-GlcNAc levels are increased by exogenously induced cardioprotection by IPC but not by endogenous cardioprotection in animals with T2DM reflecting different underlying mechanisms by exogenous and endogenous cardioprotection.
Collapse
Affiliation(s)
- Steen Buus Kristiansen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Kim Bolther Pælestik
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Kasper Pryds
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
3
|
Yin L, Cai WJ, Chang XY, Li J, Zhu LY, Su XH, Yu XF, Sun K. Analysis of PTEN expression and promoter methylation in Uyghur patients with mild type 2 diabetes mellitus. Medicine (Baltimore) 2018; 97:e13513. [PMID: 30544451 PMCID: PMC6310531 DOI: 10.1097/md.0000000000013513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatase and tension homolog deleted on chromosome 10 (PTEN) was considered as a promising target in type 2 diabetes mellitus (T2DM) because of its negative effects on insulin resistance. Alteration in DNA methylation is thought to play a role in the pathogenesis of T2DM. The aim of the present study was to quantitatively evaluate the promoter methylation of PTEN in Uyghur patients with mild T2DM. We evaluated methylation levels in 21 CpG sites from -2515 bp to -2186 bp relative to the translation initiation site in 55 cases of T2DM and 50 cases of normal glucose tolerance (NGT) using the MassARRAY spectrometry. In addition, PTEN mRNA and protein levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting to determine whether DNA methylation alterations were responsible for PTEN expression. Compared with NGT groups, the PTEN mRNA expression was significantly higher in Uyghur patients with mild T2DM groups. We also showed that PTEN protein expression was upregulated in Uyghur patients with mild T2DM groups, but the level of protein kinase B (AKT) was downregulated. PTEN methylation in T2DM patients was significantly lower than that in NGT groups. In addition, 2 CpG units demonstrated a significant difference between the NGT and Uyghur patients with mild T2DM groups. Furthermore, there was a negative association between promoter methylation and PTEN expression. Together, these findings suggest that epigenetic inactivation of PTEN plays an important role in Uyghur patients with mild T2DM. The aberrant methylation of CpG sites within the PTEN promoter may serve as a potential candidate biomarker for T2DM in the Uyghur population.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Wuhan, Hubei
| | - Wei-Juan Cai
- Department of Clinical Laboratory, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | | | - Jun Li
- Department of Endocrinology and Metabolism
| | | | | | - Xue-Feng Yu
- Department of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Wuhan, Hubei
| | - Kan Sun
- Department of Endocrinology and Metabolism
| |
Collapse
|
4
|
Mali V, Haddox S, Hornersmith C, Matrougui K, Belmadani S. Essential role for EGFR tyrosine kinase and ER stress in myocardial infarction in type 2 diabetes. Pflugers Arch 2017; 470:471-480. [PMID: 29288332 DOI: 10.1007/s00424-017-2097-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
We previously reported that EGFR tyrosine kinase (EGFRtk) activity and endoplasmic reticulum (ER) stress are enhanced in type 2 diabetic (T2D) mice and cause vascular dysfunction. In the present study, we determined the in vivo contribution of EGFRtk and ER stress in acute myocardial infarction induced by acute ischemia (40 min)-reperfusion (24 h) (I/R) injury in T2D (db-/db-) mice. We treated db-/db- mice with EGFRtk inhibitor (AG1478, 10 mg/kg/day) for 2 weeks. Mice were then subjected to myocardial I/R injury. The db-/db- mice developed a significant infarct after I/R injury. The inhibition of EGFRtk significantly reduced the infarct size and ER stress induction. We also determined that the inhibition of ER stress (tauroursodeoxycholic acid, TUDCA, 150 mg/kg per day) in db-/db- significantly decrease the infarct size indicating that ER stress is a downstream mechanism to EGFRtk. Moreover, AG1478 and TUDCA reduced myocardium p38 and ERK1/2 MAP-kinases activity, and increased the activity of the pro-survival signaling cascade Akt. Additionally, the inhibition of EGFRtk and ER stress reduced cell apoptosis and the inflammation as indicated by the reduction in macrophages and neutrophil infiltration. We determined for the first time that the inhibition of EGFRtk protects T2D heart against I/R injury through ER stress-dependent mechanism. The cardioprotective effect of EGFRtk and ER stress inhibition involves the activation of survival pathway, and inhibition of apoptosis, and inflammation. Thus, targeting EGFRtk and ER stress has the potential for therapy to overcome myocardial infarction in T2D.
Collapse
Affiliation(s)
- Vishal Mali
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - Samuel Haddox
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | | | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA.
| |
Collapse
|
5
|
Bai D, Zhang Y, Shen M, Sun Y, Xia Q, Zhang Y, Liu X, Wang H, Yuan L. Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci Rep 2016; 6:22068. [PMID: 26908121 PMCID: PMC4764951 DOI: 10.1038/srep22068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/05/2016] [Indexed: 01/30/2023] Open
Abstract
The leading cause of death in diabetic patients is diabetic cardiomyopathy, in which alteration of Akt signal plays an important role. Inpp5f is recently found to be a negative regulator of Akt signaling, while its expression and function in diabetic heart is largely unknown. In this study, we found that in both the streptozotocin (STZ) and high fat diet (HFD) induced diabetic mouse models, Inpp5f expression was coordinately regulated by insulin, blood glucose and lipid levels. Increased Inpp5f was inversely correlated with the cardiac function. Further studies revealed that Insulin transcriptionally activated Inpp5f in an Sp1 dependent manner, and increased Inpp5f in turn reduced the phosphorylation of Akt, forming a negative feedback loop. The negative feedback plays a protective role under diabetic condition. However, high blood glucose and lipid, which are characteristics of uncontrolled diabetes and type 2 diabetes, increased Inpp5f expression through activation of NF-κB, blunts the protective feedback. Thus, our study has revealed that Inpp5f provides as a negative feedback regulator of insulin signaling and downregulation of Inpp5f in diabetes is cardioprotective. Increased Inpp5f by hyperglycemia and hyperlipidemia is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease.
Collapse
Affiliation(s)
- Danna Bai
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.,323 Hospital of PLA, Xi'an 710054, China
| | - Yajun Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Mingzhi Shen
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.,Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | | | - Qing Xia
- 323 Hospital of PLA, Xi'an 710054, China
| | - Yingmei Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Xuedong Liu
- Department of Neurology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
6
|
Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways. Clin Sci (Lond) 2015; 130:377-92. [PMID: 26666444 DOI: 10.1042/cs20150496] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
Patients with diabetes are vulnerable to MI/R (myocardial ischaemia/reperfusion) injury, but are not responsive to IPostC (ischaemic post-conditioning) which activates PI3K (phosphoinositide 3-kinase)/Akt (also known as PKB or protein kinase B) and JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathways to confer cardioprotection. We hypothesized that increased cardiac PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K/Akt, is responsible for the loss of diabetic heart sensitivity to IPostC cardioprotecton. In STZ (streptozotocin)-induced Type 1 diabetic rats subjected to MI/R (30 min coronary occlusion and 120 min reperfusion), the post-ischaemic myocardial infarct size, CK-MB (creatine kinase-MB) and 15-F2t-isoprostane release, as well as cardiac PTEN expression were significantly higher than those in non-diabetic controls, concomitant with more severe cardiac dysfunction and lower cardiac Akt, STAT3 and GSK-3β (glycogen synthase kinase 3β) phosphorylation. IPostC significantly attenuated post-ischaemic infarct size, decreased PTEN expression and further increased Akt, STAT3 and GSK-3β phosphorylation in non-diabetic, but not in diabetic rats. Application of the PTEN inhibitor BpV (bisperoxovanadium) (1.0 mg/kg) restored IPostC cardioprotection in diabetic rats. HPostC (hypoxic post-conditioning) in combination with PTEN gene knockdown, but not HPostC alone, significantly reduced H/R (hypoxia/reoxygenation) injury in cardiac H9c2 cells exposed to high glucose as was evident from reduced apoptotic cell death and JC-1 monomer in cells, accompanied by increased phosphorylation of Akt, STAT3 and GSK-3β. PTEN inhibition/gene knockdown mediated restoration of IPostC/HPostC cardioprotection was completely reversed by the PI3K inhibitor wortmannin, and partially reversed by the JAK2 inhibitor AG490. Increased cardiac PTEN, by impairing PI3K/Akt and JAK2/STAT3 pathways, is a major mechanism that rendered diabetic hearts not responsive to post-conditioning cardioprotection.
Collapse
|
7
|
Birnbaum Y, Nanhwan MK, Ling S, Perez-Polo JR, Ye Y, Bajaj M. PTEN upregulation may explain the development of insulin resistance and type 2 diabetes with high dose statins. Cardiovasc Drugs Ther 2015; 28:447-57. [PMID: 25106875 DOI: 10.1007/s10557-014-6546-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Statins increase the incidence of new onset diabetes. Prolonged statin therapy upregulates PTEN expression. PTEN levels are also elevated in diabetic animals. Activation of protein kinase A by cAMP decreases PTEN expression. We assessed whether prolonged treatment with rosuvastatin (ROS) induces glucose intolerance by upregulating Phosphatase and Tensin Homologue on Chromosome 10 (PTEN) in mice receiving normal (ND) or Western Diet (WD) and whether concomitant treatment with cilostazol (CIL, a phosphodiesterase-3 inhibitor) attenuates the effects. METHODS PTEN(loxp/cre) or PTEN(+/-) mice received ND or WD without or with ROS (10 mg/kg/day). Wild-type mice received ND or WD without or with ROS, CIL (10 mg/kg/day), or ROS+CIL for 30 days. Fasting insulin and glucose tolerance test were measured as well as PTEN and P-AKT levels in skeletal muscle. RESULTS Serum glucose after intraperitoneal injection of glucose was higher in PTEN(loxp/cre) mice receiving WD or ROS and especially WD+ROS. Levels were lower in PTEN(+/-) mice compared to PTEN(loxp/cre) in each treatment group. CIL decreased glucose levels in mice receiving WD, ROS and their combination. Insulin levels were higher in the WD+ROS group. CIL decreased insulin in mice receiving WD+ROS. WD, ROS and especially their combination increased PTEN and decreased P-AKT levels. CIL attenuated the effect of WD, ROS and their combination. CONCLUSIONS Long-term ROS can induce diabetes by upregulating PTEN. CIL attenuates these changes. Partial knockdown of PTEN also ameliorates ROS-induced insulin resistance. Further studies are needed to assess the effects of increasing cAMP levels to prevent the induction of diabetes by statins.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
8
|
Wider J, Przyklenk K. Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther 2014; 4:383-96. [PMID: 25414825 DOI: 10.3978/j.issn.2223-3652.2014.10.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
The successful clinical translation of novel therapeutic strategies to attenuate lethal myocardial ischemia-reperfusion injury and limit infarct size has been identified as a major unmet need, and is of particular importance in patients with type-2 diabetes. There is a wealth of preclinical evidence that ischemic conditioning (encompassing the three paradigms of preconditioning, postconditioning and remote conditioning) is profoundly cardioprotective and, via up-regulation of endogenous signaling cascades, renders the heart resistant to infarction. However, current phase II trials aimed at exploiting ischemic conditioning for the clinical treatment of myocardial ischemia-reperfusion injury have yielded mixed results, possibly reflecting the emerging concern that the efficacy of conditioning-induced cardioprotection may be compromised in the diabetic heart. Our goal in this review is to provide a summary of our present understanding of the effect of type-2 diabetes on the infarct-sparing effect of ischemic conditioning, and the challenges of limiting ischemia-reperfusion injury in the diabetic heart.
Collapse
Affiliation(s)
- Joseph Wider
- 1 Cardiovascular Research Institute, 2 Department of Physiology, 3 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Karin Przyklenk
- 1 Cardiovascular Research Institute, 2 Department of Physiology, 3 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Rana A, Goyal N, Ahlawat A, Jamwal S, Reddy BVK, Sharma S. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders. Perfusion 2014; 30:94-105. [PMID: 24947460 DOI: 10.1177/0267659114536760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myocardial infarction is a pathological state which occurs due to severe abrogation of the blood supply (ischemia) to a part of heart, which can cause myocardial damage. The short intermittent cycles of sub-lethal ischemia and reperfusion has shown to improve the tolerance of the myocardium against subsequent prolonged ischemia/reperfusion (I/R)-induced injury, which is known as ischemic preconditioning (IPC). Although, IPC-induced cardioprotection is well demonstrated in various species, including human beings, accumulated evidence clearly suggests critical abrogation of the beneficial effects of IPC in diabetes mellitus, hyperlipidemia and hyperhomocysteinemia. Various factors are involved in the attenuation of the cardioprotective effect of preconditioning, such as the reduced release of calcitonin gene-related peptide (CGRP), the over-expression of glycogen synthase kinase-3β (GSK-3β) and phosphatase and tensin homolog (PTEN), impairment of mito-KATP channels, the consequent opening of mitochondrial permeability transition pore (MPTP), etc. In this review, we have critically discussed the various signaling pathways involved in abrogated preconditioning in chronic diabetes mellitus, hyperlipidemia and hyperhomocysteinemia. We have also focused on the involvement of PTEN in abrogated preconditioning and the significance of PTEN inhibitors.
Collapse
Affiliation(s)
- A Rana
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| | - N Goyal
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| | - A Ahlawat
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| | - S Jamwal
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| | - B V K Reddy
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| | - S Sharma
- Cardiovascular Division, Department of Pharmacology, I.S.F College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
10
|
Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, Bajaj M, Ye Y. Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther 2013; 26:445-56. [PMID: 22936458 DOI: 10.1007/s10557-012-6409-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We assessed whether phosphodiesterase-III inhibition with cilostazol (Cil) augments the infarct size (IS)-limiting effects of MK0626 (MK), a dipeptidyl-peptidase-4 (DPP4) inhibitor, by increasing intracellular cAMP in mice with type-2 diabetes. METHODS Db/Db mice received 3-day MK (0, 1, 2 or 3 mg/kg/d) with or without Cil (15 mg/kg/d) by oral gavage and were subjected to 30 min coronary artery occlusion and 24 h reperfusion. RESULTS Cil and MK at 2 and 3 mg/kg/d significantly reduced IS. Cil and MK had additive effects at all three MK doses. IS was the smallest in the MK-3+Cil. MK in a dose dependent manner and Cil increased cAMP levels (p < 0.001). cAMP levels were higher in the combination groups at all MK doses. MK-2 and Cil increased PKA activity when given alone; however, PKA activity was significantly higher in the MK-2+Cil group than in the other groups. Both MK-2 and Cil increased myocardial levels of Ser(133) P-CREB, Ser(523) P-5-lipoxygenase, Ser(473)P-Akt and Ser(633) P-eNOS. These levels were significantly higher in the MK-2+Cil group. Myocardial PTEN (Phosphatase and tensin homolog on chromosome ten) levels were significantly higher in the Db/Db mice compared to nondiabetic mice. MK-2 and Cil normalized PTEN levels. PTEN levels tended to be lower in the combination group than in the MK and Cil alone groups. CONCLUSION MK and Cil have additive IS-limiting effects in diabetic mice. The additive effects are associated with an increase in myocardial cAMP levels and PKA activity with downstream phosphorylation of Akt, eNOS, 5-lipoxygenase and CREB and downregulation of PTEN expression.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ling S, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj M, Li Y, Li Y, Ye Y. Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart. Basic Res Cardiol 2013; 108:352. [PMID: 23636253 DOI: 10.1007/s00395-013-0352-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Abstract
Competitive endogenous RNAs (ceRNAs) regulate mRNA transcripts containing common microRNA (miRNA) recognition elements (MREs) through sequestration of shared miRNAs. Interactions of ceRNA have been demonstrated in cancerous cells. However, a paucity of information is available relative to the interactions of ceRNAs interaction in diabetes mellitus and the myocardium. The purpose of this study is to assess the potential role of DKK1 and PTEN in ceRNA regulation utilizing their common miRNAs in diabetic cardiomyocytes. The interactions' regulation between PTEN and DKK1 were determined in two diabetic models in vivo (streptozotocin-induced type-1 DM mice and db/db mice) and in vitro (human cardiomyocytes cells exposed to hyperglycemia). The levels of DKK1 and PTEN (mRNA and protein) were upregulated in parallel in all three diabetic models. DKK1 modulates PTEN protein levels in a miRNA and 3'UTR-dependent manner. RNAi-mediated DKK1 gene silencing resulted in a decreased PTEN expression and vice versa. The effect was blocked when Dicer was inhibited. Silencing either PTEN or DKK1 resulted in an increase of the availabilities of shared miRNAs. The silencing of either PTEN or DKKI resulted in a suppression end of the luciferase-PTEN 3'UTR activity. However, the over expression of DKK1 3'UTR or PTEN 3'UTR resulted in an increase in the activity. The attenuation of DKK1 increased AKT phosphorylation, improved glucose uptake and decreased apoptosis in HCMs exposed to hyperglycemia. The effects were blocked by PI3K inhibition. DKK1 and PTEN transcripts are co-upregulated in DM and hyperglycemia. DKK1 and PTEN serve as ceRNA, affecting the expression of each other via competition for miRNAs binding.
Collapse
Affiliation(s)
- Shukuan Ling
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013; 229:232-41. [PMID: 23011912 DOI: 10.1002/path.4113] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Reactive oxygen or nitrogen species play an integral role in both myocardial injury and repair. This dichotomy is differentiated at the level of species type, amount and duration of free radical generated. Homeostatic mechanisms designed to prevent free radical generation in the first instance, scavenge, or enzymatically convert them to less toxic forms and water, playing crucial roles in the maintenance of cellular structure and function. The outcome between functional recovery and dysfunction is dependent upon the inherent ability of these homeostatic antioxidant defences to withstand acute free radical generation, in the order of seconds to minutes. Alternatively, pre-existent antioxidant capacity (from intracellular and extracellular sources) may regulate the degree of free radical generation. This converts reactive oxygen and nitrogen species to the role of second messenger involved in cell signalling. The adaptive capacity of the cell is altered by the balance between death or survival signal converging at the level of the mitochondria, with distinct pathophysiological consequences that extends the period of injury from hours to days and weeks. Hyperglycaemia, hyperlipidaemia and insulin resistance enhance oxidative stress in the diabetic myocardium that cannot adapt to ischaemia-reperfusion. Altered glucose flux, mitochondrial derangements and nitric oxide synthase uncoupling in the presence of decreased antioxidant defence and impaired prosurvival cell signalling may render the diabetic myocardium more vulnerable to injury, remodelling and heart failure.
Collapse
Affiliation(s)
- David M Ansley
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
13
|
Myocardial Protection Against Ischemia-Reperfusion Injury by GLP-1: Molecular Mechanisms. Metab Syndr Relat Disord 2012; 10:387-90. [DOI: 10.1089/met.2012.0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Ye Y, Qian J, Castillo AC, Ling S, Ye H, Perez-Polo JR, Bajaj M, Birnbaum Y. Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes. Am J Physiol Heart Circ Physiol 2012; 304:H131-41. [PMID: 23103492 DOI: 10.1152/ajpheart.00609.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide (GLP)-1 receptor activation increases intracellular cAMP with downstream activation of PKA. Cilostazol (CIL), a phosphodiesterase-3 inhibitor, prevents cAMP degradation. We assessed whether CIL amplifies the exenatide (EX)-induced increase in myocardial cAMP levels and PKA activity and augments the infarct size (IS)-limiting effects of EX in db/db mice. Mice fed a Western diet received oral CIL (10 mg/kg) or vehicle by oral gavage 24 h before surgery. One hour before surgery, mice received EX (1 μg/kg sc) or vehicle. Additional mice received H-89, a PKA inhibitor, alone or with CIL + EX. Mice underwent 30 min of coronary artery occlusion and 24 h of reperfusion. Both EX and CIL increased myocardial cAMP levels and PKA activity. Levels were significantly higher in the EX + CIL group. Both EX and CIL reduced IS. IS was the smallest in the CIL + EX group. H-89 completely blocked the IS-limiting effects of EX + CIL. EX + CIL decreased phosphatase and tensin homolog on chromosome 10 upregulation and increased Akt and ERK1/2 phosphorylation after ischemia-reperfusion. These effects were blocked by H-89. In conclusion, EX and CIL have additive effects on IS limitation in diabetic mice. The additive effects are related to cAMP-induced PKA activation, as H-89 blocked the protective effect of CIL + EX.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y. Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia. Am J Physiol Heart Circ Physiol 2012; 302:H1806-17. [DOI: 10.1152/ajpheart.00929.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatase and tensin homolog on chromosome 10 (PTEN) is downregulated during hypertrophic and cancerous cell growth, leading to activation of the prosurvival Akt pathway. However, PTEN regulation in cardiac myocytes upon exposure to hypoxia remains unclear. We explored the role of PTEN in response to hypoxia/ischemia in the myocardium. We validated that PTEN is a transcriptional target of activating transcription factor 2 (ATF-2) and is positively regulated via a p38/ATF-2 signaling pathway. Accordingly, hypoxia-induced upregulation of phosphorylation of ATF-2 and PTEN were reversed by a dominant negative mutant p38. Inhibition of PTEN in cardiomyocytes attenuated hypoxia-induced cell death and apoptosis. Cardiac-specific knockout of PTEN resulted in increased phosphorylation of Akt and forkhead box O 1 (forkhead transcription factors), limited infarct size in animals exposed to ischemia-reperfusion injury, and ameliorated deterioration of left ventricular function and remodeling following permanent coronary artery occlusion. In addition, the activation of Bim, FASL, and caspase was coupled with PTEN activation, all of which were attenuated by PTEN inhibition. In conclusion, cardiomyocyte-specific conditional PTEN deletion limited myocardial infarct size in an in vivo model of ischemia-reperfusion injury and attenuated adverse remodeling in a model of chronic permanent coronary artery ligation.
Collapse
Affiliation(s)
- Jinqiao Qian
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China; and
| | - Shukuan Ling
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Alexander C. Castillo
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Bo Long
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Yochai Birnbaum
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Przyklenk K. Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 2011; 28:331-43. [PMID: 21542657 DOI: 10.2165/11587190-000000000-00000] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence obtained in multiple experimental models has revealed that cardiac 'conditioning' strategies--including ischaemic preconditioning, postconditioning, remote conditioning and administration of pharmacological conditioning mimetics--are profoundly protective and significantly attenuate myocardial ischaemia-reperfusion injury. As a result, there is considerable interest in translating these cardioprotective paradigms from the laboratory to patients. However, the majority of studies investigating conditioning-induced cardioprotection have utilized healthy adult animals devoid of the risk factors and co-morbidities associated with cardiovascular disease and acute myocardial infarction. The aim of this article is to summarize the growing consensus that two well established risk factors, aging and diabetes mellitus, may render the heart refractory to the favourable effects of myocardial conditioning, and discuss the clinical implications of a loss in efficacy of cardiac conditioning paradigms in these patient populations.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
17
|
Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice. Cardiovasc Drugs Ther 2011; 25:505-15. [DOI: 10.1007/s10557-011-6339-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Wang B, Raedschelders K, Shravah J, Hui Y, Safaei HG, Chen DDY, Cook RC, Fradet G, Au CL, Ansley DM. Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol (Oxf) 2011; 74:705-13. [PMID: 21521253 PMCID: PMC3378665 DOI: 10.1111/j.1365-2265.2011.03979.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Patients with diabetes experience increased cardiovascular complications after cardiac surgery. Hyperglycaemia predicts increased mortality after myocardial infarction and may influence cardiovascular risk in humans. Impaired prosurvival phosphatase and tensin homologue on chromosome 10 (PTEN)-Akt signalling could be an important feature of the diabetic heart rendering it resistant to preconditioning. This study was designed to evaluate for differences and relationships of myocardial PTEN-Akt-related signalling and baseline glycaemic control marker in type 2 diabetic and nondiabetic patients undergoing coronary artery bypass surgery. METHODS Right atrial biopsies and coronary sinus blood were obtained from 18 type 2 diabetic and 18 nondiabetic patients intraoperatively. Expression and phosphorylation of Akt, endothelial nitric oxide synthase (eNOS), Bcl-2 and PTEN were evaluated by Western blot. Plasma 15-F(2t) -isoprostane concentrations were evaluated by liquid chromatography-mass spectrometry. RESULTS PTEN expression and 15-F(2t) -isoprostane concentrations were significantly higher in diabetic patients. Increased fasting blood glucose levels correlated with increased coronary sinus plasma 15-F(2t) -isoprostane concentrations. Increased cardiac 15-F(2t) -isoprostane generation was highly correlated with myocardial PTEN expression. Bcl-2 expression and eNOS phosphorylation were significantly lower in diabetic compared with nondiabetic patients. Akt phosphorylation tended to be lower in diabetic patients; however, this tendency failed to reach statistical significance. CONCLUSION The current results suggest that prosurvival PTEN-Akt signalling is impaired in the diseased diabetic myocardium. Hyperglycaemia and increased oxidative stress may contribute to this phenomenon. These findings strengthen the understanding of the underlying biologic mechanisms of cardiac injury in diabetic patients, which could facilitate development of new treatments to prevent cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Baohua Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Koen Raedschelders
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayant Shravah
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu Hui
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Hajieh Ghasemian Safaei
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David D. Y. Chen
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Richard C. Cook
- Department of Cardiac Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Guy Fradet
- Department of Cardiac Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calvin L. Au
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David M. Ansley
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Keyes KT, Xu J, Long B, Zhang C, Hu Z, Ye Y. Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol 2010; 298:H1198-208. [PMID: 20097771 DOI: 10.1152/ajpheart.00915.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) mediates myocardium protective signaling through phosphorylation of phosphatidylinositol (Ptdins) to produce Ptdins(3,4,5)P(3). Lipid phosphatase and tensin homolog on chromosome 10 (PTEN) antagonizes PI3K activity by dephosphorylating Ptdins(3,4,5)P(3); therefore, the inhibition of PTEN enhances PI3K/Akt signaling and could prevent myocardium from ischemia-reperfusion (I/R) injury. Here we studied 1) whether the pharmacological inhibition of PTEN by bisperoxovanadium molecules [BpV(HOpic)] attenuates simulated I/R (SIR) injury in vitro and 2) whether the administration of BpV(HOpic) either before or after ischemia limits myocardial infarct size (IS) and ameliorates cardiodysfunction caused by infarction. First, adult rat cardiomyocytes were treated with or without BpV(HOpic) and then exposure to SIR. Second, anesthetized rats received BpV(HOpic) either before or after ischemia. IS was assessed at 4 h reperfusion, and left ventricular function was evaluated by echocardiography at 28 days postreperfusion. As a result, BpV(HOpic) decreased cell death, improved 3-[4,5-yl]-2,5-diphenyltetrazolium bromide (MTT) viability, and reduced apoptosis in cells exposed to SIR. These protective effects of BpV(HOpic) are associated with increased phospho-Akt and the repression of caspase-3 activity. Second, the administration of BpV(HOpic) significantly reduced IS and suppressed caspase-3 activity following I/R injury and consequentially improved cardiac function at 28 day postinfarction. These beneficial effects of BpV(HOpic) are attributed to increases in myocardial levels of phosphorylation of Akt/endothelial nitric oxide synthase (eNOS), ERK-1/2, and calcium-dependent nitric oxide synthase activity. In conclusion, the pharmacological inhibition of PTEN protects against I/R injury through the upregulation of the PI3K/Akt/eNOS/ERK prosurvival pathway, suggesting a new therapeutic strategy to combat I/R injury.
Collapse
Affiliation(s)
- Kyle T Keyes
- Dept. of Biochemistry and Molecular Biology, Univ. of Texas Medical Branch, Galveston, 77555, USA
| | | | | | | | | | | |
Collapse
|
20
|
Siddall HK, Warrell CE, Davidson SM, Mocanu MM, Yellon DM. Mitochondrial PINK1--a novel cardioprotective kinase? Cardiovasc Drugs Ther 2008; 22:507-8. [PMID: 18825492 DOI: 10.1007/s10557-008-6136-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/26/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Hilary K Siddall
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | | | | | |
Collapse
|
21
|
Siddall HK, Warrell CE, Yellon DM, Mocanu MM. Ischemia-reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Res Cardiol 2008; 103:560-8. [PMID: 18604624 DOI: 10.1007/s00395-008-0735-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 06/06/2008] [Indexed: 12/26/2022]
Abstract
Activation of the PI3K/Akt pathway protects the heart from ischemia-reperfusion injury (IRI). The phosphatase PTEN is the main negative regulator of this pathway. We hypothesized that reduced PTEN levels could protect against IRI. Isolated perfused mouse hearts from PTEN(+/-) and their littermates PTEN(+/+) (WT), were subjected to 35 min global ischemia and 30 min reperfusion, with and without 2, 4 or 6 cycles ischemic preconditioning (IPC). The end point was infarct size, expressed as a percentage of the myocardium at risk (I/R%). PTEN and Akt levels were determined using Western blot analysis. Unexpectedly, there were no significant differences in infarction between PTEN(+/-) and WT (42.1 +/- 5.0% Vs. 45.6 +/- 3.3%). However, the preconditioning threshold was significantly reduced in the PTEN(+/-) Vs. WT, with 4 cycles of IPC being sufficient to reduce I/R%, compared to 6 cycles in the WT (4 cycles IPC: 29.8. +/- 3.69% in PTEN(+/-) Vs. 45.5. +/- 5.08% in WT, P < 0.01). In addition, the ratio between the phospho/total Akt (Ser473 and Thr308) was slightly but significantly increased in the PTEN(+/-) indicating an upregulation of PI3K/Akt pathway. Interestingly, the levels of the other phosphatases that may negatively regulate the PI3K/Akt pathway (PP2A, SHIP2 and PHLPP) were not significantly different between littermates and PTEN(+/-). In conclusion, PTEN haploinsufficiency alone does not induce cardioprotection in this model; however, it reduces the threshold of protection induced by IPC.
Collapse
Affiliation(s)
- Hilary K Siddall
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | | | | |
Collapse
|
22
|
Abstract
Myocardial ischaemia/reperfusion injury leading to myocardial infarction is one of the most frequent causes of debilitation and death in man. Considerable research has been undertaken to investigate the possibility of reducing myocardial infarction and increasing cell survival by activating certain endogenous prosurvival signaling pathways. Thus, it has been established that the activation of the PI3K (Phosphoinositide-3 kinase)/Akt (Protein kinase B, PKB) signaling pathway is essential for protection against ischaemia/reperfusion injury. This pathway has been shown to be activated by mechanical procedures (e.g. pre and post conditioning) as well as by a number of pharmacological agents. Although the activation of this prosurvival signaling pathway induces the phosphorylation of a large number of substrates implicated in increased cell survival, when activated over a prolonged period this pathway can have detrimental consequences by facilitating unwanted growth and malignancies. Importantly PTEN (phosphatase and tensin homolog deleted on chromosome ten), is the main phosphatase which negatively regulates the PI3K/Akt pathway. In this review we discuss: a) the significance and the limitations of inhibiting PTEN in myocardial ischaemia/reperfusion injury; b) PTEN and its relationship to ischaemic preconditioning, c) the role of PTEN in the development of tolerance to chronic administration of drugs known to limit infarction by activating PI3K/Akt pathway when given acutely, and d) the possible role of PTEN in the ischaemic/reperfused diabetic heart. The experimental evidence discussed in this review illustrates the importance of PTEN inhibition in the protection of the heart against ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- M M Mocanu
- The Hatter Cardiovascular Institute, Department of Medicine, UCL Chenies Mews, London, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, Department of Medicine, UCL Chenies Mews, London, UK
- Author for correspondence:
| |
Collapse
|