1
|
Stelfa G, Miteniece A, Svalbe B, Vavers E, Makrecka-Kuka M, Kupats E, Kunrade L, Parfejevs V, Riekstina U, Dambrova M, Zvejniece L. Age-dependent changes in visceral adiposity are associated with decreased plasma levels of DHEA-S in sigma-1 receptor knockout male mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159571. [PMID: 39428081 DOI: 10.1016/j.bbalip.2024.159571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The sigma-1 receptor (S1R) is involved in intracellular lipid synthesis and transport. Recent studies have shown that its genetic inactivation impairs adipogenic differentiation in vitro. This study investigated the role of S1R in adipose tissue physiology and metabolic health using adult and old WT and S1R KO mice. Visceral fat mass was increased in adult, but not old S1R-KO male mice compared to that of WT mice, despite having similar body weights, food intake, and energy expenditure. The average adipocyte size was 64 % larger in adult KO mice than in adult WT mice. Adult S1R-KO mice showed reduced plasma dehydroepiandrosterone sulfate (DHEA-S) and elevated fasting plasma leptin concentrations. Lipidomic analysis revealed alterations in plasma metabolite concentrations, particularly reduced levels of sphingomyelins, ceramides, phosphatidylcholines, lysophosphatidylcholines, and cholesteryl esters in adult mice. Decreased expression of Pparγ, Adipoq, and Atgl was detected in visceral white adipose tissue (vWAT) isolated from adult KO mice. Additionally, Fabp4 and Adipoq expression levels were significantly lower in KO adipose-derived stromal cells than in WT adipose-derived stromal cells. A fivefold increase in the mitochondrial fatty acid oxidation rate and a 43 % increase in electron transfer coupling capacity were detected in adult S1R-KO vWAT. In summary, our investigation revealed an age-dependent association between increased visceral adiposity and decreased plasma levels of DHEA-S in S1R-deficient male mice. These findings underscore the potential role of S1R in regulating metabolic processes in adipose tissue and suggest that DHEA-S is a potential mediator of adiposity changes in the absence of S1R.
Collapse
Affiliation(s)
- Gundega Stelfa
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Anna Miteniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Baiba Svalbe
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edijs Vavers
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Science and Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Einars Kupats
- Faculty of Medicine, Riga Stradiņš University, Riga, Latvia
| | - Liga Kunrade
- Faculty of Medicine and Life Sciences, University of Latvia, Riga, Latvia
| | - Vadims Parfejevs
- Faculty of Medicine and Life Sciences, University of Latvia, Riga, Latvia
| | - Una Riekstina
- Faculty of Medicine and Life Sciences, University of Latvia, Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
2
|
Yue L, Wang Y, Wang C, Niu S, Dong X, Guan Y, Chen S. Empagliflozin improves aortic injury in obese mice by regulating fatty acid metabolism. Open Med (Wars) 2024; 19:20241012. [PMID: 39176252 PMCID: PMC11340858 DOI: 10.1515/med-2024-1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Empagliflozin has been shown in clinical studies to lower the risk of adverse cardiovascular events. Using proteomics, the current study aims to determine whether empagliflozin reduces aortic alterations in obese mice and to investigate its molecular mechanism of action. Methods We constructed obese mice and then treated them with empagliflozin. Changes in the weight of the mice were recorded. Blood glucose and lipid levels were measured in each group of mice, and changes in pulse wave velocity and aortic structure were recorded. In addition, changes in aortic protein expression were detected by proteomics and analyzed bioinformatically. Results Proteomics results showed that 507 differentially expressed proteins (DEPs) were identified in the comparison of normal and obese mice, while 90 DEPs were identified in the comparison of obese and empagliflozin-treated mice. Examination of these three groups revealed that DEPs were largely associated with the digestion of unsaturated fats. Among them, empagliflozin significantly reduced the expression of fatty acid synthase (FASN), acyl-CoA desaturase 3 (SCD3), ACSL1. and ACSL5 in the aorta of obesity-induced mice, and there was a close relationship between the four. Conclusion Empagliflozin reduced the protein expression of FASN, SCD3, ACSL1, and ACSL5 in the aorta of obese mice and improved aortic fatty acid metabolism and reduced vascular stiffness for vasoprotective effects.
Collapse
Affiliation(s)
- Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yue Wang
- Department of Ultrasonography, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cuiying Wang
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xihong Dong
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yaqing Guan
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| |
Collapse
|
3
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Arnold M, Do P, Davidson SM, Large SR, Helmer A, Beer G, Siepe M, Longnus SL. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int J Mol Sci 2024; 25:4153. [PMID: 38673737 PMCID: PMC11050041 DOI: 10.3390/ijms25084153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Peter Do
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Stephen R. Large
- Royal Papworth Hospital, Biomedical Campus, Cambridge CB2 0AY, UK
| | - Anja Helmer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georgia Beer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
5
|
Song MW, Cui W, Lee CG, Cui R, Son YH, Kim YH, Kim Y, Kim HJ, Choi SE, Kang Y, Kim TH, Jeon JY, Lee KW. Protective effect of empagliflozin against palmitate-induced lipotoxicity through AMPK in H9c2 cells. Front Pharmacol 2023; 14:1228646. [PMID: 38116084 PMCID: PMC10728651 DOI: 10.3389/fphar.2023.1228646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently emerged as novel cardioprotective agents. However, their direct impact on cardiomyocyte injury is yet to be studied. In this work, we investigate the underlying molecular mechanisms of empagliflozin (EMPA), an SGLT2 inhibitor, in mitigating palmitate (PA)-induced cardiomyocyte injury in H9c2 cells. We found that EMPA significantly attenuated PA-induced impairments in insulin sensitivity, ER stress, inflammatory cytokine gene expression, and cellular apoptosis. Additionally, EMPA elevated AMP levels, activated the AMPK pathway, and increased carnitine palmitoyl transferase1 (CPT1) gene expression, which collectively enhanced fatty acid oxidation and reduced stress signals. This study reveals a novel mechanism of EMPA's protective effects against PA-induced cardiomyocyte injury, providing new therapeutic insights into EMPA as a cardioprotective agent.
Collapse
Affiliation(s)
- Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wenhao Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - Rihua Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Young Ho Son
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Ha Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
6
|
Zhi F, Zhang Q, Liu L, Chang X, Xu H. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments. Cell Stress Chaperones 2023; 28:641-655. [PMID: 37405612 PMCID: PMC10746653 DOI: 10.1007/s12192-023-01361-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.
Collapse
Affiliation(s)
- Fumin Zhi
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Qian Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Li Liu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hongtao Xu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
7
|
Niu S, Ren Q, Chen S, Pan X, Yue L, Chen X, Li Z, Zhen R. Metabolic and Hepatic Effects of Empagliflozin on Nonalcoholic Fatty Liver Mice. Diabetes Metab Syndr Obes 2023; 16:2549-2560. [PMID: 37645238 PMCID: PMC10461752 DOI: 10.2147/dmso.s422327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose Among chronic liver diseases, non-alcoholic fatty liver disease (NAFLD) is one of the commonest. Although empagliflozin has several therapeutic uses in treating cardiovascular and renal disorders, its impacts and mechanisms on NAFLD are poorly understood. This research aimed to examine the metabolic regulatory mechanism through which empagliflozin protects against NAFLD. Methods Equal grouping of twenty-seven male C57BL/6J mice into those fed a normal diet (NCD), those fed a high-fat diet (HFD), and those fed an HFD with empagliflozin (Empa) was approached. HE, oil red O staining, and Masson staining were utilized for evaluating the pathological damage to the liver and the mice's liver and body weights. Lipids, blood glucose, and inflammation index were compared across the three groups. Liquid chromatography/mass spectrometry (LC-MS) has been employed for identifying liver metabolomics. Results The findings suggested that empagliflozin mitigated the inflammatory and oxidative stress response associated with the buildup of lipids caused by HFD. Differentially expressed metabolites (DEMs) were identified by metabonomics analysis as present in both the HFD/NCD and Empa/HFD groups. These DEMs were primarily found in lipids and organic acids like lysophosphatidylcholine (lysoPC), lecithin (PC), triglyceride (TG), palmitic acid, and L-isoleucine. Among the enriched pathways that were shown to be important were those involved in the metabolism of histidine, arachidonic acid, the control of lipolysis in adipocytes, and insulin resistance. There was a strong correlation between inflammation and oxidative stress in most of the metabolites. The inflammation and oxidative stress unbalance were ameliorated by empagliflozin. Conclusion NAFLD mice model showed considerable improvement in metabolic abnormalities and liver protection after treatment with empagliflozin. The process may include the overexpression of L-isoleucine and the downregulation of lysoPC, PC, TG, and palmitic acid to reduce liver harm caused by lipotoxicity.
Collapse
Affiliation(s)
- Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Qingjuan Ren
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Xing Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
8
|
Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J Cardiovasc Pharmacol 2023; 81:4-14. [PMID: 36607775 DOI: 10.1097/fjc.0000000000001380] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to treat diabetes mellitus. Abundant evidence has shown that SGLT2 inhibitors can reduce hospitalization for heart failure (HF) in patients with or without diabetes. An increasing number of studies are being conducted on the mechanisms of action of SGLT2 inhibitors in HF. Our review summarizes a series of clinical trials on the cardioprotective effects of SGLT2 inhibitors in the treatment of HF. We have summarized several classical SGLT2 inhibitors in cardioprotection research, including empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and sotagliflozin. In addition, we provided a brief overview of the safety and benefits of SGLT2 inhibitors. Finally, we focused on the mechanisms of SGLT2 inhibitors in the treatment of HF, including ion-exchange regulation, volume regulation, ventricular remodeling, and cardiac energy metabolism. Exploring the mechanisms of SGLT2 inhibitors has provided insight into repurposing these diabetic drugs for the treatment of HF.
Collapse
|
9
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
10
|
Pinho ACO, Santos D, Baldeiras I, Burgeiro A, Leal EC, Carvalho E. Mitochondrial respiration in thoracic perivascular adipose tissue of diabetic mice. J Endocrinol 2022; 254:169-184. [PMID: 35904484 DOI: 10.1530/joe-21-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Introduction Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction. Methods We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP). Results UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition. Conclusions Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Diana Santos
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Ana Burgeiro
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Emelindo C Leal
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
- APDP-Portuguese Diabetes Association, Lisbon, Portugal
| |
Collapse
|
11
|
Chen X, Chen S, Ren Q, Niu S, Yue L, Pan X, Li Z, Zhu R, Jia Z, Chen X, Zhen R, Ban J. A metabonomics-based renoprotective mechanism analysis of empagliflozin in obese mice. Biochem Biophys Res Commun 2022; 621:122-129. [PMID: 35820282 DOI: 10.1016/j.bbrc.2022.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
With an increasing prevalence of obesity related kidney disease, exploring the mechanisms of therapeutic method is of critical importance. Empagliflozin is a new antidiabetic agent with broad clinical application prospect in cardiovascular and renal diseases. However, a metabonomics-based renoprotective mechanism of empagliflozin in obesity remains unclear. Our results showed that empagliflozin significantly alleviated the deposition of lipid droplet, glomerular and tubular injury. The innovation lied in detection of empagliflozin-targeted differential metabolites in kidneys. Compared with normal control mice, obese mice showed higher levels of All-trans-heptaprenyl diphosphate, Biliverdin, Galabiose, Galabiosylceramide (d18:1/16:0), Inosine, Methylisocitric acid, Uric acid, Xanthosine, O-glutarylcarnitine, PG(20:3(8Z,11Z,14Z)/0:0), PG(20:4(5Z,8Z,11Z,14Z)/0:0), PE(O-16:0/0:0), PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), and lower level of Adenosine. Empagliflozin regulated these metabolites in the opposite direction. Associated metabolic pathways were Phospholipids metabolism, Purine metabolism, and Biliverdin metabolism. Most of metabolites were associated with inflammatory response and oxidative stress. Empagliflozin improved the oxidative stress and inflammation imbalance. Our study revealed the metabonomics-based renoprotective mechanism of empagliflozin in obese mice for the first time. Empagliflozin may be a promising tool to delay the progression of obesity-related kidney disease.
Collapse
Affiliation(s)
- Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyi Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiangli Ban
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
13
|
Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, Efentakis P, Kampoukos S, Kostomitsopoulos N, Vilskersts R, Ikonomidis I, Lambadiari V, Zuurbier CJ, Latosinska A, Vlahou A, Dimitriadis G, Iliodromitis EK, Andreadou I. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol 2022; 117:27. [PMID: 35581445 DOI: 10.1007/s00395-022-00934-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023]
Abstract
Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Manousos Makridakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Aikaterini Iliou
- Faculty of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Stavros Kampoukos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
14
|
Mitochondria-Mediated Cardiovascular Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. Int J Mol Sci 2022; 23:ijms23105371. [PMID: 35628174 PMCID: PMC9140946 DOI: 10.3390/ijms23105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent cardiovascular trials of SGLT 2 (sodium-glucose cotransporter 2) inhibitors revealed that they could reduce adverse cardiovascular events in patients with T2DM (type 2 diabetes mellitus). However, the exact molecular mechanism underlying the beneficial effects that SGLT2 inhibitors have on the cardiovascular system is still unknown. In this review, we focus on the molecular mechanisms of the mitochondria-mediated beneficial effects of SGLT2 inhibitors on the cardiovascular system. The application of SGLT2 inhibitors ameliorates mitochondrial dysfunction, dynamics, bioenergetics, and ion homeostasis and reduces the production of mitochondrial reactive oxygen species, which results in cardioprotective effects. Herein, we present a comprehensive overview of the impact of SGLT2 inhibitors on mitochondria and highlight the potential application of these medications to treat both T2DM and cardiovascular diseases.
Collapse
|
15
|
Wang Y, Ding Y, Sun P, Zhang W, Xin Q, Wang N, Niu Y, Chen Y, Luo J, Lu J, Zhou J, Xu N, Zhang Y, Xie W. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel) 2022; 11:799. [PMID: 35624663 PMCID: PMC9137911 DOI: 10.3390/antiox11050799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Lipotoxicity is an important factor in the development and progression of nonalcoholic steatohepatitis. Excessive accumulation of saturated fatty acids can increase the substrates of the mitochondrial electron transport chain in hepatocytes and cause the generation of reactive oxygen species, resulting in oxidative stress, mitochondrial dysfunction, loss of mitochondrial membrane potential, impaired triphosphate (ATP) production, and fracture and fragmentation of mitochondria, which ultimately leads to hepatocellular inflammatory injuries, apoptosis, and necrosis. In this study, we systematically investigated the effects and molecular mechanisms of empagliflozin on lipotoxicity in palmitic acid-treated LO2 cell lines. We found that empagliflozin protected hepatocytes and inhibited palmitic acid-induced lipotoxicity by reducing oxidative stress, improving mitochondrial functions, and attenuating apoptosis and inflammation responses. The mechanistic study indicated that empagliflozin significantly activated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) through Calcium/Calmodulin dependent protein kinase kinase beta (CAMKK2) instead of liver kinase B1 (LKB1) or TGF-beta activated kinase (TAK1). The activation of empagliflozin on AMPKα not only promoted FoxO3a phosphorylation and thus forkhead box O 3a (FoxO3a) nuclear translocation, but also promoted Nrf2 nuclear translocation. Furthermore, empagliflozin significantly upregulated the expressions of antioxidant enzymes superoxide dismutase (SOD) and HO-1. In addition, empagliflozin did not attenuate lipid accumulation at all. These results indicated that empagliflozin mitigated lipotoxicity in saturated fatty acid-induced hepatocytes, likely by promoting antioxidant defense instead of attenuating lipid accumulation through enhanced FoxO3a and Nrf2 nuclear translocation dependent on the CAMKK2/AMPKα pathway. The CAMKK2/AMPKα pathway might serve as a promising target in treatment of lipotoxicity in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pengbo Sun
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wanqiu Zhang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaoyun Niu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Chen
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jinghua Lu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
16
|
Song Y, Huang C, Sin J, Germano JDF, Taylor DJR, Thakur R, Gottlieb RA, Mentzer RM, Andres AM. Attenuation of Adverse Postinfarction Left Ventricular Remodeling with Empagliflozin Enhances Mitochondria-Linked Cellular Energetics and Mitochondrial Biogenesis. Int J Mol Sci 2021; 23:437. [PMID: 35008865 PMCID: PMC8745294 DOI: 10.3390/ijms23010437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors such as empagliflozin are known to reduce the risk of hospitalizations related to heart failure irrespective of diabetic state. Meanwhile, adverse cardiac remodeling remains the leading cause of heart failure and death in the USA. Thus, understanding the mechanisms that are responsible for the beneficial effects of SGLT2 inhibitors is of the utmost relevance and importance. Our previous work illustrated a connection between adverse cardiac remodeling and the regulation of mitochondrial turnover and cellular energetics using a short-acting glucagon-like peptide-1 receptor agonist (GLP1Ra). Here, we sought to determine if the mechanism of the SGLT2 inhibitor empagliflozin (EMPA) in ameliorating adverse remodeling was similar and/or to identify what differences exist, if any. To this end, we administered permanent coronary artery ligation to induce adverse remodeling in wild-type and Parkin knockout mice and examined the progression of adverse cardiac remodeling with or without EMPA treatment over time. Like GLP1Ra, we found that EMPA affords a robust attenuation of PCAL-induced adverse remodeling. Interestingly, unlike the GLP1Ra, EMPA does not require Parkin to improve/maintain mitochondria-related cellular energetics and afford its benefits against developing adverse remodeling. These findings suggests that further investigation of EMPA is warranted as a potential path for developing therapy against adverse cardiac remodeling for patients that may have Parkin and/or mitophagy-related deficiencies.
Collapse
Affiliation(s)
- Yang Song
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Chengqun Huang
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Jon Sin
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
- University of Alabama, Birmingham, AL 35294, USA
| | - Juliana de F. Germano
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - David J. R. Taylor
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Reetu Thakur
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Roberta A. Gottlieb
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Robert M. Mentzer
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| | - Allen M. Andres
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.S.); (C.H.); (J.S.); (J.d.F.G.); (D.J.R.T.); (R.T.); (R.A.G.); (R.M.M.J.)
| |
Collapse
|
17
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
18
|
Empagliflozin therapy and insulin resistance-associated disorders: effects and promises beyond a diabetic state. ACTA ACUST UNITED AC 2021; 6:e57-e78. [PMID: 34027215 PMCID: PMC8117073 DOI: 10.5114/amsad.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Empagliflozin is a SGLT2 inhibitor that has shown remarkable cardiovascular and renal activities in patients with type 2 diabetes (T2D). Preclinical and clinical studies of empagliflozin in T2D population have demonstrated significant improvements in body weight, waist circumference, insulin sensitivity, and blood pressure – effects beyond its antihyperglycaemic control. Moreover, several studies suggested that this drug possesses significant anti-inflammatory and antioxidative stress properties. This paper explores extensively the main preclinical and clinical evidence of empagliflozin administration in insulin resistance-related disorders beyond a diabetic state. It also discusses its future perspectives, as a therapeutic approach, in this high cardiovascular-risk population.
Collapse
|
19
|
Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 2021; 165:24-37. [PMID: 33484825 DOI: 10.1016/j.freeradbiomed.2021.01.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ 1105, Amsterdam, the Netherlands
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
20
|
Zhang Z, Ni L, Zhang L, Zha D, Hu C, Zhang L, Feng H, Wei X, Wu X. Empagliflozin Regulates the AdipoR1/p-AMPK/p-ACC Pathway to Alleviate Lipid Deposition in Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021; 14:227-240. [PMID: 33500643 PMCID: PMC7822229 DOI: 10.2147/dmso.s289712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Abnormal lipid deposition in the progress of diabetic nephropathy (DN) plays an important role in a number of studies that have shown that SGLT2 inhibitor (SGLT2i) empagliflozin plays an important role in lipid metabolism, but its mechanism is still unclear. METHODS We aimed to explore the effect of empagliflozin on lipid levels in kidney cancer patients with DN and postoperative patients without DN kidney carcinoma; the patients with DN showed ectopic lipid deposition. In type 2 diabetes model mice induced by streptozotocin (STZ) and a high-fat diet, combined AMPK plus empagliflozin or empagliflozin inhibitor plus compound C was applied, followed by analyses of the blood, urine and kidney indexes to observe the correlation between SGLT2i and AMPK and lipid metabolism in diabetic kidney disease. We determined whether DN in patients with renal tubular atrophy involved lipid metabolism. RESULTS In clinical specimens, the adiponectin receptor AdipoR1 was reduced, and the phosphorylation acetyl-CoA carboxylase (p-ACC) was increased. In vitro and in vivo pathological immunofluorescence and Western blotting confirmed that, under the condition of high glucose, malpighian tubules displayed ectopic lipid deposition and expressed related lipid parameters accompanied by fibrosis. Empagliflozin intervention reduced lipid deposition fibrosis and renal tubular atrophy, and the addition of compound C promoted disease progression. Moreover, siAdipoR1 transfection proved that AdipoR1 affected P-AMPK and then p-ACC affected lipid metabolism in renal tubular cells. CONCLUSION According to the above experimental results, empagliflozin could reduce lipid metabolism of DN through AdipoR1/P-AMPK/P-ACC pathway and delay DN progress.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lian Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Dongqing Zha
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Chun Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Lingli Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Huiling Feng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Xiaobao Wei
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
- Correspondence: Xiaoyan Wu Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of ChinaTel +86 15972935798 Email
| |
Collapse
|
21
|
Nirengi S, Peres Valgas da Silva C, Stanford KI. Disruption of energy utilization in diabetic cardiomyopathy; a mini review. Curr Opin Pharmacol 2020; 54:82-90. [PMID: 32980777 PMCID: PMC7770009 DOI: 10.1016/j.coph.2020.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) substantially elevates the risk for heart failure, a major cause of death. In advanced T2D, energy metabolism in the heart is disrupted; glucose metabolism is decreased, fatty acid (FA) metabolism is enhanced to maintain ATP production, and cardiac function is impaired. This condition is termed diabetic cardiomyopathy (DCM). The exact cause of DCM is still unknown although altered metabolism is an important component. While type 2 diabetes is characterized by insulin resistance, the traditional antidiabetic agents that improve insulin stimulation or sensitivity only partially improve DCM-induced cardiac dysfunction. Recently, sodium-glucose transporter-2 (SGLT2) inhibitors have been identified as potential pharmacological agents to treat DCM. This review highlights the molecular mechanisms underlying cardiac energy metabolism in DCM, and the potential effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Beyond the myocardium? SGLT2 inhibitors target peripheral components of reduced oxygen flux in the diabetic patient with heart failure with preserved ejection fraction. Heart Fail Rev 2020; 27:219-234. [PMID: 32583230 DOI: 10.1007/s10741-020-09996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent cardiovascular outcome trials have highlighted the propensity of the antidiabetic agents, SGLT2 inhibitors (SGLT2is or -flozin drugs), to exert positive clinical outcomes in patients with cardiovascular disease at risk for major adverse cardiovascular events (MACEs). Of interest in cardiac diabetology is the physiological status of the patient with T2DM and heart failure with preserved ejection fraction (HFpEF), a well-examined association. Underlying this pathologic tandem are the effects that long-standing hyperglycemia has on the ability of the HFpEF heart to adequately deliver oxygen. It is believed that shortcomings in oxygen diffusion or utilization and the resulting hypoxia thereafter may play a role in underlying the clinical sequelae of patients with T2DM and HFpEF, with implications in the long-term decline of extra-cardiac tissue. Oxygen consumption is one of the most critical factors in indexing heart failure disease burden, warranting a probe into the role of SGLT2i on oxygen utility in HFpEF and T2DM. We investigated the role of oxygen flux in the patient with T2DM and HFpEF extending beyond the heart with focuses on cellular metabolism, perivascular fibrosis with endothelial dysfunction, hematologic changes, and renal effects with neurohormonal considerations in the patient with HFpEF and T2DM. Moreover, we give a commentary on potential therapeutic targets of these components with SGLT2i to gain insight into disease burden amelioration in patients with HFpEF and T2DM.
Collapse
|